Skip to main content
Log in

Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-β-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and − 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC0→600) and half-life (t1/2) of Gal-Res NPs were enhanced 1.82-fold and 2.19-fold higher than those of raw Gal-Res. The in vivo biodistribution results showed that Gal-Res NPs were more distributed in liver tissue than Gal-Res. Gal-Res NPs with high bioavailability and liver accumulation were hopeful drug delivery systems (DDS) to treat liver diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose-response. 2010;8:478–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16(8):449–66.

    Article  CAS  PubMed  Google Scholar 

  3. Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, et al. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol. 2013;61(1):215–26.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Sun Q, Xu T, Hong L, Fu R, Wu J, et al. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol Med Rep. 2016;13(1):224–30.

    Article  CAS  PubMed  Google Scholar 

  5. Ghinis-Hozumi Y, González-Dávalos L, Antaramian A, Villarroya F, Piña E, Shimada A, et al. Effect of resveratrol and lipoic acid on sirtuin-regulated expression of metabolic genes in bovine liver and muscle slice cultures. J Anim Sci. 2015;93(8):3820.

    Article  CAS  PubMed  Google Scholar 

  6. Heebøll S, El-Houri RB, Hellberg Y, Haldrup D, Pedersen SB, Jessen N, et al. The effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment. J Gastroenterol Hepatol. 2016;31(3):668–75.

    Article  PubMed  Google Scholar 

  7. Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. B Biointerfaces. 2015;134:88–97.

    Article  CAS  PubMed  Google Scholar 

  8. Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B: Biointerfaces. 2015;134:47–58.

    Article  CAS  PubMed  Google Scholar 

  9. Sarika P, James N, Kumar P, Raj D. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. Int J Biol Macromol. 2016;86:1–9.

    Article  CAS  PubMed  Google Scholar 

  10. D'Souza A, Devarajan P. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release. 2015;203:126–39.

    Article  CAS  PubMed  Google Scholar 

  11. Wu D, Lu B, Chang C, Chen C, Wang T, Zhang Y, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials. 2009;30(7):1363–71.

    Article  CAS  PubMed  Google Scholar 

  12. Qian J, Zha L, Wang B, Zhang C, Hong L, Chen W. Synthesis, cytotoxicity and liver targeting of 3-O-β-D-Galactosylated Resveratrol. J Pharm Pharmacol. 2019;71(6):929–36.

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Gatón L, Espuelas S, Huarte J, Larraeta E, Martin-Arbella N, Irache JM. Nanoparticles from Gantrez AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm. 2019;571:118699.

  14. Dai X, Yao J, Zhong Y, Li Y, Bai T. Preparation and characterization of Fe3O4@MTX magnetic nanoparticles for thermochemotherapy of primary central nervous system lymphoma in vitro and in vivo. Int J Nanomedicine. 2019;14:9647–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vora D, Heruye S, Kumari D, Opere C, Chauhan H. Preparation, characterization and antioxidant evaluation of poorly soluble polyphenol-loaded nanoparticles for cataract treatment. AAPS PharmSciTech. 2019;20(5):163.

    Article  PubMed  Google Scholar 

  16. Bernsmann F, Frisch B, Ringwald C, Ball V. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption. J Colloid Interface Sci. 2010;344(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  17. Kwon I, Bettinger C. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018;6(43):6895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5(3):522–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, Karimzadeh A, Shadjou N, et al. Poly-dopamine-beta-cyclodextrin: a novel nanobiopolymer towards sensing of some amino acids at physiological pH. Mater Sci Eng C Mater Biol Appl. 2016;1(69):343–57.

    Article  Google Scholar 

  20. Zhong Z, Yao X, Gao X, Jia L. Polydopamine-immobilized polypropylene microfuge tube as a pH-responsive platform for capture/release of DNA from foodborne pathogens. Anal Biochem. 2017;534:14–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Zhang X, Wen Z, Tan Y, Huang N, Cheng S, et al. Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats. Oncotarget. 2016;7(45):73681–96.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Umerska A, Paluch K, Santos-Martinez M, Corrigan O, Medina C, Tajber L. Freeze drying of polyelectrolyte complex nanoparticles: effect of nanoparticle composition and cryoprotectant selection. Int J Pharm. 2018;552:27–38.

    Article  CAS  PubMed  Google Scholar 

  23. Hong L, Li X, Bao Y, Duvall C, Zhang C, Chen W, et al. Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol. Eur J Pharm Sci. 2019;133:160–6.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, et al. Preparation andin-vitro/in-vivoevaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol. 2016;68(8):980–8.

    Article  CAS  PubMed  Google Scholar 

  25. Wang B, Cheng W, Zhang C, Bao Y, Chen W. Self-assembled micelles based on gambogenic acid-phospholipid complex for sustained-release drug delivery. J Microencapsul. 2019;36(6):1–27.

    Google Scholar 

  26. de M Barbosa R, Ribeiro L, Casadei B, da Silva C, Queiróz V, Duran N, et al. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics. 2018;10(4):231.

  27. Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, et al. A novel drug delivery carrier comprised of nimodipine drug solution and a nanoemulsion: preparation, characterization, in vitro, and in vivo studies. Int J Nanomedicine. 2020;15:1161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zha L, Qian J, Wang B, Liu H, Hong L. In vitro/in vivo evaluation of pH-sensitive Gambogenic acid loaded zein nanoparticles with polydopamine coating. Int J Pharm. 2020;587:119665.

    Article  CAS  PubMed  Google Scholar 

  29. Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, et al. PEGylated liposomes as delivery systems for Gambogenic acid: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2018;172:26–36.

    Article  CAS  PubMed  Google Scholar 

  30. Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B: Biointerfaces. 2016;147:376–86.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Yu C, Zhang H, Wang J, Jiang G, Kan C. pH-triggered drug release of monodispersed P(St-co-DMAEMA) nanoparticles: effects of swelling, polymer chain flexibility and drug-polymer interactions. J Nanosci Nanotechnol. 2017;17(2):900–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tan G, Ouyang K, Lei Z, Yan L, Li FJ, W. The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior. Sci Sin Chem. 2016;46:378–81.

    Google Scholar 

  33. Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci. 2016;463:279–87.

    Article  CAS  PubMed  Google Scholar 

  34. Lazarewicz J, Pluta R, Salinska E, Puka M. Beneficial effect of nimodipine on metabolic and functional disturbances in rabbit hippocampus following complete cerebral ischemia. Stroke. 1989;20(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  35. Song X, Jiang Y, Ren C, Sun X, Zhang Q, Gong T, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomedicine. 2012;7:3689–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li G, Zhao M, Zhao L. Well-defined hydroxyethyl starch-10-hydroxy camptothecin super macromolecule conjugate: cytotoxicity, pharmacodynamics research, tissue distribution test and intravenous injection safety assessment. Drug Deliv. 2016;23(8):2860–68.

  37. Li L, Li W, Sun J, Zhang H, Gao J, Guo F, et al. Preparation and evaluation of progesterone nanocrystals to decrease muscle irritation and improve bioavailability. AAPS PharmSciTech. 2018;19(3):1254–63.

    Article  CAS  PubMed  Google Scholar 

  38. Santofimia-Castaño P, Salido G, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca(2+) concentration determinations. Cytotechnology. 2016;68(4):1369–80.

    Article  PubMed  Google Scholar 

  39. Radi ZA. Kidney pathophysiology, toxicology, and drug-induced injury in drug development. Int J Toxicol. 2019;38(3):215–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China (81703805, 51303006), the Provincial Natural Science Foundation of Anhui Province (1408085MH196, KJ2018ZD031), and the University excellent top-notch personnel training fund of Anhui Province (gxfx2017050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Zhang, Qiannian Dong or Weidong Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Beilei Wang and Xiaoxiao Shan contributed to the work equally and should be regarded as co-first authors.

Supplementary Information

ESM 1

(DOC 1830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Shan, X., Lv, S. et al. Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles. AAPS PharmSciTech 22, 220 (2021). https://doi.org/10.1208/s12249-021-02079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02079-7

KEY WORDS

Navigation