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Abstract
Machine learning (ML) approaches have been applied to predicting drug pharmacokinetic properties. Previously, we predicted 
rat unbound brain-to-plasma ratio (Kpuu,brain) by ML models. In this study, we aimed to predict human Kpuu,brain through 
animal ML models. First, we re-evaluated ML models for rat Kpuu,brain prediction by using trendy open-source packages. 
We then developed ML models for monkey Kpuu,brain prediction. Leave-one-out cross validation was utilized to rationally 
build models using a relatively small dataset. After establishing the monkey and rat ML models, human Kpuu,brain prediction 
was achieved by implementing the animal models considering appropriate scaling methods. Mechanistic NeuroPK models 
for the identical monkey and human dataset were treated as the criteria for comparison. Results showed that rat Kpuu,brain 
predictivity was successfully replicated. The optimal ML model for monkey Kpuu,brain prediction was superior to the Neu-
roPK model, where accuracy within 2-fold error was 78% (R2 = 0.76). For human Kpuu,brain prediction, rat model using 
relative expression factor (REF), scaled transporter efflux ratios (ERs), and monkey model using in vitro ERs can provide 
comparable predictivity to the NeuroPK model, where accuracy within 2-fold error was 71% and 64% (R2 = 0.30 and 0.52), 
respectively. We demonstrated that ML models can deliver promising Kpuu,brain prediction with several advantages: (1) 
predict reasonable animal Kpuu,brain; (2) prospectively predict human Kpuu,brain from animal models; and (3) can skip 
expensive monkey studies for human prediction by using the rat model. As a result, ML models can be a powerful tool for 
drug Kpuu,brain prediction in the discovery stage.
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Introduction

During the last two decades, machine learning approaches 
have been gradually applied to drug discovery, including the 
prediction on drug pharmacokinetic (PK) properties [1–7]. 
Amongst various PK parameters, unbound brain-to-plasma 
ratio (Kpuu,brain) is a critical one for drugs targeting cen-
tral nervous system (CNS) [8]. It represents the ability of 
a drug to cross blood-brain barrier (BBB) after systemic 
administration and consequently to trigger pharmacologi-
cal effects. Accurate prediction on Kpuu,brain of the drug 
candidates can drastically reduce the drug discovery cycles 

by facilitating the candidate screening process. However, the 
traditional determination of Kpuu,brain through in vivo stud-
ies is expensive and time-consuming. With the development 
of in silico methodology, it turns out to be an alternative for 
this purpose [8–10].

As part of artificial intelligence, the origin of machine 
learning can be dated back to 1950s [11]. The evolution of 
machine learning framework has never stopped since then. 
Recent years, low-code automated machine learning mod-
ules such as PyCaret and scikit-learn lead the trends and 
were widely used in various fields [12]. We previously have 
reported machine learning models that can successfully pre-
dict Kpuu,brain in rats by using StarDrop (Optibrium, UK), 
a commercially available machine learning software [13]. In 
this study, we re-evaluated rat Kpuu,brain prediction through 
current trendy open-source automated machine learning 
library, PyCaret, in order to assess the flexibility of machine 
learning approaches under different conditions [14]. In paral-
lel, we tested rat Kpuu,brain prediction using graph convolu-
tional network (GCN) approach, which has been reported for 
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chemical structure representation with deep learning [15–18]. 
Additionally, limited information regarding in silico prediction 
on monkey and human Kpuu,brain involving machine learning 
approaches could be found at present. Therefore, we expanded 
the machine learning methodology to develop and to evalu-
ate machine learning models for monkey Kpuu,brain predic-
tion. Likewise, we generated Kpuu,brain dataset along with 
in vitro permeability data of membrane transporters, multiple 
drug resistance 1 (MDR1), and breast cancer resistance protein 
(BCRP), as additional features. The reason was MDR1 and 
BCRP had been recognized as key factors that impacting drug 
disposition through BBB [19–22]. After setting up the animal 
machine learning models, human Kpuu,brain prediction was 
achieved by using the animal models with appropriate scaling 
methods. Moreover, we previously reported physiologically 
based NeuroPK models which relied on MDR1 and BCRP’s 
properties for predicting Kpuu,brain among different species 
[23]. In this study, we used NeuroPK models as the criteria to 
further evaluate the performance of machine learning models 
on monkey and human Kpuu,brain prediction.

Materials and Methods

Chemicals

Commercially available compounds (reagent grade and 
above) and internal compounds from Takeda Pharmaceuti-
cal Company Limited (Fujisawa, Kanagawa, Japan) were 
used in this study.

Animal Studies

Animal studies were conducted under the approvals and guidance 
of Institutional Animal Care and Use Committee of the Shonan 
Health Innovation Park and Takeda Pharmaceutical Company 
Limited. Animal studies were conducted in animal research facil-
ities accredited by the Association for Assessment and Accredita-
tion of Laboratory Animal Care International (AAALAC).

In Vitro Permeability Assays

The method has been described previously [13, 23]. In brief, 
1 μM of the testing compound in transport buffer (Hanks’ 
balanced salt solution with 10 mM HEPES, pH 7.4) was 
added to the apical or basolateral side of the transwell cham-
ber, which was cultured with confluent cell monolayers of 
MDCK-MDR1 cells (NIH, USA) or MDCK-BCRP cells 
(Solvo Biotechnology, Szeged, Hungary). After incubating 
for 1 h at 37°C with 5% CO2, solution from both donor and 
receiver side was collected. The concentrations of the testing 
compounds were quantified by liquid chromatography (LC-
20 or Nexera, Shimadzu, Kyoto, Japan)–mass spectrometry 

(API 4000 or API 5000, AB Sciex LLC, Toronto, Canada) 
(LC/MS/MS). Permeability of the testing compounds from 
apical to basolateral (A to B) direction or B to A direction 
and the efflux ratio (ER) were then determined. The apparent 
permeability coefficient Papp (cm/s) was calculated by Eq. 1:

where dCr/dt is the cumulative concentration of the com-
pound in the receiver chamber (μM/s), Vr is the solution 
volume in the receiver chamber, A is the surface area for 
transport; and C0 is the initial concentration in the donor 
chamber (μM).

Efflux ratio (ER) was then determined by Eq. 2:

In Vivo Administration and Sampling

In vivo study condition of part of the monkey data (Table S1) 
was described previously [23]. For the newly added, the 
compounds (mainly internal compounds), cassette dosing 
solution of up to 10 testing compounds with a final dose of 
0.1 mg/kg each was administered intravenously as bolus to 
the monkeys. Newly added compounds exhibited fast brain 
equilibrium in rodent in general (Figure S1 and Table S2) 
and overall efflux capability, the driving factor for brain dis-
position, is stronger in rodents than in monkeys [23–26]. As 
a result, the risk to have delayed brain steady state in mon-
keys for these compounds would be low. Together with the 
consideration of animal welfare, monkeys were euthanized 
after 1 h post dose in this study. Blood and brain samples 
were collected. The blood samples were transferred to poly-
propylene tubes immediately, cooled on ice, and centrifuged 
(4°C, 6000 × g for 2 min). Approximately 120 μL of plasma 
was obtained for each sample. As for the brain samples, 20% 
brain homogenate in deionized water (w/v) were prepared 
under 4°C condition. Samples were stored at −80°C until 
use. The concentrations of the testing compounds in plasma 
and brain samples were measured by LC-MS/MS.

Unbound Fraction in Brain and Plasma 
and Determination of Kpuu,brain

The unbound fraction in plasma and brain for each com-
pound was evaluated using the equilibrium dialysis 
method. Details have been reported previously [13, 23, 
27]. Briefly, testing compounds solubilized in dimethyl 
sulfoxide (DMSO) were diluted to 1 μM by monkey 
plasma or 20% (w/v) monkey brain homogenate in 100 
mM sodium phosphate buffer (pH 7.4). Dialysis was 

(1)Papp =
dCr

dt
×

Vr

A × C
0

(2)ER =
Papp B to A

Papp A to B
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conducted with an equal volume of sodium phosphate 
buffer at 37°C for 16–20 h. The buffer obtained from the 
apparatus was mixed with an equal volume of either con-
trol plasma or control brain homogenate. The samples 
were mixed with three volumes of acetonitrile. Superna-
tant was stored at −80°C until LC-MS/MS analysis.

Plasma unbound fraction was defined by Eq. 3:

Unbound fraction in brain (fu,brain) was calculated by 
Eq. 4:

where D and fu,brain′ represent the dilution factor for 
the brain homogenate and unbound fraction determined in 
the 20% (w/v) brain homogenate, respectively.

Kpuu,brain was then defined by Eq. 5:

where Cbrain and Cplasma represent testing compound’s con-
centration in brain and plasma, respectively.

Re‑evaluation of Rat Kpuu,brain Model Using 
Current Machine Learning Modules

Re-evaluation of the rat dataset used PyCaret machine learn-
ing library in Python 3.8 (Python Software Foundation, 
Delaware, USA) with 2D descriptors generated by alvaDesc 
software (Alvascience Srl, Lecco, Italy) [14, 28]. Six hun-
dred forty compounds were split into 512 training data and 
128 test data by cluster characteristics, which were described 
before [13]. 5-fold cross validation was performed for model 
optimization. Final model was selected by prediction accu-
racy within 2-fold error and coefficient of determination (R2) 
of the test data set. R2 was defined by Eq. 6:

where N is the sample size, i is the sample number, y is the 
prediction value, ӯ is the mean value; and ŷ is the true value.

Rat Kpuu,brain Prediction Using GCN Approach

The same rat Kpuu,brain training and test datasets were 
used. Compounds’ chemical structures were represented by 
graphs using DGL-LifeSci in Python 3.8 (Python Software 

(3)fu, plasma =
Compound concentration in buffer

Compound concentration in plasma

(4)fu, brain =
1

D ×

(
1

fu,brain�
− 1

)
+ 1

(5)Kpuu, brain =
fu, brain × Cbrain

fu, plasma × Cplasma

(6)R2 = 1 −

∑N

i=1

�
yi − ŷi

�2

∑N

i=1

�
yi − yi

�2

Foundation, Delaware, United States) [29]. Rat Kpuu,brain 
prediction was fulfilled through deep learning with GCN 
models using Deep Graph Library with PyTorch backend 
[30, 31]. The training set was used for model establishment, 
which was further randomly split into model training set 
and model validation set. Model hyperparameter optimiza-
tion was tuned with Optuna [32]. Under this deep learning 
framework, model was selected by the prediction accuracy 
of the validation set. Final model performance was evaluated 
by the prediction accuracy within 2-fold error and coefficient 
of determination (R2) of the test dataset.

Monkey Kpuu,brain Model Establishment Using 
Machine Learning Approach

Due to the limitation of PyCaret for leave-one-out cross valida-
tion (LOOCV) settings, monkey machine learning models were 
built in Dataiku (New York City, USA), a commercial machine 
learning platform using a 2-step approach. Monkey dataset of 
51 compounds was used (Table S1). Compound-dependent 2D 
descriptors were generated by AlvaDesc software according 
to chemical structures [28]. In vitro MDR1 ER and BCRP ER 
were also included as additional features. Three thousand eight 
hundred sixty-four qualified features were finally used for step 
1 model establishment. A total of 14 regressors were utilized 
(Table S3). After the first round model training, top 20 features 
with the highest importance or correlation were selected from 
the 7 models with mean absolute error (MAE) less than 0.5 
(Table S3). It is noted no feature importance was generated 
for LightGBM, K nearest neighbors model, and support vector 
machines models. Eighty features were finally used for step 2 
model establishment. MAE was defined by Eq. 7:

where N is the sample size, i is the sample number, y is the 
prediction value, and ŷ is the true value.

Consider the small size of the dataset, LOOCV was 
implemented during model training and hyperparameter 
tuning. Corresponding feature importance was calculated 
for the tunned models. The final model was selected by 
prediction accuracy within 2-fold error and R2 of the 
whole dataset. To evaluate ERs’ role, we further checked 
step 2 model performance with ERs, without BCRP ER, 
without MDR1 ER, and without both ERs as features.

Human Kpuu,brain Prediction by Extrapolation 
from Animal Machine Learning Models

The developed rat model and monkey model were applied to 
human Kpuu,brain prediction of 14 compounds [8, 33, 34]. 
Information of compounds was summarized in Table S4. 

(7)MAE =
1

N

∑N

i=1
|
|yi − ŷi

|
|
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MDR1 and BCRP ERs scaling from human to rat or monkey 
using the ratio of relative expression factor (REF) and rela-
tive activity factor (RAF) between species were examined 
in addition to the original in vitro ER values (Eqs. 8 and 
9). RAF and REF parameters were referred to our previous 
work [23].

Kpuu,brain Prediction by the NeuroPK Model

The same monkey and human dataset were also fitted and 
assessed by NeuroPK models using MATLAB (MathWork 
Inc., MA, USA) curve fitting toolbox [23]. Kpuu,brain in 
NeuroPK model was calculated by Eq. 10:

where α represents a ratio to extrapolate the in vitro efflux 
activity of MDR1 in MDCK cells into that of MDR1 in 
vivo and β represents a ratio to extrapolate the in vitro efflux 
activity of BCRP in MDCK cells into that of BCRP in vivo 
[27]. Specially for the NeuroPK model, in order to avoid 
negative values in the equation, those ER values lower than 
1 were adjusted to 1.

Results

Re‑evaluation of the Rat Model

LightGBM model was the best for rat Kpuu,brain prediction 
by using the PyCaret machine learning library. Prediction 
accuracy within 2-fold error reached 79% and R2 was 0.53 
for the test set. This result was no inferior to the previous 
published data (Table I and Figure S2) [13]. Furthermore, 
rat model can select MDR1 and BCRP ERs as the most 
important features in this study as well (Fig. 1).

(8)
ER_RAFhuman to animal model = in vitro ER∕RAFhuman × RAFanimal

(9)
ER_REFhuman to animal model = in vitro ER∕REFhuman × REFanimal

(10)

Kpuu, brain =
1

1 + � ×
(
ERMDR1 − 1

)
+ � ×

(
ERBCRP − 1

)

Rat Kpuu,brain Prediction Through GCN Approach

The GCN model resulted in a 65% prediction accuracy 
within 2-fold error and R2 of 0.36 on rat Kpuu,brain predic-
tion for the test set. This result was inferior to that from the 
machine learning models (Table I and Figure S2).

Monkey Dataset Analysis

Monkey dataset was summarized in Table S1. The dataset 
included both inhouse data and references information, 
where part of the dataset has been described previously 
[23, 35–37]. Fast brain equilibrium was confirmed for most 
newly tested compounds in rodents (Figure S1). Statistical 
distribution of monkey Kpuu,brain data of 51 compounds’ 
basic chemical properties were evaluated (Table  II and 
Figure S3). The distribution of Kpuu,brain, in silico LogP 
calculated by ACD/Lab (Toronto, Canada), MW, and ERs 
covered a wide range. Both substrates (ER > = 2) and non-
substrates of MDR1 and BCRP were included.

Monkey Kpuu,brain Prediction

Total 80 features were finally extracted from step 1 mod-
els and subsequently were used for Step 2 model estab-
lishment. Top 3 models with the best accuracy after step 
2 training were summarized in Table S5. Among them, 
Ridge L2 regressor exhibited the best performance on mon-
key Kpuu,brain prediction, with a 2-fold error accuracy of 
78% and R2 = 0.76 for the whole dataset (Table III and Fig-
ure S4). Top 10 highly correlated features were shown in 
Fig. 2a.

Unlike the rat machine learning model, MDR1 ER and 
BCRP ER were not selected as top features by the Ridge L2 
model. Because of this, we further tested the model estab-
lishment without one or both ERs as features. After exclud-
ing ERs, Ridge L2 model delivered inferior predictability 
to the model with ERs, where accuracy within 2-fold error 
was 65% and R2 = 0.57 after excluding both ERs. When only 
excluding one of the ERs, accuracy within 2-fold error was 
69% and 65% together with R2 equaling to 0.69 and 0.56 for 
models without MDR1 ER or BCRP ER as features, respec-
tively. Highly correlated features for model without ERs as 
features were shown in Fig. 2b. Top 3 features were the same 
as the model with ERs features, which were VE2sign_Dz(p) 
(average coefficient of the last eigenvector from Barysz 
matrix weighted by polarizability), JGI2 (mean topological 
charge index of order 2), and VE2_D/Dt (average coefficient 
of the last eigenvector (absolute values) from distance/detour 
matrix). These features describe compounds’ chemical struc-
ture properties. For feature comparison, we also summarized 
the top 10 features of the best 3 monkey machine learning 
models in Table S6.

Table I   Comparison of Rat Models

Predicted 
Kpuu,brain of 
the test set

LightGBM 
model using 
PyCaret

Published model 
using StarDrop

GCN model

Accuracy% 
(number 
within 2-fold 
error/total)

79% (101/128) 77% (99/128) 65% (83/128)

R2 0.53 0.54 0.36
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NeuroPK Model Performance on Monkey 
and Human Kpuu,brain Data

Identical monkey dataset of 51 compounds were also used 
for NeuroPK model. The results demonstrated that the 
best within 2-fold error accuracy was 61% and R2 was 
0.41 (Table III). As for the human dataset, the best fitted 
model showed a 2-fold error accuracy of 71% and R2 of 
0.35 (Table IV and Figure S5).

Human Kpuu,brain Prediction

Human Kpuu,brain prediction was achieved by using the 
established rat Kpuu,brain LightGBM model and monkey 
Kpuu,brain Ridge L2 model with the consideration of 
scaled MDR1 and BCRP ERs in addition to the original 
in vitro ER values (Table IV and Figure S6). For the rat 

model, REF scaling gave the highest accuracy for human 
Kpuu,brain prediction with a 2-fold error accuracy of 71% 
and R2 of 0.30 (Table IV and Table S7). On the other 
hand, best human Kpuu,brain prediction by the monkey 
model was achieved without scaling ERs. Within 2-fold 
error accuracy was 64% and R2 equaled to 0.52.

Discussion

Machine learning has been treated as one effective strategy 
to predict drug pharmacokinetic properties. We reported its 
use for small molecule Kpuu,brain prediction in rats before 
[13]. In this study, we expanded the application of machine 
learning models to monkey and human Kpuu,brain predic-
tion. Monkey Kpuu,brain prediction was achieved by estab-
lishing machine learning model using actual monkey data. 
On the other hand, good human Kpuu,brain prediction was 

Fig. 1   Top 10 features of the rat 
LightGBM model

Table II   Monkey Dataset 
Analysis

Parameters Kpuu,brain MW LogP MDR1 ER BCRP ER

Minimum 0.003 188.3 –0.56 0.20 0.80
Maximum 1.61 811.1 5.70 296.0 54.0
Median 0.25 454.5 3.03 26.0 2.2
Mean 0.368 427.0 2.83 47.5 7.3
Number of MDR1 substrates 39
Number of BCRP substrates 27
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achieved through the projection from the animal machine 
learning models with appropriate scaling method. For com-
parison analysis, monkey and human Kpuu,brain described 
by the physiologically based NeuroPK models were used as 
the standard criteria for evaluating machine learning model 
performance.

Re-evaluated rat model under the trendy open-source 
machine learning module provide good prediction accu-
racy (Table I). Moreover, it can select MDR1 and BCRP 
ER as key features like previously reported models, which 
indicated the machine learning approach could recognize 
physiological parameters with a relatively abundant data-
set (Fig. 1). It also revealed the performance consistency 
among different machine learning modules in terms of rat 
Kpuu,brain prediction (Table I). With the development of 
machine learning frameworks, refinement and optimization 
of existing models using new modules is possible to deliver 
consistent predictability, which is important for long term 
application in practice of such machine learning models.

In parallel, GCN approach was examined. Chemical 
structure information of the compounds was described by 
graphs with subsequent Kpuu,brain prediction utilizing deep 

learning neural network model. Although this approach can 
provide acceptable prediction accuracy, it was inferior to 
the machine learning models (Table I). One potential rea-
son is that MDR1 ER and BCRP ER cannot be included in 
this approach. They are the additional in vitro experimental 
information not directly deriving from chemical structures; 
therefore, they cannot be translated and involved as part of 
the generated graphs to be used for model establishment. 
Besides, deep learning typically requires thousands of data 
entries in order to establish a promising model, much more 
than that required by the machine learning models. Con-
sider these facts, we decided to continue with the machine 
learning approaches for monkey Kpuu,brain prediction at 
this stage.

Contrary to the rat dataset, one hurdle for the mon-
key Kpuu,brain prediction lied in the small size of avail-
able data input. Monkey dataset (Table S1) contained 
51 compounds from both literatures and inhouse studies 
[23, 35–37]. One potential concern on the brain steady 
state of those compounds with 1-h collection time point 
was first confirmed through rodent data (Figure S1 and 
Table S2). As described, most compounds can reach brain 

Table III   Monkey Kpuu,brain Prediction Accuracy and Statistical Data by Different Models

Monkey Kpuu,brain Ridge L2 model 
with ERs

Ridge L2 model without 
MDR1 ER

Ridge L2 model without 
BCRP ER

Ridge L2 model 
without ERs

NeuroPK

  Accuracy% (number within 
2-fold error/total)

78% (40/51) 69% (35/51) 65% (33/51) 65% (33/51) 61% (31/51)

LogKpuu based
  R2 0.76 0.69 0.56 0.57 0.41
  MAE 0.20 0.23 0.28 0.28 0.33

Fig. 2   Top 10 features of the monkey step 2 Ridge L2 models. a With MDR1 ER and BCRP ER as features. b Excluding MDR1 ER and BCRP 
ER as features
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equilibrium quickly within 1 h in rodents, where the dif-
ferences to a later time point were within 2-fold error. It is 
known that efflux transporters are one major force for brain 
penetration and Kpuu,brain [19–22, 38]. Various studies 
have demonstrated that rodent’s overall brain efflux trans-
porter expression and activity are stronger than monkey, 
which provided the rationale to have early brain steady 
state in monkeys for those compounds as well [23–26].

To provide more confidence on our monkey dataset 
for machine learning use, we conducted principal com-
ponent analysis of all the generated features for monkey 
dataset versus rat dataset, where principal component 1 
(PC1)–principal component 2 (PC2) were shown in Fig. 3. 

PC1 and PC2 had explained variance of 0.34 and 0.09, 
respectively. Cumulative explained variance was shown in 
Figure S7. In spite of a smaller data size, monkey dataset 
possessed wider distribution than the rat dataset, reveal-
ing the coverage of chemical space in the monkey data-
set is not limited. LOOCV was adopted and turned out 
to be a feasible strategy to offer reasonable prediction on 
Kpuu,brain in monkey. So far, the machine learning model 
showed better performance than the mechanistic NeuroPK 
model according to 2-fold error prediction accuracy and 
R2 (Table III). Nevertheless, we previously reported the 
predictive performance on the external compounds, which 
suggested mechanistic NeuroPK model exhibited slightly 
better prediction in terms of R2 than the optimal machine 
learning model [13]. Due to lack of additional data for 
monkey or human Kpuu,brain, it is hard to validate this 
point in this study. Yet, similar to the observation in the 
rat models, it is possible that chemotypes not well covered 
by current chemical space and descriptors could be better 
explained by the NeuroPK model.

When it comes to important features of the final monkey 
Kpuu,brain models in this study, a number of overlapped 
features were observed in the best 3 models (Table S6). For 
example, SIC (structural information content index for neigh-
borhood symmetry), B09_N-S (presence/absence of N-S at 
topological distance 9), and SpMin1_Bh(i) (smallest eigen-
value n. 1 of Burden matrix weighted by ionization potential) 

Table IV   Human Kpuu,brain Prediction Accuracy and Statistical Data 
by Different Models

Human 
Kpuu,brain

Rat model using 
REF ER scaling

Monkey model 
without ER 
scaling

NeuroPK

Accuracy% 
(number within 
2-fold error/
total)

71% (10/14) 64% (9/14) 71% (10/14)

LogKpuu based
  R2 0.30 0.52 0.35
  MAE 0.29 0.26 0.26

Fig. 3   Monkey and rat 
Kpuu,brain dataset principal 
component analysis for features. 
Primary component 1 (PC1) 
versus primary component 2 
(PC2): rat data in yellow and 
monkey data in purple
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might highly contribute to monkey brain penetration. But 
these descriptors are tiny pieces of 2-dimensional (2D) chemi-
cal structure information, which cannot be well linked to spe-
cific chemotypes or functional groups. Further evaluation is 
required to confirm the importance of these structure pieces 
with different dataset. Moreover, we will try different feature 
generation methods such as using fingerprint approach to bet-
ter describe spatial structure properties in the future.

Correlation matrix of top 10 features from the Ridge L2 
model and ERs can indicate whether certain features could 
represent ERs’ roles in the monkey Kpuu,brain model (Fig-
ure S8). Results suggested that BCRP ER statistically corre-
lated to the feature B05_O-Cl_ (presence/absence of O–Cl at 
topological distance 5). We have confirmed that excluding the 
ERs led to worse prediction accuracy (Table III). Excluding 
BCRP ER or both ERs showed more impacts on prediction 
accuracy than excluding MDR1 ER. It is noted that BCRP ER 
was selected as top 10 features by the other monkey model 
(Lasso L1 model) (Table S6). Based on this information, 
BCRP ER may play an important role in monkey Kpuu,brain 
prediction. As for MDR1 ER, there was limited correlation to 
the top features selected by the Ridge L2 Kpuu,brain model. 
Removing MDR1 ER impaired the model predictivity but 
not as much as excluding BCRP ER. Similarly, MDR1 ER 
was not selected as crucial features by the other 2 models 
as well. One potential explanation was the expression level 
of MDR1 in monkey is much lower than that in rodents so 
that its importance was not affirmed by the machine learning 
models [25, 39]. Overall, BCRP ER exhibited more influences 
than MDR1 ER on monkey Kpuu,brain prediction.

We further analyzed the monkey Ridge L2 model outliers 
(outside 2-fold error) in relation to unbound fraction fu values. 
Outliers had fu values generally ranged from very small values 
to medium values (< 0.5) while large fu compounds actually 
can be predicted within 2-fold error under this model (Fig-
ure S9). It should be pointed out that limited data were available 
for large fu (> 0.5) range. In spite of this, the monkey machine 
learning model can cover compounds with a wide range of fu.

By using MDR1 and BCRP REF as scaling factor among 
different species, rat machine learning model well predicted 
human Kpuu,brain (Table IV). Monkey machine learning 
model also showed the ability to predict human Kpuu,brain 
with comparable performance. These findings suggested that 
machine learning model of preclinical species could be prop-
erly translated to human, which will be a powerful tool dur-
ing CNS drug discovery and development. Merits of machine 
learning models for human Kpuu,brain prediction include 
high-throughput and low demands on in vivo studies. In this 
study, we found REF as scaling factor worked better than 
RAF in the rat model (Table S7). It implied that transport-
er’s expression level could be a more appropriate factor than 
its activity when dealing with species differences between 
rodent and human. A potential reason is that RAF used here 

was from our previous study that fitting the Kpuu,brain and 
Kpuu,CSF values with a set of compounds while REF was 
calculated by calibration of proteomic expression level from 
scaler compounds [23, 40]. It was also claimed that RAF 
ought to be calculated through transporter-selective substrate 
probe [41]. It was likely that RAF value extracted from other 
resources might not fit the current datasets well so that the 
cross-species translation was worse than REF.

When trying to utilize the monkey model to predict 
human Kpuu,brain, prediction accuracy was comparable to 
that of rat machine learning model or NeuroPK model. In 
practice, a compound’s Kpuu,brain for human often tends 
to be translated from that of monkey or other non-rodent 
animals [42]. Closer physiological similarity between mon-
key and human compared with rodent is one underlying 
reason for more promising translation [43]. It was claimed 
that monkey would be a more appropriate animal model for 
CNS than rodent to understand human neurobiology not 
only from anatomical and physiological aspects but also due 
to cognitive and behavioral differences [44]. Thus, it was 
expected that monkey model can provide reasonable predic-
tion on human Kpuu,brain. Probably because of the simi-
lar expression patterns and activities of BCRP and MDR1 
between monkey and human, no benefits were observed by 
using REF or RAF scaled ERs [25, 39, 45].

Kpuu,brain were fitted by the NeuroPK models through 
mathematical equation using MDR1 and BCRP ERs in a 
retrospective manner. In both monkey and human cases, 
machine learning models can provide comparable to better 
predictivity than the NeuroPK model (Table III and IV). 
For the monkey models, even the one excluding ERs can 
provided slightly better accuracy than the NeuroPK model. 
One advantage is that machine learning models involve a 
wide range of physicochemical features of a compound. The 
combination of physicochemical and physiological proper-
ties may generate more comprehensive models rather than 
just relying on one aspect. This may explain why monkey 
machine learning model with ERs can provide significantly 
better predictivity than the NeuroPK model.

For the human Kpuu,brain prediction, both rat and 
monkey machine learning models can deliver comparable 
predictivity to that of the mechanistic NeuroPK models. 
One advantage of utilizing machine learning models lies 
in indirect prediction could be achieved instead of using 
actual human dataset to generate a reliable model. It should 
be noted that using the small human dataset is technically 
hard to generate a stable NeuroPK model from data fitting 
process. Therefore, it is encouraging that machine learning 
models totally have the potentials to be used as prospec-
tive tools for human Kpuu,brain prediction. In other words, 
unlike the NeuroPK model, machine learning models can 
directly predict human Kpuu,brain based on the established 
rat or monkey model instead of fitting the limited human 
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data. Especially, using the rat model will greatly diminish 
the demands on monkey studies so as to cost-effectively 
accelerate the drug discovery timeline. Consider above 
advantages, it is rational to continuously refine and optimize 
machine learning models for human translation.

We further evaluated the Kpuu,brain of the same com-
pounds among the three species. Both monkey and rat 
Kpuu,brain showed more or less distinctions from human 
Kpuu,brain without better correlation from either species 
(Figure S10). In empirical, monkey data are typically cho-
sen for human PK prediction owing to better PK translation 
between primates [42]. Other than this fact, rat Kpuu,brain 
with appropriate scaling method can also be a good option 
for human projection just like what our machine learning 
model suggested. To some extent, rat model for Kpuu,brain 
prediction will be more attractive means because monkey 
studies have higher barriers than rodent studies. Translating 
from rat model to human can re-allocate the resources dur-
ing the drug discovery stages.

Conclusion

To summarize, in silico models using machine learning 
approaches were able to deliver good monkey and human 
Kpuu,brain prediction with reasonable accuracy. Compared 
to the mechanistic NeuroPK model, machine learning mod-
els have several attractive advantages: (1) can provide rea-
sonable prediction on monkey Kpuu,brain even without 
MDR1 and BCRP ERs; (2) can act prospectively for human 
Kpuu,brain prediction from preclinical species models; and 
(3) can skip expensive monkey studies for human transla-
tion by using the rat machine learning model. In conclusion, 
machine learning models can be a useful tool for CNS com-
pound selection in the drug discovery stage.
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