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Abstract
The two one-sided t-tests (TOST) procedure has been used to evaluate average bioequivalence (BE). As a regulatory stand-
ard, it is crucial that TOST distinguish BE from not-BE (NBE) when BE data are not lognormal. TOST was compared with 
a Bayesian procedure (BEST by Kruschke) in simulated datasets of test/reference ratios (T/R) which were BE and NBE, 
wherein (1) log(T/R) or T-R were normally distributed, (2) sample sizes ranged 10–50, and (3) extreme log(T/R) or T-R 
values were randomly included in datasets. The 90% “credible interval” (CrI) from BEST is a Bayesian alternative of the 90% 
confidence interval (CI) of TOST and it can be derived from a posterior distribution that is more reflective of the observed 
mean log(T/R) distribution that often deviates from normality. In the absence of extreme T/R values, both methods agreed 
BE when observed T/R were lognormal. BEST more accurately concluded BE or NBE, while requiring fewer subjects, when 
observed log(T/R) or T-R were normal in the presence of extreme values. Overall, TOST and BEST perform comparably on 
lognormal T/R, while BEST is more accurate, requiring fewer subjects when datasets are normal for T-R or contain extreme 
values. Of note, the normally distributed datasets only rarely contain extreme values. Our results imply that when BEST 
and TOST yield different BE assessment results from bioequivalent products, TOST may disadvantage applicants when 
T/R are not lognormal and/or include extreme T/R values. Application of BEST can address the situation when T/R are not 
lognormal or  include extreme data values. Application of BEST to BE data can be considered a useful alternative to TOST 
for evaluation of BE and for efficient development of BE formulations.
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Introduction

Demonstrating average bioequivalence (BE) in small, two-
treatment two-way crossover bioavailability (BA) studies 
has long relied upon the two one-sided t-tests (TOSTs) (1), 
applied to log-transformed geometric mean ratios (GMR) of 

test (T) (the test product is usually a generic version of the 
reference product) and reference (R) drug area-under-drug 
concentration-time curve (AUC) and maximum drug con-
centration (Cmax) values. TOST can generate 90% confidence 
intervals (CIs) of the GMRs from BE datasets and then BE 
is concluded if the confidence intervals (after exponentia-
tion) of GMR for  AUC and Cmax fall within BE acceptance 
regions, 80 to 125%.

Peck and Campbell (2) raised concerns of TOST for BE 
assessment, which were related to the following factors for 
valid inference of BE using TOST: (a) normality of mean log-
transformed T/R of AUC and Cmax, (b) insufficiency of sample 
sizes to rely on the central limit theorem, and (c) robustness 
to extreme values of T/R. Robustness of TOST to deviations 
from normality of log-transformed T/R or presence of extreme 
T/R values has not been thoroughly investigated, although sev-
eral reports have shown concern for the appropriateness of 
TOST in actual practice given the above-listed factors (3–6). 
Fitting log(T/R) data with a normal distribution does not easily 
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accommodate data with heavier tails. The t-distribution is 
well-suited for such deviations from normality and can flex-
ibly accommodate normally distributed log(T/R) data.

While other Bayesian approaches have been proposed for 
bioequivalence (7–10) and biosimilarity (11), a Bayesian 
procedure for BE, adapted from Kruschke—BEST (12)—is 
employed herein to address the above concerns. BEST enables 
a Bayesian BE test using the 90% “credible interval” (CrI) (13, 
14) of the mean log(T/R), under the assumption of an underly-
ing t-distribution for log(T/R). Non-influential prior distribu-
tions are employed in Bayesian estimation of t-distribution 
parameters (mean, standard distribution, and shape (degrees of 
freedom)) that can flexibly represent either normal or t-distri-
butions with heavier tails. BEST assumes that log(T/R) follows 
a t-distribution with minimally informative priors, whereas 
TOST assumes log(T/R) is normally distributed and uses the 
t-test for inference about the mean. Here, the 90% CrI using 
the highest density interval (HDI) is a Bayesian alternative of 
the 90% CI of TOST, which is similar to the 90% most likely 
values for the true average log(T/R). Accordingly, the BE lim-
its for the BEST are set as 80 to 125% (15).

To investigate the validity of inference of BE or not-BE 
(NBE) by TOST and BEST with respect to the above-listed 
concerns of TOST, we compared TOST with BEST in simu-
lated BE datasets mimicking 200 scenarios, as described in the 
“Models for BE Simulation” section in the “Methods” section.

Methods

To compare performances of TOST and BEST in BE assess-
ments, simulations were conducted to represent typical BE 
scenarios comprising lognormal T/R and normal T-R distribu-
tions, varying mean, different sample sizes, and presence of 
extreme outliers.

To demonstrate the features of BE analysis via BEST, two 
real cases of anonymized Abbreviated New Drug Applica-
tions (ANDA) BE datasets, with and without approximately 
normally distributed log(T/R), were analyzed to generate key 
relevant diagnostic plots and posterior distributions of the log-
transformed mean T/R ratios.

Models for BE Simulation

BA datasets were simulated according to the FDA-recom-
mended linear mixed-effects model for BE analysis (15) of 
pharmacokinetic (PK) parameters AUC or Cmax or their logs 
(Yijk):

where μ is the parameter average; Pj is the period effect, j=1, 
2; F(j, k) is the formulation effect for period j and sequence 

(1)Yijk = μ + Pj + F(j,k) + Sik + eijk,

k=1,2; Sik is the random effect for subject i=1, …, nk in 
sequence k; and eijk is the residual error. In this model, fixed 
effects are the overall mean μ, P, and F; random effects S 
and e are independent normally distributed with mean zero 
and between and within subject variances (i.e., �2

b
 and �2

w
 , 

respectively). Period and sequence carryover effects are set 
to zero in the simulations. The test and reference drug are 
assumed to have equal variances, but this can be easily gen-
eralized to unequal ones.

AUC and Cmax datasets representing two-treatment cross-
over studies were simulated to be either lognormally for T/R 
or normally distributed for T-R according to Eq. (1). Data-
sets were randomly generated, employing prespecified mean 
values, within-subject variability ( �2

w

)

 (20% CV (16, 17)), 
and sample sizes 10–50, reflecting typical BE studies. The 
overall mean (μ) of the simulated data was set to an arbitrary 
value (e.g., 100 ng/mL for Cmax and 1000 ng·h/mL for AUC) 
and between-subject variability ( �2

b
 ) set equal to the within-

subject variability. The selected values of μ and �2

b
 do not 

affect the BE analysis in these crossover study simulations 
because both the fixed mean μ and random between-subject 
effect cancel out with the difference calculated from a cross-
over study.

Given the pre-specified and derived parameters, following 
Eq. (1), ( Yi11, Yi21) for i=1,…, n1 and ( Yi22, Yi12  ) for 
i=n1+1,…, n1+n2 were generated from the FDA-recom-
mended linear mixed-effects model with mean (μ + FT, μ + 
FR) for formulation effects for the test FT and the reference 

FR = −FT and variance ω =

[

�
2

w
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2
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b

]

 (assuming 

no period effect).
For subject i, YTi denotes the PK parameter for the test 

product and YRi the reference product, with estimated least 
square means �

�
 and �

�
.

To generate BE data that follow a lognormal distribu-
tion, normal data were simulated and the PK parameters 
were transformed back to the original unlogged scale by 
exponentiation.

To prevent occurrence of negative values when simulat-
ing normally distributed data (<1% incidence conditioned 
on �2

b
 of 20%), negative values were replaced with a small 

positive value of 5% of the overall mean.

BE Analysis Methods: TOST vs BEST

In TOST (1), the equivalence test comprises two one-sided 
alpha = 0.05 tests, yielding two p-values. The null hypoth-
eses are rejected (i.e., concluding bioequivalence) if both 
p-values are less than 0.05.

BEST employs non-influential priors for t-distribution 
parameters of AUC or Cmax distributions and the Markov Chain 
Monte Carlo procedure to compute posterior distributions (18) 
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for these parameters. Analogous to TOST, BEST applied to 
log-transformed T/R generates the 90% CrI from the log-
transformed GMR, consistent with the average BE approach. 
When lower and upper bounds of the CrI fall within the log-
transformed acceptance region such as [log(0.80), log(1.25)], 
the BEST procedure supports BE.

For the Bayesian inference, the prior parameter distributions for 
the t-distribution are set to be minimally informative with insignifi-
cant influence on the estimates of the parameters. Specifically, the 
mean is assumed to have a prior normal distribution with mean 
and standard deviation that is 1000 times that of the sampled data; 
the prior on the standard deviation parameter is assumed to have a 
uniform distribution with a low limit of 1/1000 and a high limit of 
1000 times of the standard deviation of the sampled data; the prior 
on the shape (degrees of freedom) parameter (i.e., as a measure 
of height of tails in a t distribution) is assumed to have a shifted 
exponential distribution as explained in Kruschke (12).

Evaluating BE on the original unlogged scale, the (non-
Bayesian) arithmetic mean ratio (AMR) procedure assumes 
the T-R data are normally distributed and generates the 90% 
CI of the T-R difference, dividing this CI interval by the esti-
mated mean of BA of the reference formulation, and adding 
1.0 (19). Using the CI of the difference between the test and 
reference products allows for cancellation of the effect from 
the same subject during crossover. The same acceptance 
region of 80–125% is used for AMR in this report. Because 
the FDA recommends that the TOST analysis be applied to 
log-transformed data, AMR-based BE assessments have not 
been submitted for BE evaluation in the past.

BEST can also provide a Bayesian BE test from 90% CrI 
of AMR, assuming the T-R differences have a t-distribution. 
The BEST procedure for AMR (BEST AMR) is described 
as the following steps:

1)	 Zi = (YTi − YRi) / YR.
2)	 BEST AMR generated the 90% CrI of mean Zi’s per 

Bayesian posterior distribution.
3)	 The calculated CrI (lower, upper) is then incremented 

by 1, i.e., CrIAMR = [CrIZ + 1].

If this CrI of AMR falls within the acceptance region 
(such as 80–125%), BEST AMR supports BE between T 
and R.

Simulations were also reported for another BEST AMR 
procedure called BEST AMRmu, where the observed aver-
age YR in (1) is replaced by the true reference mean μ + FR 
= μR, which is typically not known in practice.

Accuracy and Passing Rates of TOST and BEST 
on Simulated Datasets

Lognormally and normally distributed values were simu-
lated as follows:

1.	 Preset mean T/R values M ranged 0.80 to 1.25, where M 
is the exponentiated mean log-ratio for lognormal data 
and the ratio of the means for normal data.

2.	 Sample sizes for each of T and R: 10, 20, 30, 40, and 50
3.	 Each scenario was simulated 1000 times.
4.	 TOST and BEST passing rates, which were the rates that 

meet the testing definition of BE, were calculated for 
lognormal and normal data, where mean values M=0.9, 
1.0 and 1.11 are considered BE and 0.80 and 1.25 NBE.

Generation of Extreme Values

Extreme values occur in BE datasets that can significantly 
alter the data distribution, leading to deviations from log-
normality or normality that challenge the validity of infer-
ence of BE. To evaluate the robustness of the TOST and the 
BEST in the presence of extreme values, BE datasets with 
extreme values were simulated in lognormal and normal 
data. Extreme values were randomly generated by multiply-
ing the log(T)–log(R) and T-R differences by a factor of 10 
with 5% probability. The TOST and BEST procedures were 
applied to each 1000 replicates, calculating passing rates 
for each BE scenario. While a greater number of simula-
tion iterations than 1000 could be executed to derive highly 
precise BE passing rates to inform type I or type II errors, 
evaluations with 20,000 iterations on a few selected testing 
scenarios resulted in minimal changes in the simulation-
derived BE passing rates. No differentiation of acceptance 
or rejection of BE with respect to T or R origin of extreme 
values in the reference or test datasets was reported, as might 
be the case for a regulatory agency.

Results

Features of BE Analysis via BEST

The BEST procedure generates diagnostic histograms that 
facilitate the evaluation of assumptions that are critical for 
valid statistical inference, which we illustrate here for two 
anonymized ANDA BE datasets (Fig. 1)—case 1 (panels 
A–C, approximately normally distributed log(T/R)) and case 
2 (panels D–F, not normally distributed log(T/R), containing 
at least one extreme value). These two anonymous ANDA 
BE datasets comprised AUCinf data from two 2-way crosso-
ver PK studies with 16 (8 for each sequence) and 28 (14 
for each sequence) subjects, respectively. Panels A and B 
(case 1) and D and E (case 2) depict posterior distributions 
of the mean and shape (degrees of freedom) parameters for 
the log-transformed T/R respectively for each case. Panels 
C and F, are posterior predictive checks or visual of good-
ness-of-fit plots, and show the estimated posterior predic-
tive distribution for log(T/R) overlying simple histograms 
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of the real data. Comparing the posterior distributions of the 
log-transformed mean T/R for cases 1 and 2 in panels A and 
D in Fig. 1, panel D shows wider spread than a normal dis-
tribution and appears to be skewed to the right. These plots 
illustrate a unique feature of using BEST, which reveal the 
underlying true distributions of the observed T/R ratio—a 
critical assumption for the TOST approach.

Panels B and E show posterior distributions of the esti-
mated shape (degrees of freedom) parameter for cases 1 
and 2, in which values on the horizontal axis are displayed 

on a logarithmic scale, base 10. Along with the goodness-
of-fit plots in panels C and F in these cases, the values of 
the modes of 1.44 and 0.627 (log base 10) correspond to 
the exponentiated shape (degrees of freedom) parameter 
values of 27.54 and 4.24, indicating approximate lognor-
mality for case 1, since the t-distribution is well-approx-
imated by a normal distribution when the shape (degrees 
of freedom) parameter approaches 30 (case 1) and above. 
Case 2 is an example of a heavy-tailed data distribution 
with an extreme value for which lognormality was rejected 

Fig. 1   Posterior distributions of estimated parameters (i.e., mean 
(a and d), and normality (shape (degrees of freedom) on the log10 
scale) (b and e) of log ratios) and the posterior predictive check (c, f) 

for cases 1 (a–c) and 2 (d–f). Bayesian highest density credible inter-
vals (HDI) are labeled for the mean and shape (degrees of freedom) 
parameters
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by the Shapiro-Wilk test but the t-distribution accommo-
dated the extreme value and fit the log(T/R) data well.

BEST vs TOST Performance Evaluation via Simulated 
Data

Figure 2 shows passing rate comparisons for simulated lognormal 
T/R distributions, with average mean values of NBE (0.8, 1.25) 
and BE (0.9, 1.0, 1.11) and sample sizes ranging 10–50. Means 
of 1.25 and 1.11 are reciprocals of 0.80 and 0.9. Regardless of 
NBE and BE status and sample size, TOST (blue) and BEST (red) 
exhibit nearly identical passing rate-sample size curves. While 
TOST is optimal for lognormal data, BEST sacrifices impercep-
tibly less power. The passing rates for TOST and BEST are well-
controlled (type I error rate of ≤ 0.05) for NBE scenarios.

Since the AMR procedure and BEST AMR did not appear 
to differ in passing rates, only BEST AMR (and BEST 
AMRmu) are presented in Figs. 2 and 3. In lognormally dis-
tributed datasets (Fig. 2), the performances of BEST AMR 
(gray) and BEST AMRmu (green) are inferior for mean M=0.9 
and slightly inferior at M=1.0 (and superior for 1.11) and the 
type I error rates appear to be controlled at ≤ 0.05 for NBE for 
all four procedures at M=0.80 and 1.25 except BEST AMR at 
1.25. While Figs. 4 and 5 show that BEST yielded higher pass-
ing rates than TOST for BE products, BEST and TOST appear 
to have comparable type I error rates. Of note, we observed a 
slight increase in the passing rate at M=0.80 or 1.25 for BEST 
but 20,000 iterations confirm type I errors less than 0.05 for 

n<50. When T/R data are lognormally distributed, sample 
sizes to achieve 80% power to pass BE at M=0.9, 1.0 and 1.11 
are estimated to be ~35, ~17, and ~ 37, respectively, for either 
TOST or BEST approaches.

For simulated normally distributed T-R, Fig. 3 shows 
passing rate comparisons for NBE (M=0.8, 1.25) and BE 
(M=0.9, 1.0, 1.11) with sample sizes ranging 10–50. BEST 
AMR and BEST AMRmu are superior to TOST and BEST 
for BE mean values M of 0.9, 1.0, and 1.11, and BEST is 
superior to TOST for the same M values. All four methods 
appear to correctly conclude NBE with a passing rate of ≤ 
0.05 at 0.80 and 1.25, except BEST AMR at 1.25.

BEST vs TOST Performance on Datasets 
with Extreme Values

Figures 4 and 5 show performances when extreme observed 
log(T/R) and T-R values are randomly included in simulated 
normal datasets. BEST yields markedly higher passing rates 
and lower sample size requirements than TOST in lognor-
mally distributed T/R values: ~ 45, 20, and 45 subjects for M 
(0.9, 1.0, 1.11) are required for 80% passing rate by BEST vs 
>> 50 subjects for TOST (Fig. 4), and somewhat similarly 
with normally distributed T/R (> 50, 22, 45 for BEST >> 
50 for TOST). Type I error rates of BEST and TOST in NBE 
scenarios (0.8 and 1.25) are controlled at less than 5% for 
normal data and 6% or less for lognormal data.

Fig. 2   Simulated passing rates of TOST and BEST for lognormally distributed T/R. M is the exponentiated mean log-ratio and ranges from 0.80 
to 1.25
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Discussion

FDA encourages analysis of BE data only on the log scale 
and discourages testing for lognormality. FDA’s rationale (15) 
for this policy is that tests of lognormality in typical small 

samples have insufficient power to reject the hypothesis of 
lognormality, and failure to reject the hypothesis does not 
confirm that the data are approximately lognormal. However, 
because power is low for alternative distributions in small 
sample sizes (20), when (log)normality (i.e., lognormality or 

Fig. 3   Simulated passing rates of TOST and BEST for normally distributed T-R. M is the ratio of the means and ranges from 0.80 to 1.25

Fig. 4   Simulated passing rates for lognormally distributed T/R with extreme values. Extreme T/R values were randomly generated by multiply-
ing (log(T) – log(R)) differences by a factor of 10 with 5% probability. M is the exponentiated mean log-ratio and ranges from 0.80 to 1.25
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normality) is rejected in a small dataset, it can signal a poten-
tially gross deviation. As noted above, an important benefit of 
the BEST approach is employment of a rich set of diagnostic 
tools that permit investigations of the distributions of BE data-
sets and model parameters that enable visual confirmation (or 
not) of lognormality of T/R distribution, and thus, validity of 
inference.

Inference using TOST relies on the assumption that log-
transformed T/R follow a normal distribution, an assumption 
that is crucial in small sample sizes. Several publications 
have critiqued the use of a normal theory-based test such as 
TOST when the sample sizes are small and the data are not 
normal (3, 5, 9). While some may recommend sample sizes 
of over 30 for distributions with no extreme values and lit-
tle skewness in order to provide assurance of approximate 
normality of the mean difference and the log-transformed 
GMR for the sample mean, the convergence rate of the cen-
tral limit theorem is more complicated and a convergence 
bound based on the Berry-Esseen theorem depends on the 
variance, the sample size, and third absolute moment (21). In 
the presence of skewed distributions or very extreme values, 
estimated BE intervals may not be well approximated using 
normal theory-based procedures such as TOST, even when 
sample sizes are larger than 30. Beneficially, the posterior 
t-distribution parameter distributions and the posterior pre-
dictive distributions via the BEST procedure can be used to 
assess (log)normality.

BEST is an appealing alternative to TOST, by (a) 
accommodating a few extreme values or a heavy-tailed 

t-distribution and (b) providing the 90% credible inter-
val for the mean difference, analogous to the 90% con-
fidence interval of TOST. Importantly, Bayesian BEST 
procedures provide diagnostic posterior distributions for 
the parameters (mean, standard deviation, shape (degrees 
of freedom)) of the t-distribution, as well as the poste-
rior distribution of any calculated quantities, such as the 
probability that the mean is in the BE acceptance region. 
Additionally, a value of 10 or less for the mode of poste-
rior distribution of the shape (degrees of freedom) param-
eter can indicate that underlying data are not normally 
distributed but heavier tailed. In real BE datasets with 
measurement error, small sample size, and extreme val-
ues, the means of log-transformed T/R may not be well 
approximated by normal distributions, and hence the 
BEST method can be more resilient to violations of nor-
mality assumptions than TOST.

A crucial issue concerns which distribution adequately 
describes the T/R data for valid inference. Our simula-
tions show that when the T/R are lognormal, TOST (absent 
extreme values) and BEST perform equally well. When sam-
ple sizes in BE studies are small or contain extreme values, 
normal-based inference such as TOST may be question-
able. One alternative when data do not appear lognormal 
or normal would be to search for a different distribution. 
For instance, a Box-Cox transformation could be consid-
ered to transform data to be normally distributed (22). Other 
alternatives would be non-parametric methods based on the 
signed rank statistic (23, 24) or the bootstrap (25).

Fig. 5   Simulated passing rates for normally distributed T-R with extreme values. Extreme T-R values were randomly generated by multiplying 
the (T-R) differences by a factor of 10 with 5% probability. M is the ratio of the means and ranges from 0.80 to 1.25
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A criticism of using BEST is its reliance on broad prior 
distributions using current data; in particular, the prior for 
the mean is centered at the pooled mean from the current 
data and prior for the standard deviation is 1000 times its 
pooled standard deviation. Although not absolutely non-
informative, the amount of prior information can be esti-
mated from the effective sample size (26), which is approxi-
mately 1/1,000,000 of one observation or, to say it another 
way, a single observation in a bioequivalence study is five 
or six orders of magnitude more informative than this prior. 
Depending on the purpose of use, Bayesian procedures such 
as BEST can employ variably influential prior information 
that generate useful CrIs: (i) BEST with aforementioned 
non-influential priors depending slightly on the actual data 
for regulatory purpose, and (ii) BEST with more informa-
tive priors from pilot studies or the reference drug for for-
mulation development. Since the BEST approach generally 
requires fewer subjects, serial BE studies in support of for-
mulation optimization for BE may be replaced by fewer, 
smaller studies, especially if priors are made more informa-
tive from observations in the previous pilot studies. For 
example, in formulation development, extant information 
on the BE parameter distribution of the formulation from 
pilot study(ies) could be used to modify the prior distribu-
tion for BEST as described in Kruschke (12), leading to 
efficient formulation selection with smaller sample sizes in 
new drug development.

Schuirmann et al critiqued the Bayesian estimation 
approach using BEST (27), questioning the value of esti-
mating the entire GMR distribution. A case can be made for 
estimating the entire log(T/R) distribution to assess lognor-
mality and the effect of extreme values before making the 
BE determination. Challenging FDA’s admonition against 
testing for normality, the diagnostic evaluations by BEST 
of the entire GMR distributions of two real ANDA cases 
(Fig. 1) show lognormality in one case and not in the other, 
calling into question the validity of relying upon TOST in 
the later case. FDA guidance discourages robust inference 
procedures for BE assessment despite the potential biasing 
effect of extreme values on inference when the normality 
assumption of TOST is violated. In this case, the BEST 
procedure enables valid inference without violating the 
assumption that BE GMR datasets are well characterized 
by the t-distribution. Schuirmann et al (27) also expressed 
concern about how BEST sets minimally informative priors 
from the data; the amount of such influence is minimal as 
explained above.

When the underlying data are normally distributed, BEST 
is superior to TOST, and both are inferior to BEST AMR. 
However, BEST AMR does not appear to adequately control 
the passing rate at M=1.25, although BEST AMRmu does. 
Interestingly, this does not seem to be an issue at M=0.80. 
The behavior of BEST AMR in Fig. 2 for M=1.11 showing 

superiority to TOST and BEST may be in part due to its 
failure to control the type I error at M=1.25, a failure due 
to the variability introduced by dividing by the observed 
reference mean rather than its theoretical mean since this 
increases the variability of the estimated ratio. For normal 
data, BEST AMR using an acceptance region of [0.80, 1.22] 
is superior to BEST and TOST and maintains the type I error 
control (simulations not shown); more research is needed 
for the situation in which the underlying data are normally 
distributed.

Robustness to Extreme T/R Values

Extreme values (“outlier data”) are values that are signifi-
cantly discordant with data for that subject and/or deviate 
from the typical trajectory of concentration-time data of 
the subject in a BE study (28–31). In crossover BE stud-
ies, extreme T/R values often can be observed in one or 
a few subjects. Extreme values can indicate either product 
failure, measurement errors, inherently high variability, or 
subject-by-formulation interactions. Inspection of scatter-
plots of log(T) versus log(R) can facilitate identification of 
the source of the extreme values as from either test or refer-
ence product. From a regulatory perspective, extreme values 
may only be removed from the BE statistical analysis if there 
is real-time documentation demonstrating a protocol viola-
tion during the clinical and/or analytical/experimental phase 
of the BE study (32, 33).

Our simulations demonstrate that BEST procedures yield 
higher BE passing rates than TOST if extreme values occur 
in a log-transformed data set. An extreme value can cause a 
larger estimated standard deviation and hence wider inter-
vals in logged and non-logged data but both BEST proce-
dures dampen the effect of this extreme value.

Arguably, extreme values in the reference product as 
opposed to the test product on the untransformed or log-
transformed scale should not disadvantage the abbreviated 
new drug applicant. Rather than deleting such extreme refer-
ence product values, application of BEST on the log scale 
can decrease their influence. In typical small BE datasets 
(n<50), BEST robustly characterizes log(T/R) from a t-dis-
tribution. Applicants submitting non-normally distributed 
BE datasets and/or datasets that include one or more extreme 
log(T/R) values may be disadvantaged by failing BE via 
TOST due to forced normality, while being BE via BEST.

TOST or BEST—Which to Employ for BE?

FDA has stated that TOST is a “size-alpha test, a valid sta-
tistical test for average BE,” and that “empirical experience 
supports the view that normal-theory inference methods will 
be valid, even with the small sample sizes of typical BE 
studies” (1). TOST is known to be a size-alpha test if the 
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data are lognormal or the central limit theorem provides a 
reasonable normal approximation of the log(GMR) for the 
actual sample size. Notwithstanding the fact that the long-
term frequency underpinning TOST for type I error control 
is not assured in small BE trials, type I error control and 
validity of BE are not guaranteed if the mean of log ratios is 
not approximately normally distributed. This could occur if 
the underlying data are not lognormal or the sample size is 
inadequate to guarantee that the central limit theorem will 
provide a reasonable normal approximation. Despite FDA 
discouragement of testing of the normality of log ratios 
(and differences) (32), clear deviations from normality of 
log-transformed ratios in some real BE datasets may call 
into question the validity of the unexamined use of TOST 
for BE. Evaluation of goodness-of-fit of the normal and 
t-distributions can provide additional valuable information 
on aptness of the statistical model for inference of BE. Far 
from adding unnecessary “regulatory burden,” employment 
of the correct statistical model is crucial for valid inference 
of BE. The BEST procedures enable the posterior diagnos-
tics and employ data-informed simulations for type I error 
control, rather than relying upon the unattainable long-term 
frequency assumption.

Valid inference depends upon pre-specifying the analysis 
method in the Statistical Analysis Plan (SAP). BE data dis-
tributions in the real world may be approximately normal, 
lognormal, or neither and commonly include extreme values. 
In the SAP, an alternative BE evaluation method different 
from TOST should be based on sufficient scientific justifica-
tion and communicated with the agency. Pivotal BE stud-
ies, preceded by small (underpowered for BE) pilot studies 
comparing formulations, offer an opportunity to select the 
“best candidate” distribution for powering the pivotal BE 
study. The use of BEST approach can also be pre-specified 
contingent on the scatterplot identification of extreme values 
as demonstrated above. When extreme values occur only or 
more frequently in the reference product data, adopting the 
BEST approach to gain more power can be scientifically 
justifiable.

Two recent articles have used a Bayesian approach to 
bioequivalence on the log scale using the skew t-distribu-
tion, a four-parameter distribution which allows for non-
symmetry (34, 35). Burger et al performed simulations for 
a crossover design with n=30 subjects and incorporated 
outliers by introducing contamination of 2.5 standard 
deviations of the lognormal with 1% probability (and 5% 
in the Supplemental Material). In the Supplemental Mate-
rial, Burger et al reported 130 real datasets that showed 
outliers in 17 of the 130 data sets (13%). Among these, 17 
datasets are 4 examples in which the Bayesian skew t esti-
mator BayesT is outside the BE acceptance region [80%, 
125%] but the two TOST-like estimators, Bayesian normal 
estimator (BayesN) and restricted maximum likelihood 

(REML), are not, and 5 examples in which REML and 
BayesN are outside but BayesT is inside. In 484 crosso-
ver studies submitted to FDA, we found that 28% rejected 
lognormality of T/R and 36% rejected normality of T-R 
by the Shapiro-Wilk test, mostly due to outliers. Addition-
ally, in contrast to Burger et al, our study examined sample 
sizes from 10 to 50 and simulated outliers according to a 
5% probability using a contamination standard deviation 
of 10 rather than 2.5, resulting in outliers more reflective 
of real-world data. We also examined the behavior in the 
realistic case in which the data are normal but not lognor-
mal. An additional advantage is that BEST-BE provides 
easy access to diagnostic histograms for examining the 
posterior distribution of the parameters.

In this work, the extreme values were generated accord-
ing to a symmetrical distribution around the underlying 
mean. Future work is warranted to assess methodology 
performance when data assume different distributions, 
with or without skewness after incorporating extreme 
values.

Conclusions

The 90% CrI from BEST is a Bayesian alternative for the 
90% CI of TOST. The BEST 90% CrI can be derived from 
a distribution that is not normal and thus is more reflective 
of the observed log(T/R) distribution. In simulation studies, 
TOST and BEST demonstrate BE agreement when applied 
to lognormally distributed BE data. However, when T-R are 
normally distributed, then BEST demonstrates greater power 
than TOST and the BEST AMR demonstrates even greater 
power. In the presence of extreme values, BEST procedures 
significantly outperform TOST for underlying lognormal 
and normal BE distributions. Thus, TOST and BEST per-
form satisfactorily on lognormal T/R, while BEST is more 
accurate, requiring fewer subjects, when datasets contain 
extreme values or are normal for T-R. Application of BEST 
to BE data can be considered an informative alternative to 
TOST for evaluation of BE and for efficient development of 
BE formulations.

Acknowledgements  We want to give our special thanks to Drs. Jing 
Wang, Mingjiang Xu, and Somesh Chattopadhyay for their generous 
support in manuscript preparation, revision, and coordination. We also 
want to express our appreciation to the AAPS Journal reviewers for 
their constructive comments on our manuscript.

Author Contribution  C.P., G.C., and L.Z. conceptualized the study. 
C.P., G.C., L.Z., I.Y., M.H., and K.F. contributed to the data analysis 
plan, QC, and interpretation of the results and drafting the manuscript. 
I.Y., M.H., and K.F. collected and analyzed the data. I.Y., M.H., K.F., 
and L.Z. had full access to all the data in the study. All authors criti-
cally reviewed, edited, and approved the final manuscript.

Page 9 of 10     97



The AAPS Journal (2022) 24: 97	

1 3

Declarations 

Conflict of Interest  The authors declare no competing interests.

Disclaimer  This article reflects the views of the authors and should not 
be construed to represent FDA’s views or policies.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Schuirmann DJ. A comparison of the two one-sided tests proce-
dure and the power approach for assessing the equivalence of aver-
age bioavailability. J Pharmacokinet Biopharm. 1987;15:657–80.

	 2.	 Peck CC, Campbell G. Bayesian approach to establish bioequiva-
lence: why and how? Clin Pharmacol Ther. 2019;105:301–3.

	 3.	 Chow S, Liu M. Practical statistical issues in evaluation of average 
bioequivalence. J Biom Biostat. 2019;10:435.

	 4.	 Lacey LF, Keene ON, Pritchard JF, Bye A. Common noncom-
partmental pharmacokinetic variables: are they normally or log-
normally distributed? J Biopharm Stat. 1997;7:171–8.

	 5.	 Patel HI. Dose-response in pharmacokinetics. Commun Stat 
Theory Methods. 1994;23:451–65.

	 6.	 Shen M, Russek-Cohen E, Slud EV. Checking distributional assump-
tions for pharmacokinetic summary statistics based on simulations 
with compartmental models. J Biopharm Stat. 2017;27:756–72.

	 7.	 Gelfand AE, Hills SE, Racine-Poon A, Smith AFM. Illustration of 
bayesian inference in normal data models using gibbs sampling. J 
Am Stat Assoc. 1990;85:972–85.

	 8.	 Ghosh P, Khattree R. Bayesian approach to average bioequiva-
lence using Bayes' factor. J Biopharm Stat. 2003;13:719–34.

	 9.	 Ghosh P, Rosner GL. A semi-parametric bayesian approach to 
average bioequivalence. Stat Med. 2007;26:1224–36.

	10.	 Selwyn MR, Dempster AP, Hall NR. A bayesian approach to bioequiv-
alence for the 2 × 2 changeover design. Biometrics. 1981;37:11–21.

	11.	 Weiss RE, Xia X, Zhang N, Wang H, Chi E. Bayesian methods for 
analysis of biosimilar phase iii trials. Stat Med. 2018;37:2938–53.

	12.	 Kruschke JK. Bayesian estimation supersedes the t test. J Exp 
Psychol Gen. 2013;142:573–603.

	13.	 Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. Understanding 
and interpreting confidence and credible intervals around effect 
estimates. Braz J Phys Ther. 2019;23:290–301.

	14.	 Kruschke JK, Liddell TM. The bayesian new statistics: hypoth-
esis testing, estimation, meta-analysis, and power analysis from a 
bayesian perspective. Psychon Bull Rev. 2018;25:178–206.

	15.	 U.S. Department of Health and Human Services FDA, Center for 
Drug Evaluation and Research (CDER). Statistical approaches 

to establishing bioequivalence 2001. https://​www.​fda.​gov/​media/​
70958/​downl​oad

	16.	 Chung I, Oh J, Lee S, Jang IJ, Lee Y, Chung JY. A post hoc analy-
sis of intra-subject coefficients of variation in pharmacokinetic 
measures to calculate optimal sample sizes for bioequivalence 
studies. Transl Clin Pharmacol. 2018;26:6–9.

	17.	 Julious SA, Debarnot CA. Why are pharmacokinetic data sum-
marized by arithmetic means? J Biopharm Stat. 2000;10:55–71.

	18.	 Kruschke JK. Doing Bayesian data analysis: A tutorial with R and 
BUGS. Elsevier Academic Press; 2011. pp 143–91.

	19.	 Chow S-C. Alternative approaches for assessing bioequivalence 
regarding normality assumptions. Drug Inf J. 1990;24(4):753–62. 
https://​doi.​org/​10.​1177/​21684​79090​02400​411.

	20.	 Razali NM, Wah YB. Power comparisons of shapiro-wilk, kol-
mogorov-smirnov, lilliefors and anderson-darling tests. J Stat 
Model Anal. 2011;2:21–33.

	21.	 Lehmann EL. Elements of large sample theory. New York: 
Springer; 1999. p. 78.

	22.	 Xiao W, Barron AM, Liu J. Robustness of bioequivalence 
procedures under box-cox alternatives. J Biopharm Stat. 
1997;7:135–55.

	23.	 Hauschke D, Steinijans VW, Diletti E. A distribution-free proce-
dure for the statistical analysis of bioequivalence studies. Int J Clin 
Pharmacol Ther Toxicol. 1990;28:72–8.

	24.	 Steinijans VW, Diletti E. Statistical analysis of bioavailability 
studies: parametric and nonparametric confidence intervals. Eur 
J Clin Pharmacol. 1983;24:127–36.

	25.	 Bonate PL. Pharmacokinetic-pharmacodynamic modeling and 
simulation. New York: Springer; 2006. p 355–63.

	26.	 Morita S, Thall PF, Muller P. Determining the effective sample 
size of a parametric prior. Biometrics. 2008;64:595–602.

	27.	 Schuirmann DJ, Grosser S, Chattopadhyay S, Chow SC. On 
Bayesian analysis and hypothesis testing in the determination of 
bioequivalence. Clin Pharmacol Ther. 2019;105:304–6.

	28.	 Chow, S.-C., & Liu, J.-P. (2008). Design and analysis of bioavail-
ability and bioequivalence studies (3rd ed.). Chapman and Hall/
CRC. https://​doi.​org/​10.​1201/​97814​20011​678.

	29.	 Chow SC, Tse SK. Outlier detection in bioavailability/bioequiva-
lence studies. Stat Med. 1990;9:549–58.

	30.	 Ki FY, Liu JP, Wang W, Chow SC. The impact of outlying subjects 
on decision of bioequivalence. J Biopharm Stat. 1995;5:71–94.

	31.	 Wang W, Chow SC. Examining outlying subjects and outlying 
records in bioequivalence trials. J Biopharm Stat. 2003;13:43–56.

	32.	 U.S. Department of Health and Human Services FDA, Center for 
Drug Evaluation and Research (CDER). Bioavailability studies 
submitted in ndas or inds - general considerations guidance for 
industry. April 2022. https://​www.​fda.​gov/​media/​121311/​downl​oad.

	33.	 U.S. Department of Health and Human Services FDA, Center 
for Drug Evaluation and Research (CDER). Guidance for indus-
try. Bioequivalence studies with pharmacokinetic endpoints for 
drugs submitted under an abbreviated new drug application. 2021. 
https://​www.​fda.​gov/​media/​87219/​downl​oad.

	34.	 Burger DA, Schall R, van der Merwe S. A robust method for the 
assessment of average bioequivalence in the presence of outliers 
and skewness. Pharm Res. 2021;38(10):1697–709.

	35.	 De Souza RM, Achcar JA, Martinez EZ, Mazucheli J. The use of 
asymmetric distributions in average bioequivalence. Stat Med. 
2016;35(15):2525–42.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

97    Page 10 of 10

http://creativecommons.org/licenses/by/4.0/
https://www.fda.gov/media/70958/download
https://www.fda.gov/media/70958/download
https://doi.org/10.1177/216847909002400411
https://doi.org/10.1201/9781420011678
https://www.fda.gov/media/121311/download
https://www.fda.gov/media/87219/download

	Comparing a Bayesian Approach (BEST) with the Two One-Sided t-Tests (TOSTs) for Bioequivalence Studies
	Abstract
	Introduction
	Methods
	Models for BE Simulation
	BE Analysis Methods: TOST vs BEST
	Accuracy and Passing Rates of TOST and BEST on Simulated Datasets
	Generation of Extreme Values

	Results
	Features of BE Analysis via BEST
	BEST vs TOST Performance Evaluation via Simulated Data
	BEST vs TOST Performance on Datasets with Extreme Values

	Discussion
	Robustness to Extreme TR Values
	TOST or BEST—Which to Employ for BE?

	Conclusions
	Acknowledgements 
	References


