Skip to main content

Advertisement

Log in

Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Transdermal delivery system has gained significance in drug delivery owing to its advantages over the conventional delivery systems. However, the barriers of stratum corneum along with skin irritation are its major limitations. Various physical and chemical techniques have been employed to alleviate these impediments. Among all these, transfersomes have shown potential for overcoming the associated limitations and successfully delivering therapeutic agents into systemic circulation. These amphipathic vesicles are composed of phospholipids and edge activators. Along with providing elasticity, edge activator also affects the vesicular size and entrapment efficiency of transfersomes. The mechanism behind the enhanced permeation of transfersomes through the skin involves their deformability and osmotic gradient across the application site. Permeation enhancers can further enhance their permeability. Biocompatibility; capacity for carrying hydrophilic, lipophilic as well as high molecular weight therapeutics; deformability; lesser toxicity; enhanced permeability; and scalability along with potential for surface modification, active targeting, and controlled release render them ideal designs for efficient drug delivery. The current review provides a brief account of the discovery, advantages, composition, synthesis, comparison with other cutaneous nano-drug delivery systems, applications, and recent developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discovery Today. 2004;9(16):697–703.

    Article  CAS  PubMed  Google Scholar 

  2. Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and TFS as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019;563:293–303.

    Article  CAS  PubMed  Google Scholar 

  3. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Delivery. 2016;23(2):564–78.

    Article  CAS  PubMed  Google Scholar 

  4. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharmaceutical Journal. 2017;25(7):1040–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dudhipala N, Phasha Mohammed R, Adel Ali Youssef A, Banala N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded TFS gel for transdermal application: in vitro and ex vivo skin permeation. Drug development and industrial pharmacy. 2020;46(8):1334–44.

  6. Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded TFS for transdermal application: formulation optimization, in-vitro and in-vivo study. Journal of Drug Delivery Science and Technology. 2019;54:101303.

  7. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Desai JL, Pandya T, Patel A. Nanocarriers in Transdermal Drug Delivery. Nanocarriers: Drug Delivery System: Springer; 2021. p. 383–409.

  9. Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 2002;54:S3–17.

    Article  CAS  PubMed  Google Scholar 

  10. Alonso MJ, Sánchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol. 2003;55(11):1451–63.

    Article  CAS  PubMed  Google Scholar 

  11. Benson HAE. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  12. Benson HAE, Namjoshi S. Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci. 2008;97(9):3591–610.

    Article  CAS  PubMed  Google Scholar 

  13. Morrow DIJ, McCarron PA, Woolfson AD, Donnelly RF. Innovative strategies for enhancing topical and transdermal drug delivery. The Open Drug Delivery Journal. 2007;1(1).

  14. Shreya AB, Managuli RS, Menon J, Kondapalli L, Hegde AR, Avadhani K, et al. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations. J Liposome Res. 2016;26(3):221–32.

    Article  CAS  PubMed  Google Scholar 

  15. Chuang S-Y, Lin C-H, Huang T-H, Fang J-Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. 2018;8(1):42.

    Article  PubMed Central  Google Scholar 

  16. Yu G, Ali Z, Khan AS, Ullah K, Jamshaid H, Zeb A, et al. Preparation, Pharmacokinetics, and Antitumor Potential of Miltefosine-Loaded Nanostructured Lipid Carriers. Int J Nanomed. 2021;16:3255.

    Article  Google Scholar 

  17. Abdellatif AAH, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech. 2016;17(5):1067–74.

    Article  CAS  PubMed  Google Scholar 

  18. Jamshaid H, ud Din F, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology. 2021;19(1):1–51.

  19. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56(5):675–711.

    Article  CAS  PubMed  Google Scholar 

  20. Cevc G, Schätzlein A, Blume G. Transdermal drug carriers: basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J Control Release. 1995;36(1–2):3–16.

    Article  CAS  Google Scholar 

  21. Jiang T, Wang T, Li T, Ma Y, Shen S, He B, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018;12(10):9693–701.

    Article  CAS  PubMed  Google Scholar 

  22. Ujjwal N, Sakshi S. TFS: novel approach for transdermal delivery. Eur J Pharm Med Res. 2015;2(3):218–33.

    Google Scholar 

  23. Rai S, Pandey V, Rai G. TFS as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano reviews & experiments. 2017;8(1):1325708.

    Article  Google Scholar 

  24. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—Dermatophytosis. Int J Pharm. 2012;437(1–2):277–87.

    Article  CAS  PubMed  Google Scholar 

  25. Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded TFS for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci. 2013;8(6):336–45.

    Article  Google Scholar 

  26. Rajan R, Jose S, Mukund VPB, Vasudevan DT. Transferosomes-a vesicular transdermal delivery system for enhanced drug permeation. Journal of advanced pharmaceutical Technology & Research. 2011;2(3):138.

    Article  CAS  Google Scholar 

  27. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of Phospholipon 90 G and tween 80 based TFS for transdermal delivery of eprosartan mesylate. Pharm Dev Technol. 2018;23(8):787–93.

    Article  CAS  PubMed  Google Scholar 

  28. Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomed. 2013;8:1921.

    Google Scholar 

  29. Joshi A, Kaur J, Kulkarni R, Chaudhari R. In-vitro and ex-vivo evaluation of raloxifene hydrochloride delivery using nano-transfersome based formulations. Journal of Drug Delivery Science and Technology. 2018;45:151–8.

    Article  CAS  Google Scholar 

  30. Garg V, Singh H, Bimbrawh S, Kumar Singh S, Gulati M, Vaidya Y, et al. Ethosomes and TFS: principles, perspectives and practices. Curr Drug Deliv. 2017;14(5):613–33.

    Article  CAS  PubMed  Google Scholar 

  31. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, TFS and ethosomes as carriers for improving topical delivery of celecoxib. Drug Delivery. 2012;19(7):354–61.

    Article  CAS  PubMed  Google Scholar 

  32. Sana E, Zeeshan M, Ain QU, Khan AU, Hussain I, Khan S, et al. Topical delivery of curcumin-loaded TFS gel ameliorated rheumatoid arthritis by inhibiting NF-κβ pathway. Nanomedicine. 2021;16(10):819–37.

    Article  CAS  PubMed  Google Scholar 

  33. Ishii F, Nii T. Lipid emulsions and lipid vesicles prepared from various phospholipids as drug carriers. Colloid and interface science in pharmaceutical research and development: Elsevier; 2014. p. 469–501.

  34. Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim H-S, Kim J-K. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomed. 2016;11:3813.

    Article  CAS  Google Scholar 

  35. El Zaafarany GM, Awad GAS, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–72.

    Article  PubMed  Google Scholar 

  36. El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded TFS accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. Journal of Drug Delivery Science and Technology. 2020;58:101732.

  37. Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and characterization of ivabradine HCl TFS for enhanced transdermal delivery. Journal of Drug Delivery Science and Technology. 2020;60:101921.

  38. Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Hassan YA, Fathalla D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. Journal of Drug Delivery Science and Technology. 2020;56:101540.

  39. Pawar AY. Transfersome: A novel technique which improves transdermal permeability. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2016;10(04).

  40. Solanki D, Kushwah L, Motiwale M, Chouhan V. Transferosomes-a review. World Journal of Pharmacy and Pharmaceutical Sciences. 2016;5:435–49.

    CAS  Google Scholar 

  41. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.

    Article  CAS  PubMed  Google Scholar 

  42. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.

    Article  Google Scholar 

  43. Sinha VR, Kaur MP. Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm. 2000;26(11):1131–40.

    Article  CAS  PubMed  Google Scholar 

  44. Rajan R, Vasudevan DT. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. Journal of advanced pharmaceutical technology & research. 2012;3(2):112.

    Article  CAS  Google Scholar 

  45. Omar MM, Hasan OA, El Sisi AM. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: a promising approach for enhancement of skin permeation. Int J Nanomed. 2019;14:1551.

    Article  CAS  Google Scholar 

  46. Shamma RN, Elsayed I. Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J Liposome Res. 2013;23(3):244–54.

    Article  CAS  PubMed  Google Scholar 

  47. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Design, formulation and optimization of valsartan transdermal gel containing iso-eucalyptol as novel permeation enhancer: preclinical assessment of pharmacokinetics in Wistar albino rats. Expert Opin Drug Deliv. 2014;11(8):1149–62.

    Article  CAS  PubMed  Google Scholar 

  48. Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example. Eur J Pharm Sci. 2018;115:352–61.

    Article  CAS  PubMed  Google Scholar 

  49. Kateh Shamshiri M, Momtazi-Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-TFS as potential carriers for transdermal delivery of the human growth hormone. J Cell Biochem. 2019;120(6):9023–33.

    Article  CAS  PubMed  Google Scholar 

  50. Mura P, Faucci MT, Bramanti G, Corti P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci. 2000;9(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  51. Modi CD, Bharadia PD. TFS: new dominants for transdermal drug delivery. Am J Pharm Tech Res. 2012;2(3):71–91.

    Google Scholar 

  52. Utreja P, Jain S, Tiwary AK. Localized delivery of paclitaxel using elastic liposomes: formulation development and evaluation. Drug Delivery. 2011;18(5):367–76.

    Article  CAS  PubMed  Google Scholar 

  53. Khan MA, Pandit J, Sultana Y, Sultana S, Ali A, Aqil M, et al. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug Delivery. 2015;22(6):795–802.

    Article  CAS  PubMed  Google Scholar 

  54. Walve JR, Bakliwal SR, Rane BR, Pawar SP. TFS: A surrogated carrier for transdermal drug delivery system. 2011.

  55. Chen J, Lu W-L, Gu W, Lu S-S, Chen Z-P, Cai B-C. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin Drug Deliv. 2013;10(6):845–56.

    Article  CAS  PubMed  Google Scholar 

  56. Sachan R, Bajpai M. Transdermal drug delivery system: a review. International Journal of Research and Development in Pharmacy & Life Sciences. 2013;3(1):773–90.

    Google Scholar 

  57. Van Tran V, Moon J-Y, Lee Y-C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release. 2019;300:114–40.

    Article  PubMed  Google Scholar 

  58. Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of TFS, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs. 2011;22(8):774–82.

    Article  CAS  PubMed  Google Scholar 

  59. Sudhakar CK, Jain S, Charyulu RN. A comparison study of liposomes, TFS and ethosomes bearing lamivudine. Int J Pharm Sci Res. 2016;7(10):4214.

    CAS  Google Scholar 

  60. Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, TFS and liposomes for enhancing skin permeation of meloxicam. Biological and pharmaceutical bulletin. 2014:b13–00576.

  61. Cevc G, Schätzlein AG, Richardsen H, Vierl U. Overcoming semipermeable barriers, such as the skin, with ultradeformable mixed lipid vesicles, TFS, liposomes, or mixed lipid micelles. Langmuir. 2003;19(26):10753–63.

    Article  CAS  Google Scholar 

  62. Hao Y, Li W, Zhou X, Yang F, Qian Z. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581–97.

    Article  CAS  PubMed  Google Scholar 

  63. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  64. Bahram M, Mohseni N, Moghtader M. An introduction to hydrogels and some recent applications. Emerging concepts in analysis and applications of hydrogels: IntechOpen; 2016.

  65. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24(3):603.

    Article  PubMed Central  Google Scholar 

  66. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. Journal of advanced Biomedical and Pharmaceutical Sciences. 2020;3(1):1–9.

    Google Scholar 

  67. Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, TFS, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol. 2012;64(11):1560–9.

    Article  CAS  PubMed  Google Scholar 

  68. Barriga HMG, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed. 2019;58(10):2958–78.

    Article  CAS  Google Scholar 

  69. Piumitali B, Neeraj U, Jyotivardhan J. TFS—A Nanoscience in Transdermal Drug Delivery and Its Clinical Advancements. Int J Nanosci. 2020;19(04):1950033.

    Article  CAS  Google Scholar 

  70. Dhakar RC. TFS-a Novel Vesicular Carrier for Enhanced Transdermal Delivery of Stavudine: Development, Characterization and Performance Evaluation. Characterization and Performance Evaluation (January 28, 2021). 2021.

  71. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: TFS, ethosomes, and transethosomes. Int J Nanomed. 2015;10:5837.

    Article  CAS  Google Scholar 

  72. Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58–71.

    Article  CAS  PubMed  Google Scholar 

  73. Shabreen MR, Sangeetha S. Ethosomes: A novel drug delivery system and their therapeutic applications-A review. Research Journal of Pharmacy and Technology. 2020;13(4):1970–8.

    Article  Google Scholar 

  74. Kumar N, Dubey A, Mishra A, Tiwari P. Ethosomes: A Novel Approach in Transdermal Drug Delivery System. International Journal of Pharmacy & Life Sciences. 2020;11(5).

  75. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–65.

    Article  CAS  PubMed  Google Scholar 

  76. Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. Journal of Liposome Research. 2021:1–16.

  77. Cristiano MC, Froiio F, Spaccapelo R, Mancuso A, Nisticò SP, Udongo BP, et al. Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases. Pharmaceutics. 2020;12(1):6.

    Article  CAS  Google Scholar 

  78. Gupta PN, Vyas SP, Vishwidyalaya HSG. TFS for vaccine delivery: a potential approach for topical immunization. Med Chem Res. 2004;13(6):414–26.

    Article  CAS  Google Scholar 

  79. Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23(23):11677–83.

    Article  CAS  PubMed  Google Scholar 

  80. Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Research in pharmaceutical sciences. 2017;12(5):346.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Linos E, Katz KA, Colditz GA. Skin cancer—the importance of prevention. JAMA Intern Med. 2016;176(10):1435–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Orthaber K, Pristovnik M, Skok K, Perić B, Maver U. Skin cancer and its treatment: novel treatment approaches with emphasis on nanotechnology. Journal of nanomaterials. 2017;2017.

  83. Yang H, Wu X, Zhou Z, Chen X, Kong M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based TFS/microneedle complex for tumor metastasis therapy. Int J Biol Macromol. 2019;125:9–16.

    Article  CAS  PubMed  Google Scholar 

  84. Luiz MT, Viegas JSR, Abriata JP, Tofani LB, de Menezes Vaidergorn M, da Silva Emery F, et al. Docetaxel-loaded folate-modified TPGS-TFS for glioblastoma multiforme treatment. Materials Science and Engineering: C. 2021;124:112033.

  85. Pena-Rodríguez E, Moreno MC, Blanco-Fernandez B, González J, Fernández-Campos F. Epidermal delivery of retinyl palmitate loaded TFS: Penetration and biodistribution studies. Pharmaceutics. 2020;12(2):112.

    Article  PubMed Central  Google Scholar 

  86. Zhang K, Xiong L, Li D-Y, Gao J-J, Liu Y-K, Ma Y-S. Preparation of Cangai oil TFS patches and its in vitro evaluation. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica. 2020;45(4):854–60.

  87. Pandit AP, Omase SB, Mute VM. A chitosan film containing quercetin-loaded TFS for treatment of secondary osteoporosis. Drug delivery and translational research. 2020:1–12.

  88. Arora D, Khurana B, Nanda S. DoE directed optimization, development and evaluation of resveratrol loaded ultradeformable vesicular cream for topical antioxidant benefits. Drug Dev Ind Pharm. 2020;46(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  89. Vasanth S, Dubey A, Ravi GS, Lewis SA, Ghate VM, El-Zahaby SA, et al. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech. 2020;21(2):1–17.

    Article  Google Scholar 

  90. Dar MJ, McElroy CA, Khan MI, Satoskar AR, Khan GM. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-TFS for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2020;17(1):97–110.

    Article  CAS  PubMed  Google Scholar 

  91. Zheng H, Xu C, Fei Y, Wang J, Yang M, Fang L, et al. Monoterpenes-containing PEGylated TFS for enhancing joint cavity drug delivery evidenced by CLSM and double-sited microdialysis. Materials Science and Engineering: C. 2020;113:110929.

  92. Zhang J, Froelich A, Michniak-Kohn B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics. 2020;12(3):282.

    Article  CAS  PubMed Central  Google Scholar 

  93. Almehmady AM, Elsisi AM. Development, optimization, and evaluation of tamsulosin nanoTFS to enhance its permeation and bioavailability. Journal of Drug Delivery Science and Technology. 2020;57:101667.

  94. Langasco R, Fancello S, Rassu G, Cossu M, Cavalli R, Galleri G, et al. Increasing protective activity of genistein by loading into TFS: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases? Phytomedicine. 2019;52:23–31.

    Article  CAS  PubMed  Google Scholar 

  95. Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, et al. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. Journal of Drug Delivery Science and Technology. 2019;52:468–76.

    Article  CAS  Google Scholar 

  96. Mir-Palomo S, Nácher A, Busó MAOV, Caddeo C, Manca ML, Manconi M, et al. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf, B. 2019;175:654–62.

    Article  CAS  Google Scholar 

  97. Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Transfersomal nanovesicles for nose-to-brain delivery of ofloxacin for better management of bacterial meningitis: Formulation, optimization by Box-Behnken design, characterization and in vivo pharmacokinetic study. Journal of Drug Delivery Science and Technology. 2019;54:101304.

  98. Shaji J, Lal M. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor. Int J Pharm Pharm Sci. 2014;6(1):467–77.

    Google Scholar 

  99. Jain S, Jain P, Umamaheshwari RB, Jain NK. TFS—a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003;29(9):1013–26.

    Article  CAS  PubMed  Google Scholar 

  100. Zeb A, Qureshi OS, Yu C-H, Akram M, Kim H-S, Kim M-S, et al. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm. 2017;525(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  101. Verma N, Saraf S. Development and optimization of mannosylated naringenin loaded TFS using response surface methodology for skin carcinoma. International journal of applied pharmaceutics. 2021:235–41.

  102. El-Feky GS, Mona M, Mahmoud AA. Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation. Journal of Drug Delivery Science and Technology. 2019;49:24–34.

    Article  CAS  Google Scholar 

  103. Azimi M, Khodabandeh M, Deezagi A, Rahimi F. Impact of the transfersome delivered human growth hormone on the dermal fibroblast cells. Curr Pharm Biotechnol. 2019;20(14):1194–202.

    Article  CAS  PubMed  Google Scholar 

  104. Janga KY, Tatke A, Dudhipala N, Balguri SP, Ibrahim MM, Maria DN, et al. Gellan gum based sol-to-gel transforming system of natamycin TFS improves topical ocular delivery. J Pharmacol Exp Ther. 2019;370(3):814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Leonyza A, Surini S. Optimization of sodium deoxycholate-based TFS for percutaneous delivery of peptides and proteins. International Journal of Applied Pharmaceutics. 2019:329–32.

  106. Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and TFS. BioMed research international. 2013;2013.

  107. Kahlenberg JM, Fox DA. Advances in the medical treatment of rheumatoid arthritis. Hand Clin. 2011;27(1):11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kumar MS. Development of CelecoxibTransfersomal gel for the Treatment of Rheumatoid Arthritis. Indian Journal of Pharmaceutical and Biological Research. 2014;2(02):07–13.

    Article  CAS  Google Scholar 

  109. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus TFS. Journal of drug delivery. 2011;2011.

  110. Sultana SS, Sailaja AK. Preparation and evaluation of naproxen sodium loaded liposomes, ethosomes and transferosomes. J Bionanosci. 2017;11(4):284–91.

    Article  CAS  Google Scholar 

  111. Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics. 2018;10(1):26.

    Article  PubMed Central  Google Scholar 

  112. Abdallah MH. TFS as a transdermal drug delivery system for enhancement the antifungal activity of nystatin. LIPOSOME & NANOTECHNOLOGY. 2013:390.

  113. Paul A, Cevc G, Bachhawat BK. Transdermal immunisation with an integral membrane component, gap junction protein, by means of ultradeformable drug carriers. TFS Vaccine. 1998;16(2–3):188–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are very thankful to Saulat Institute of Pharmaceutical Sciences, Quaid-i-Azam University, Islamabad.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Waseem Akram, Humzah Jamshaid, and Fiza Ur Rehman conceived the idea of this review study and played a lead role in project designing. Muhammad Zaeem, Jehan zeb Khan, and Ahmad Zeb extracted the data. Muhammad Waseem Akram, Humzah Jamshaid, and Jehan zeb Khan analyzed the data. Draft writing was carried out by Muhammad Waseem Akram and Humzah Jamshaid. Humzah Jamshaid and Fiza Ur Rehman reviewed the final draft.

Corresponding authors

Correspondence to Humzah Jamshaid or Fiza Ur Rehman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.W., Jamshaid, H., Rehman, F.U. et al. Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery. AAPS PharmSciTech 23, 7 (2022). https://doi.org/10.1208/s12249-021-02166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02166-9

KEY WORDS

Navigation