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Abstract
Multidrug resistance (MDR1) and breast cancer resistance protein (BCRP) play important roles in drug absorption and distri-
bution. Computational prediction of substrates for both transporters can help reduce time in drug discovery. This study aimed 
to predict the efflux activity of MDR1 and BCRP using multiple machine learning approaches with molecular descriptors and 
graph convolutional networks (GCNs). In vitro efflux activity was determined using MDR1- and BCRP-expressing cells. Pre-
dictive performance was assessed using an in-house dataset with a chronological split and an external dataset. CatBoost and 
support vector regression showed the best predictive performance for MDR1 and BCRP efflux activities, respectively, of the 
25 descriptor-based machine learning methods based on the coefficient of determination (R2). The single-task GCN showed 
a slightly lower performance than descriptor-based prediction in the in-house dataset. In both approaches, the percentage of 
compounds predicted within twofold of the observed values in the external dataset was lower than that in the in-house dataset. 
Multi-task GCN did not show any improvements, whereas multimodal GCN increased the predictive performance of BCRP 
efflux activity compared with single-task GCN. Furthermore, the ensemble approach of descriptor-based machine learning 
and GCN achieved the highest predictive performance with R2 values of 0.706 and 0.587 in MDR1 and BCRP, respectively, 
in time-split test sets. This result suggests that two different approaches to represent molecular structures complement each 
other in terms of molecular characteristics. Our study demonstrated that predictive models using advanced machine learning 
approaches are beneficial for identifying potential substrate liability of both MDR1 and BCRP.

Keywords breast cancer resistance protein (BCRP) · graph convolutional network · in silico · machine learning · multidrug 
resistance (MDR1)

Introduction

Multidrug resistance (MDR1) and breast cancer resistance 
protein (BCRP) highly contribute to drug absorption and 
distribution (1). In particular, these efflux transporters are 
expressed in the blood–brain barrier (BBB) and prevent the 
brain penetration of drugs (2–6). Therefore, in vitro screen-
ing to eliminate MDR1 and BCRP substrates is utilized 

to develop medicines for central nervous system (CNS) 
diseases.

Efflux activity prediction can help reduce the cost and time 
in drug discovery. MDR1 has a large binding pocket and rec-
ognizes various structurally diverse compounds (7). Therefore, 
the accurate prediction of substrates via molecular docking 
simulations using protein structural information remains chal-
lenging. Quantitative structure–activity relationships (QSAR) 
using machine learning techniques, a type of artificial intelli-
gence (AI), have been used to improve absorption, distribution, 
metabolism, and excretion (ADME) properties in the drug dis-
covery process (8–15). Several computational classification 
models have been reported to predict substrates and modula-
tors of MDR1, BCRP, and other ABC transporters includ-
ing various techniques (16–26). Few studies have presented 
regression models for predicting the efflux activity of MDR1 
and BCRP (12, 27, 28).
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Various machine learning algorithms are essential for 
exploring the best prediction model. The automated machine 
learning framework comprehensively investigates multiple 
algorithms and minimizes technical issues. This study used 
PyCaret, an open-source machine learning library in Python 
that automates the machine learning workflow with mini-
mum coding, as a machine learning approach using molecu-
lar descriptors (29). In a recent study, the model for predict-
ing the fraction of a drug unbound in plasma using PyCaret 
outperformed those using other automated frameworks (30). 
In contrast to descriptor-based approaches, graph convo-
lutional networks (GCN) based on molecular graphs and 
convolutional neural networks (CNN) based on compound 
images have recently gained attention as a recent trend in 
machine learning (31–33).

The GCN for molecular properties is a powerful approach 
for implementing multi-task and multimodal learning. 
Multi-task learning attempts to learn multiple different tasks 
simultaneously and has been utilized for predicting ADME 
parameters (13, 33–35). Additionally, GCN can combine 
different types of information, such as the chemical struc-
tures of molecules and amino acid sequences of proteins, 
through multimodal learning. A recent study applied mul-
timodal GCN to the classification of molecular properties 
(36). However, the effectiveness of multimodal GCN in 
predicting ADME properties, including transporter activ-
ity, remains unclear.

This study developed a predictive model for MDR1 and 
BCRP activities using descriptor-based machine learning 
and GCNs. The predictive performances of the GCN mod-
els, including multi-task and multimodal learning, were 
compared with those of multiple descriptor-based machine 
learning approaches. In addition, an ensemble of descrip-
tor-based machine learning and GCNs was used to enhance 
predictivity.

Materials and Methods

Materials

The test compounds were prepared by Takeda Pharmaceuti-
cal Company (Fujisawa, Japan) to determine efflux activity 
in MDR1- and BCRP-expressing cells. All other reagents 
and solvents were of analytical grade or better and were 
commercially available.

In Vitro Permeability MDR1 and BCRP‑Expressing 
Cells

The efflux ratio (ER) was determined by previously 
described methods (12). Test compounds solubilized in 
dimethyl sulfoxide (DMSO) were added to transport buffer 
(Hanks’ balanced salt solution with 10 mM HEPES, pH 7.4) 

at a final concentration of 2 μM (DMSO < 1%) on either 
the apical or basolateral side of the transwell chamber with 
Madin–Darby canine kidney (MDCK)-MDR1 from NIH 
and MDCK-BCRP from Solvo Biotechnology (Szeged, 
Hungary).

The confluent cell monolayers on the transwell were incu-
bated for 1 h at 37°C with 5%  CO2. The test compounds 
were quantified by liquid chromatography–tandem mass 
spectrometry (LC-MS/MS; Applied Biosystems, Foster City, 
CA, USA). The ER and permeation of the test compounds 
from the apical to basolateral (A to B) or B to A direction 
were determined. The apparent permeability coefficient 
Papp (cm/s) was calculated using the following equation:

where dCr/dt is the cumulative concentration of the com-
pound in the receiver chamber as a function of time (µM/s); 
Vr is the volume of the solution in the receiver chamber 
(0.075 mL on the apical side, 0.25 mL on the basolateral 
side); A is the surface area for transport, i.e., 0.0804  cm2 for 
the monolayer area; and  C0 is the initial concentration in the 
donor chamber (µM).

The ER was calculated using the following equation:

Data Preparation

The ER for 9490 and 3440 compounds in MDR1- and 
BCRP-expressing cells, respectively, were used as the pro-
prietary internal dataset. As data splitting, we conducted a 
time split. The entire dataset was chronologically divided 
into a training set (compounds used until May 2022) and 
a test set (from June 2022 to March 2023). As an external 
dataset, the ER for 46 and 47 compounds were determined 
in MDR1- and BCRP-expressing cells, respectively.

Descriptor‑Based Approach

Various molecular descriptors were generated using alvaD-
esc (1.0.16) (Alvascience Srl, Lecco, Italy), which provides 
physicochemical properties such as lipophilicity, polarity, 
molar refractivity, and pharmacophore. The 3D descriptors 
and descriptors with N/A were removed. The generated 2D 
descriptors were applied to the feature selection.

The Boruta algorithm was applied as the feature selec-
tion method, a wrapper around the random forest algorithm 
to identify essential features for further analysis (37, 38). 
After the feature selection, PyCaret 2.3.6 was used for data 
splitting, model selection, and hyperparameter turning (29). 

(1)Papp =
dCr

dt
×

Vr

A × C0

(2)ER =
Papp,BtoA

Papp,AtoB
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Twenty-five machine learning algorithms, including linear 
regression (lr), lasso regression (lasso), ridge regression 
(ridge), elastic net (en), least angle regression (lar), lasso 
least angle regression (llar), orthogonal matching pursuit 
(omp), Bayesian ridge (br), automatic relevance determi-
nation (ard), passive aggressive regressor (par), random 
sample consensus (ransac), TheilSen regressor (tr), Huber 
regressor (huber), kernel ridge (kr), support vector machine 
(svm), K-nearest neighbors (knn), decision tree regressor 
(dt), random forest regressor (rf), extra trees regressor (et), 
AdaBoost regressor (ada), gradient boosting regressor (gbr), 
MLP regressor (mlp), extreme gradient boosting (xgboost), 
light gradient boosting machine (lightgbm), and CatBoost 
regressor (catboost), were employed for model building. For 
model selection, tenfold cross-validation was applied only 
to the training datasets. Model performance was assessed 
using the percentage within a twofold error, the coefficient 
of determination (R2), and root-mean-squar error (RMSE) 
values. The percentage within a twofold error is the per-
centage of predicted values within twofold of the observed 
values and is used to evaluate the prediction acceptability. R2 
and RMSE were calculated using the following equations:

Hyperparameter tuning was performed for the model 
showing the best performance in tenfold cross-validation. 
The number of iterations in the grid search for hyperparam-
eter tuning was set to 100. Finally, the model performance 
was evaluated using test and external datasets.

Graph‑Based Approach

The training and test sets from the descriptor-based approach 
were used in the graph-based approach. We used a GCN 
comprising two graph convolutional layers and two linear 
transformation layers (39). We used the atom type, degree, 
hybridization, aromaticity, formal charge, number of implicit 
Hs on the atom, number of radical electrons of the atom, and 
total Hs on the atom as atom features. The percentage within 
a twofold error, R2, and RMSE were used to evaluate model 
performance. Integrated Gradients was used to interpret 
which chemical substructures influenced ER prediction (40).

The model was trained on 80% of the training dataset for 
200 epochs, with a batch size of 1024. The mean absolute 
error (MAE) was used as the loss function. Adam was used as 
an optimization algorithm (41). Hyperparameters of Adam, 
including learning rate, exponential decay rates, epsilon (a 

(3)R
2 = 1 −

∑n

k=1
(Observed value − Predicted value)2

∑n

k=1
(Observed value − Mean value)2

(4)

RMSE =

√

1

n
×
∑n

k=1
(Predicted value − Observed value)2

parameter for numerical stability), and weight decay (L2 pen-
alty), were optimized using Optuna to maximize the accuracy 
of the other 20% of the training dataset (42). The number 
of optimization trials was set to 100. We used the Captum 
library to perform Integrated Gradients (43).

Multi-task learning was applied to build a single model to 
predict MDR1 and BCRP activities for the same compound. 
The model architecture was the same as that of the single-
task GCN, and the output layer size was changed to two. The 
loss function, optimization algorithm, and method of hyper-
parameter tuning were the same as in the single-task GCN.

Multimodal learning utilizes the chemical structures of 
drug molecules and amino acid sequences of the two trans-
porters. Chemical structures were encoded using two graph 
convolutional layers into 128-dimensional feature vectors. 
The amino acid sequences of MDR1 and BCRP were also 
encoded with one one-dimensional convolutional layer and 
one linear transformation layer into 32-dimensional feature 
vectors. After concatenating the two types of feature vec-
tors, two linear transformation layers predicted the ER from 
the feature vectors. The training and hyperparameter tuning 
methods were the same as those for the single-task GCN.

For graph-based approaches, PyTorch (44), Deep Graph 
Library (45), and DGL-LifeSci (46) were used. We used the 
GCN Predictor implementation in DGL-LifeSci with default 
parameters as the GCN architecture. To illustrate the mol-
ecules, we used RDKit, an open-source cheminformatics 
software (47).

Results

Dataset Analysis

The ER histogram did not follow a normal distribution, and 
the ER was log-transformed to reduce the skewness of the 
measurement variable (Fig. 1). ER distribution was com-
parable between the time-split training and test sets. The 
distribution pattern of the BCRP ER in the external dataset 
differed from that in the in-house dataset (Fig. S1).

Descriptor‑Based Approach

The predictive performance of the 25 machine learning mod-
els was compared using tenfold cross-validation for each 
training set. The model performance was evaluated using the 
percentage within a twofold error, R2, and RMSE. The Cat-
Boost showed the best performance in the time-split training 
set (Table I). The ER predictivity based on CatBoost was 
evaluated using an independent test set from the training 
set. The R2 and RMSE values were 0.673 and 0.424, respec-
tively, and 59.6% of the predicted ER values were within 
twofold of the observed values (Table II). Tree-based models 
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enable the calculation of the feature importance, and the top 
10 important features of the MDR1 ER prediction model 
were investigated (Table S1).

Support vector regression produced the best results for 
BCRP ER prediction in the time-split training set (Table I). 
The R2 and RMSE values were 0.536 and 0.333, respec-
tively, in an independent time-split test set, and 63.9% of 
the predicted ER values were within twofold of the observed 
values (Table II).

Compared with the in-house time-split test set, the predic-
tive performance in the external dataset was poor. In the exter-
nal MDR1 and BCRP datasets, the percentages within the 
twofold error were 41.3% and 36.2%, respectively (Fig. S3).

Graph‑Based Approach

The predictive performance of the GCN is shown in Table II. 
The model performance was evaluated using an independent 
test set from the training set. The R2 values of the MDR1 and 
BCRP ER predictions for the test set were 0.651 and 0.484, 
respectively. In the external MDR1 and BCRP dataset, the 

predictive performances were poorer than that in the in-house 
time-split test set, and the percentage within twofold error 
was 47.8% and 55.3%, respectively (Fig. S2). The chemical 
substructure contributing to the predicted ER was visualized 
using Integrated Gradients in the external dataset (Fig. S4).

The results of multi-task and multimodal learning are 
shown in Table II. Multi-task learning did not improve ER 
prediction accuracy. Meanwhile, based on R2 and RMSE, 
multimodal learning improved the predictive performance 
of BCRP ER.

Ensemble Approach

The ensemble model was developed to utilize the advan-
tages of both the descriptor-based and graph-based 
approaches. The average values of the predicted ER with 
descriptor-based machine learning and the GCN were 
used for the final predicted ER. In both tasks, the accuracy 
was higher than that of the descriptor- and graph-based 
approaches (Table II). The R2 values of the MDR1 and 
BCRP ER predictions were 0.706 and 0.587, respectively, 

Fig. 1  Distribution of MDR1 
and BCRP ER and log(ER) 
values in the training set (solid 
column) and test set (open 
column). Values represent the 
relative frequency of MDR1 
ER a and log(ER) b in MDR1 
and ER c and log(ER) d in 
BCRP. The relative frequency 
was calculated by dividing a 
frequency count by the sum of 
all frequencies
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in the time-split test set. The predictive performance in 
the external dataset was lower than that in the in-house 
time-split test set, and 50.0% and 55.3% of the predicted 
MDR1 ER and BCRP ER values, respectively, were within 
twofold of the observed values (Figs. 2 and 3).

Discussion

The physiologically based pharmacokinetic (PBPK) model 
has been used for in vivo intestinal absorption and brain 
permeability and integrates quantitative ER values in each 

process. In particular, we reported that unbound brain-to-
plasma partitioning  (Kp,uu,brain) could be predicted using 
the ER in MDR1 and BCRP. An accurate ER can predict 
 Kp,uu,brain by incorporating it into the PBPK model.

The automated machine learning framework using 
PyCaret minimizes technical hurdles. In the descriptor-based 
prediction of the MDR1 ER, CatBoost, an open-source gra-
dient boosting library developed by Yandex (48), showed 
the highest predictivity in the time-split test set. Research-
ers from various fields have successfully utilized CatBoost 
for machine learning using big data since 2017 (7). How-
ever, there are no reports on the prediction of ADME-Tox 

Table I  Predictive Performance 
of Models Using alvaDesc 
Descriptors Based on 10-Fold 
Validation

MDR BCRP

Rank Model R2 RMSE Rank Model R2 RMSE

1 catboost 0.7177 0.3603 1 svm 0.7003 0.2899
2 svm 0.7087 0.3659 2 catboost 0.6959 0.2918
3 et 0.7073 0.3668 3 lightgbm 0.6845 0.2972
4 lightgbm 0.6984 0.3724 4 et 0.6759 0.3013
5 rf 0.6865 0.3797 5 rf 0.6449 0.3153
6 xgboost 0.6816 0.3825 6 xgboost 0.6366 0.3184
7 knn 0.6392 0.4073 7 gbr 0.6306 0.3215
8 mlp 0.6362 0.4086 8 knn 0.5748 0.3451
9 gbr 0.6253 0.4152 9 br 0.5454 0.3567
10 ridge 0.5535 0.453 10 ard 0.5222 0.3649
11 lr 0.5521 0.4537 11 mlp 0.5052 0.3689
12 ard 0.5515 0.4541 12 ridge 0.4945 0.3747
13 br 0.5462 0.4568 13 omp 0.45 0.3926
14 omp 0.4691 0.4941 14 lr 0.4349 0.3919
15 ada 0.442 0.5067 15 ada 0.387 0.4145
16 tr 0.3946 0.5271 16 tr 0.3472 0.4183
17 dt 0.3764 0.5351 17 dt 0.2984 0.4439
18 par 0.2385 0.5904 18 par 0.2323 0.4613
19 lasso  − 0.0017 0.6792 19 lasso  − 0.0052 0.5316
20 en  − 0.0017 0.6792 20 en  − 0.0052 0.5316
21 llar  − 0.0017 0.6792 21 llar  − 0.0052 0.5316
22 kr  − 3.8412 1.4924 22 kr  − 1.0651 0.7277
23 ransac  − 7.3114 1.9223 23 ransac  − 22.352 2.4973
24 lar  − 8.23854E + 16 60814075

Table II  Predictive Performance 
of Machine Learning Models 
and Graph Convolutional 
Networks

The best results are shown in bold font. As ML models, CatBoost and SVR were selected in the MDR1 and 
BCRP ER predictions, respectively

Model MDR1 BCRP

% < two-fold R2 RMSE % < two-fold R2 RMSE

ML 59.6 0.673 0.424 63.9 0.536 0.333
GCN 53.7 0.651 0.438 69.2 0.484 0.351
GCN Multi-task 53.1 0.628 0.453 67.7 0.394 0.381
GCN Multimodal 52.2 0.584 0.479 68.8 0.528 0.336
Ensemble 60.4 0.706 0.402 70.4 0.587 0.314
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parameters using CatBoost. In contrast, in the descriptor-
based prediction of the BCRP ER, support vector regression, 
a popular machine learning algorithm widely used for the 
classification and regression of ADME properties in sev-
eral studies (49, 50), showed the highest predictivity in the 
time-split test set. The comprehensive automated machine 
learning framework can help to select the best algorithm 
from traditional and contemporary algorithms.

Previous research has demonstrated that the graph-based 
approach is superior to descriptor-based prediction for multi-
ple ADME parameters (34). However, the MDR1 and BCRP 
ER predictive performance of GCN was poorer than that 
of the descriptor-based approaches in our study. We used 
a simple GCN architecture comprising two graph convo-
lutional layers and two linear transformation layers. Mean-
while, recent sophisticated models, such as graph attention 
networks (GATs) (51) and message passing neural networks 
(MPNNs) (52), can enhance predictive performance. Addi-
tionally, many features are available for each atom in a mol-
ecule that captures both the electrons’ properties and the 
bonds in which the atom participates. Modifying atomic 

features and introducing bond features may improve the 
performance of graph-based approaches.

Previous research has demonstrated that the multi-task 
GCN is superior to the single-task GCN for predicting 
intrinsic clearance and solubility (31). However, herein, 
the multi-task GCN showed poorer performance than the 
single-task GCN, presumably due to the imbalance in the 
dataset size between the two tasks, which produces many 
missing values, particularly in the smaller dataset (i.e., the 
BCRP dataset in this study). The possibility that many miss-
ing values lower the performance of multi-task learning has 
been reported in previous research (53). To improve the per-
formance of multi-task learning, datasets with few missing 
values may be required.

In contrast, multimodal learning may help overcome the 
challenge of imbalanced ADME datasets. Although the 
improvement of predictive performance using multimodal 
learning was not observed in MDR1 ER prediction, multi-
modal learning improved the predictivity of the BCRP ER 
(Table II and Fig. S2). This may be because multimodal 
learning overcomes the limited data problem by combining 

Fig. 2  Observed versus pre-
dicted ER in MDR1 (a) and 
BCRP (b) for the ensemble 
approach in the time-split test 
set. The solid line represents the 
line of unity. The dashed lines 
represent a twofold deviation

Fig. 3  Observed versus pre-
dicted ER in MDR1 (a) and 
BCRP (b) for the ensemble 
approach in the external set. 
The solid line represents the 
line of unity. The dashed lines 
represent a twofold deviation
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the information from two modalities. In our case, the BCRP 
dataset was smaller than that of MDR1, and multimodal 
learning solved the difficulty of the limited BCRP dataset. 
Meanwhile, the study’s multimodal learning approach is 
constrained by the number of protein sequence types. This 
study only used the protein sequences of two transporters, 
indicating that the constructed model has only been cate-
gorically informed that the transporters are different, and 
the model’s ability to recognize similarities and disparities 
between the protein sequences of diverse transporters has 
not been tested. Thus, further studies using datasets of efflux 
activities, including more diverse transporters, are required 
to investigate the utility of multimodal learning.

In both descriptor-based machine learning and molecu-
lar graph-based approaches, the predictive performances in 
the external dataset were lower than those in the in-house 
time-split set, indicating that the coverage of chemical space 
differed between the two datasets. In practice, descriptor-
based PCA plots demonstrated that some compounds in the 
external dataset did not fit the distribution observed in the in-
house training set (Fig. 4). The applicability domain must be 
considered to estimate the model’s reliability and coverage.

Furthermore, we applied Integrated Gradients to the GCN 
models to interpret which compound substructures con-
tributed to the predicted ER. Several studies have reported 
substructures that affect the MDR1 and BCRP ERs using 
a fingerprint-based machine learning approach (54–57). 
Herein, using GCN, the primary amine moiety was fre-
quently recognized to increase the ER, whereas hydroxyl 
groups (especially secondary alcohols) and halogens (Cl 
and F) were occasionally recognized to decrease the ER 
(Fig. S4). While hydroxyl groups and halogens are com-
mon in MDR1 non-substrates (55, 57), the role of primary 
amines in efflux activity has not been reported in the con-
text of machine learning. QSAR studies have reported that 
substructures of inhibitors, such as amino groups, fluorine, 
and chlorine, can be recognized by ABC transporters (58), 

although the action of the inhibitors on the transporters may 
not be the same as that of the substrates. Additionally, some 
contributing substructures differ between the fingerprint-
based machine learning approach in previous studies and the 
graph-based approach in this study; for example, nitrile and 
thial groups frequently occur in non-substrates (54). These 
findings suggest that combining multiple approaches, includ-
ing fingerprint-, descriptor-, and graph-based approaches, 
would strengthen knowledge about the chemical structure 
contributing to ER. GCN enables structure-based interpreta-
tion, thereby improving the efficiency of structural optimiza-
tion in the drug discovery process.

In this study, the ensemble model achieved higher pre-
dictive performance than the descriptor- and graph-based 
approaches (Table II). Adding molecular descriptors to a 
graph convolutional model improves the predictive perfor-
mance for molecular property prediction (59). The molecu-
lar graph-based approach learns the relationship between 
the chemical structures and efflux activity. In contrast, the 
descriptor-based approach uses many kinds of molecular 
descriptors, such as constitutional, topological, and phar-
macophore, in addition to chemical structures, including 
functional groups and fragment counts. Among the top 10 
features extracted from the MDR1 ER prediction model, 
molecular descriptors directly expressing chemical struc-
tures were limited, such as the frequency of C–N at topologi-
cal distance 1 and the number of double bonds (Table S1). 
The ensemble approach can consider both types of features, 
leading to high predictive performance.

Conclusions

This study successfully developed prediction models for 
ER in MDR1- and BCRP-expressing cells using molecu-
lar descriptor-based machine learning and graph-based 

Fig. 4  Primary component 
analysis of the in-house training 
set, test set, and external data-
set. Primary component 1 (PC1) 
versus primary component 2 
(PC2) in MDR1 (a) and BCRP 
(b) data. The in-house training 
data are indicated in purple, the 
in-house test data in green, and 
the external data in yellow



 The AAPS Journal (2023) 25:88

1 3

88 Page 8 of 10

approaches. Multimodal learning outperformed the other 
GCN approaches in predicting the BCRP ER. Because GCN 
enables the visualization of atomic contributions to the pre-
diction result, this information would be useful for clarifying 
the structure spot that increases ER and improving ER in 
the drug optimization process. Finally, ensemble approaches 
combined with descriptor-based machine learning and GCN 
improved the prediction of both MDR1 and BCRP ERs, ena-
bling early decision-making in compound prioritization.
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