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Abstract
Accurately predicting the spread of the SARS-CoV-2, the cause of the COVID-19 pandemic, is of great value for global 
regulatory authorities to overcome a number of challenges including medication shortage, outcome of vaccination, and control 
strategies planning. Modeling methods that are used to simulate and predict the spread of COVID-19 include compartmental 
model, structured metapopulations, agent-based networks, deep learning, and complex network, with compartmental mod-
eling as one of the most widely used methods. Compartmental model has two noteworthy features, a flexible framework 
that allows users to easily customize the model structure and its high adaptivity that allows well-matured approaches (e.g., 
Bayesian inference and mixed-effects modeling) to improve parameter estimation. We retrospectively evaluated the prediction 
performances of the compartmental models on the CDC COVID-19 Mathematical Modeling webpage based on data collected 
between August 2020 and February 2021, and subsequently discussed in detail their corresponding model enhancement. 
Finally, we presented examples using the compartmental models to assist policymaking. By evaluating all models in parallel, 
we systemically evaluated the performance and evolution of using compartmental models for COVID-19 pandemic predic-
tion. In summary, as a 100-year-old epidemic approach, the compartmental model presents a powerful tool that is extremely 
adaptive and can be readily customized and implemented to address new data or emerging needs during a pandemic.
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Introduction

Accurately predicting the spread of the severe acute res-
piratory syndrome-associated coronavirus-2 (SARS-CoV-2), 
the cause of the COVID-19 pandemic, is of great value to 
global regulatory authorities, including the US Food and 
Drug Administration (FDA). According to a 2020 view-
point report by the Center for Infectious Disease Research 
and Policy at the University of Minnesota, several COVID-
19 medications (73%, 29 out of 40) and critical acute care 
drugs (43%, 67 out of 156) were in shortage status in the 

early stages of the COVID-19 pandemic (1). Accuracy in 
COVID-19 forecasting would help provide early preparation 
and mitigation strategies to counter the negative impact of 
the pandemic on the healthcare system. Such strategies may 
help resolve drug shortage issues in a timely manner, set 
regulatory review priorities, and facilitate resource alloca-
tions during regulatory policymaking.

The outbreak of SARS-CoV-2 was first reported in early 
2020 (2). Shortly thereafter, the World Health Organization 
(WHO) declared COVID-19 a pandemic (3). While a peak 
of over 70,000 daily new infections occurred in the USA in 
July 2020 (4), improved intervention policies and medication 
strategies resulted in a reduced number of cases in the fol-
lowing months. However, the number of daily new infections 
sharply increased again with the arrival of wintry weather 
in the northern hemisphere. A peak of over 250,000 daily 
new infections was reported in the USA in January 2021 (4). 
In December 2020, Israel was one of the countries to start 
a national vaccination campaign against COVID-19 early 
and observed a reduction of severe cases of COVID-19 at 
the national level (5). A similar decline in both infection and 
hospitalization rates was observed in the USA (4), following 
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the FDA’s Emergency Use Authorization (EUA) of several 
vaccines against COVID-19 (e.g., Pfizer-BioNTech, Mod-
erna, Janssen) (6–8). However, while vaccination is widely 
available, the pandemic cannot be yet considered totally sup-
pressed. In early May 2021, India became a new COVID-19 
epicenter, as a second peak of reported daily new infections 
surpassed over 400,000 cases (9). In late July 2021, the Delta 
variant, a more infectious SARS-CoV-2 strain, first reported 
in late 2020, became the predominant strain in the USA (10). 
The 7-day moving average of cases reached over 60,000 in 
the USA, similar to the rate of new cases observed before the 
availability and wide usage of vaccines. At the beginning of 
2022, WHO designated variant B.1.1.529 as a new variant of 
concern, named Omicron (11). Omicron subvariants BA.2, 
BA2.12.1, BA.4, and BA.5 widely spread in the USA, with 
BA.5 becoming the new predominant strain in the USA as of 
July 2022 (12). The Omicron variant has been reported to be 
more transmissible and able to infect previously vaccinated 
people (13, 14).

Prior to COVID-19, the 1918 H1N1 influenza was the 
most severe pandemic in recent history, causing an esti-
mated 50 million casualties worldwide (15). Comparing 
the 1918 influenza and the COVID-19 outbreaks in terms 
of the number of daily deaths, similarities can be observed 
regarding the timeline and trend of the first two peaks. In the 
1918 influenza pandemic, three peaks of daily deaths were 
observed in the UK (Fig. 1) (15). The peaks occurred in July 
of 1918 (first peak), winter of 1918 (second peak, which 
reached the highest number of cases), and spring of 1919 
(third peak). Similarly, the first and second peaks of COVID-
19 cases in the USA were observed in July and November 
2020, respectively. At the time of writing (July 2022), five 

waves have been observed in the USA, even after vaccines 
became widely available (16).

Forecasting the virus spread from an epidemiological stand-
point is important to plan control strategies and assess their 
impacts. Modeling methods that are used to simulate and pre-
dict the spread of COVID-19 include compartmental model, 
structured metapopulations, agent-based networks, deep learn-
ing, and complex networks (17–23). The compartmental model 
is a general and classic modelling approach that can be traced 
back about 100 years ago (24). The structured metapopula-
tion model, derived from the compartmental model, is mainly 
designed for capturing the heterogeneity across subpopula-
tions within a compartment, e.g., subpopulations based on age 
groups and small geographical regions (20). The agent-based 
network model further extends the metapopulation model and 
is able to model the epidemic dynamics at a single individual 
level (20). The deep learning technology, popular in recent 
years, has the potential to process various types of noisy het-
erogeneous data and capture the hidden information in the 
observed data pattern (19). The complex network, a new meth-
odology inspired by observations from real-world networks, 
models the epidemic dynamics using non-trivial topology (21, 
22, 25). Among all modeling methods, the compartmental 
model is one of the most widely used methods in COVID-19 
pandemic predictions (26, 27).

In a compartmental model, the population is separated 
into multiple sub-population based on specific features (e.g., 
whether a person is susceptible, infectious, or has recov-
ered). These sub-populations are referred to as compart-
ments and are assigned different labels. The compartments 
are then connected using predefined transit rules, so indi-
viduals can transit between the compartments.

Fig. 1  Trend of the daily death 
of COVID-19 in the USA (June 
2020 to July 2022) vs. trend of 
the death rate of 1918 influenza 
in United Kingdom (H1N1 
virus)
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There are two noteworthy features of compartmental mod-
eling that make this 100-year-old technique still applicable and 
relevant nowadays. First, the flexible framework of a compart-
ment model allows users to easily modify the model structure 
and enhance its performance. Such flexibility aids in adding 
any new compartment(s) or splitting an existing compartment 
into multiple ones, thus allowing the model to better fit the 
observed pandemic data (28, 29). For instance, adding an 
undetected or asymptomatic compartment by splitting it from 
the exposed or infectious compartment may provide informa-
tion for asymptomatic infection cases, which are important 
to accurately predict infections. Second, the adaptivity of a 
compartmental model allows well-matured approaches such as 
Bayesian inference, mixed-effects modeling, stochastic walk, 
and others, to improve the parameter estimation (30–38).

The Centers for Disease Control and Prevention (CDC) 
created a webpage (39) listing prediction models collected 
by the COVID-19 Forecast Hub (40). The COVID-19 Fore-
cast Hub acts as the data source and central repository of 
forecasts for over 50 research groups worldwide (https:// 
covid 19for ecast hub. org). The models from the Hub are sub-
mitted weekly to the CDC COVID-19 Mathematical Mod-
eling page (39) to assist public health decision-making. All 
models are required to periodically report their predictions, 
which are subsequently compared to the ground truth data 
when new data are available. At the time of data analysis 
(September 2021), over 50 models were available. Around 
40% of the models from the CDC COVID-19 Mathematical 
Modeling webpage used the compartmental model method.

In this review, we described the concepts and applica-
tions of the compartmental model for the forecast of the 
COVID-19 pandemic. The models were taken from those 
forecasting models listed on the CDC COVID-19 Mathe-
matical Modeling page (39). The prediction performance of 
all these listed models was evaluated using a score function 
based on the residual error between model prediction and 
real data. Then, five well-performed compartmental models 
were selected for further discussion as they included features 
of interest expanding the concepts of compartmental models. 
In addition, we investigated the effects and impact of possi-
ble government-imposed policies and vaccination strategies 
on compartmental modeling.

Performance of Compartmental Model 
Prediction

The measurement of the performance of compartmental 
model prediction can be described using a score function 
developed by Gu et al. (41). As the epidemiological data is 
updated weekly, every model had a set of weekly-updated 
forecast scores representing its prediction performance. 
The forecast score was calculated using the historical 

“ground truth” data (i.e., Johns Hopkins University CSSE 
Time Series Summary). The number of deaths has been 
used as an indicator of the burden of COVID-19 on health 
care systems and the effectiveness of intervention policy 
(42). The forecast score is a function of error between the 
forecast and the actual number of deaths in the USA (41), 
which can be written as follows:

where N(t) is the number of reported cumulative deaths on 
day t, n̂(t) is the number of predicted cumulative deaths and 
T is the number of weeks-ahead forecast e.g., T = 2 repre-
sents 2 weeks-ahead forecast (i.e., 14 days’ forecast). Weeks-
ahead forecasts normally range from 1 week to 4 weeks to 
represent short-term and long-term forecast performance, 
respectively. In our analysis, the 1-week ahead forecast score 
was selected as the indicator of the forecast performance.

A baseline model is established based on the mean of 
the previous week’s daily deaths which has a forecast score 
that can be written in a similar formulation without the 
prediction n̂(t) , as follows:

It is noted that the forecast score of this baseline model 
is calculated from the reported cumulative deaths of the 
previous period week’s daily deaths. The T is the same as 
described in the forecast score calculation in Eq. 1. Similar 
to the prediction models, the 1-week ahead forecast score 
was used in the analysis.

The 1-week ahead forecast scores were obtained for 
each model as well as the baseline model (41) from a total 
of 25 weeks starting from the week of August 10, 2020, 
to the week of February 1, 2021. The considered time 
frame (i.e. 25-week period) started during the decreas-
ing phase of the second wave and covered the peak of the 
third wave, the highest wave observed in the USA to date 
(16). The absolute values of these forecast scores were 
used to evaluate the deviation of the model prediction 
from the ground truth data. Therefore, the mean absolute 
values of these forecast scores were subsequently used as 
the performance indicator. A lower mean absolute score 
indicates a better prediction. Overall, we calculated the 
mean absolute score for all 22 compartmental models and 
1 baseline model. Table I lists the mean absolute scores 
for the five compartmental models with the lowest mean 
absolute scores. The five selected models had lower or 
comparable mean absolute scores when compared to the 
baseline model, indicating good forecasting performance. 
Figure 2 shows the 1-week ahead forecast scores for these 
five well-performed compartmental models.

(1)Score(t) =
(n̂(t) − N(t − 7T)) − (N(t) − N(t − 7T))

(N(t) − N(t − 7T))

(2)

Score
baseline

(t) =
(N(t − 7T) − N(t − 14T)) − (N(t) − N(t − 7T))

(N(t) − N(t − 7T))
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Strategies for Compartmental Model‑Based 
Forecast Performance Improvement

By reviewing these five well-performed compartmen-
tal models, we identified two categories for modeling 
enhancement such as (i) structure modification of the com-
partmental model, and (ii) parameter estimation enhance-
ment. Table  II summarizes the observed enhancement 
strategies.

Structure Modifications of the Compartment model

In the basic compartmental model in epidemiology, the total 
population can be assigned to compartments labeled such as 
S (susceptible), E (exposed), I (infectious), or R (removed/
recovered). The susceptible compartment includes the popu-
lation susceptible to the disease. The exposed compartment 
comprises the population infected by the disease but not yet 
infectious to others. The infectious compartment consists 

Table I  The Five Well-Performed Compartmental Prediction Models among the 22 Compartmental Models Listed on CDC COVID-19 Math-
ematical Modeling webpage

Mean absolute score (base-
line model: 0.123 )

Model Name on the CDC webpage Author/organization Reference

0.09 OliverWyman-Navigator Oliver Wyman (35)
0.111 USC-SI_kJα Data Science Lab, University of Southern California (43, 44)
0.119 Umass-MechBayes University of Massachusetts Amherst (30)
0.122 UCLA-SuEIR Statistical Machine Learning Lab, University of Califor-

nia, Los Angeles
(33)

0.127 UA-EpiCovDA University of Arizona (32, 45)

Fig. 2  Performance of the five 
well-performed compartmental 
models listed in CDC COVID-
19 Mathematical Modeling 
webpage. (Scores from the week 
of August 10,2020 to the week 
of February 1, 2021 were used). 
Scores = 0: perfect prediction

Table II  Modeling Enhancement Strategies Summarized from the Five Selected Compartmental Model-Based Forecasts

Categories Model name on CDC webpage Strategies

Model structure modification SuEIR Adding compartment for unreported infectious cases
SI_kJα Incorporating multiple infectious sub-states and considering spreading due 

to inter-region mobility
Parameter estimation enhancement MechBayes Estimating parameters using Bayesian inference

EpiCovDA Estimating parameters using Incidence-Cumulative Cases (ICC) curve.
SI_kJα Estimating parameters using a linearized system
OliverWyman-Navigator Incorporating real-world datasets to predict the values of parameters used 

in forecast
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of the population that can infect those in the susceptible 
compartment. Finally, the removed compartment includes 
the population removed from the system either because of 
recovering or death. Notably, the death/deceased compart-
ment (labeled as D) is another commonly used compart-
ment when the disease can be fatal for the population. Thus, 
the R compartment can also be interpreted as a recovered 
compartment, especially in case a separated death compart-
ment is included, or the immunity is not lifelong. Under this 
framework, the number of deaths can be predicted using 
the death compartment (if existing) or by multiplying the 
population in each of the compartments with their corre-
sponding death rates. The latter can be inferred by multiple 
methods, for example by using data from clinical reports or 
by dividing the reported number of deaths by the reported 
number of infection cases. Population assigned to different 
compartments can be updated dynamically with inter-com-
partmental transitions. Depending on the disease, different 
combinations of the above-mentioned compartments or even 
additional ones can be included in compartmental models.

A basic susceptible-infectious-removed (SIR) model 
(Fig. 3a) can be formulated as follows (Eqs. 3–5):

where N is the total number of populations which equals 
S + I + R, β is the transmission rate and γ is the inverse of 
recovering time.

(3)dS

dt
= −

�IS

N
,

(4)dI

dt
=

�IS

N
− �I,

(5)
dR

dt
= �I,

Similarly, a susceptible-exposed-infectious-recovered 
(SEIR) model (Fig. 3b) can be formulated by adding an 
exposed compartment to account for the incubation period 
(Eqs. 6–9)

where σ is the inverse of the incubation period.

SuEIR Model: a Modified SEIR Model with Unreported Com‑
partment In classic SIR and SEIR models, only the number 
of reported infectious cases is used for model estimation. 
While asymptomatic infections have been reported during 
the COVID-19 pandemic (46), their exact number is hard to 
determine. The performance of the classic SIR/SEIR model 
may be weakened by a mismatch between the reported cases 
and the actual number of infectious cases defined in the 
model, due to the missing asymptomatic cases. To address 
this problem, Zou et al. proposed a susceptible-unreported-
exposed-infectious-recovered (SuEIR) model (Fig. 4a) (33). 
The equations for the SuEIR model are listed as follows:

(6)dS

dt
= −

�IS,

N

(7)dE

dt
=

�IS

N
− �E,

(8)
dI

dt
= �E − �I,

(9)
dR

dt
= �I,

(10)dS

dt
= −

�(I + E)S

N
,

Fig. 3  Graphical representation of the basic SIR (Susceptible-Infec-
tious-Removed, panel a) and SEIR (Susceptible-Exposed-Infectious-
Recovered, panel b) compartmental models. β: the transmission rate; 

γ: the inverse of recovering time; σ: the inverse of incubation period. 
Dotted lines represent transmission
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where β is the transmission rate between the susceptible and 
“infected” groups (the latter including both exposed and 
infectious compartments), σ is the rate of exposed cases that 
are either confirmed as infectious or dead/recovered without 
confirmation, μ is the discovery rate (a parameter between 
0 and 1) which reflects unreported and undiscovered cases, 
and γ represents the transition rate between the I and R com-
partments. This model addresses the mismatch between the 
reported cases and the actual number of infections. The esti-
mation of the discovery rate (μ) can provide predictions on 
cases of asymptomatic infections.

SI‑kJα Model: Heterogeneous Susceptible‑Infected Model 
with Human Mobility Since classic SIR or SEIR models 
assume a closed population without contact with other 
populations, Srivastava et al. proposed a heterogeneous sus-
ceptible-infectious (SI) model with human mobility, named 
SI-kJα model (43, 44) (Fig. 4b). The SI-kJα model can sim-
ulate disease transmission between regions. In the SI-kJα 

(11)dE

dt
=

�(I + E)S

N
− �E,

(12)
dI

dt
= ��E − �I,

(13)
dR

dt
= �I,

model, an individual in a specific region (i.e., hospital/city/
state/country) can be in either a susceptible or an infectious 
compartment. A susceptible individual can be infected by 
others from the same region or from other regions (known as 
a “moving state”). Due to the complexity caused by the sub-
states design of the infectious state, this model uses a new 
fitting method differing from the traditional approach, as 
discussed later in the section “Estimating Parameters Using 
the Linearized System.”

Improving Parameter Estimation

Researchers have used the following four approaches to 
improve parameter estimation (Table  II): (i) Bayesian 
inference, (ii) fitting with incidence-cumulative cases 
(ICC) curve, (iii) using the linearized system, and (iv) 
incorporating real-world data in the model estimation.

Bayesian Inference Bayesian inference is a well-known 
data-driven method that uses Bayes’ theorem to update the 
parameter values when new data is available. The Bayes-
ian inference model estimates the values of the parameters 
using previous knowledge and observation data. In Bayes-
ian theory, the posterior distribution is proportional to prior 
distribution and likelihood distribution which can be formu-
lated as Eq. 14.

Fig. 4  Graphical representation of the SuEIR model (Zou et al., 2020) with unreported state (panel a), and SI-kJα model (Prasanna, 2020a; 
Prasanna, 2020b) with infection caused by infectious individuals from other regions (panel b). μ: the discovery rate
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where P(θ| Y) is the posterior distribution, L(Y| θ) is the like-
lihood distribution, and P(θ) is the prior distribution.

When estimating an interested parameter θ in the 
epidemic model, knowledge about the epidemic can be 
used and translated into the prior distribution while the 
likelihood distribution can be inferred from the observed 
data. Therefore, the posterior distribution can be esti-
mated using approaches such as the Markov chain Monte 
Carlo (MCMC) method or the Hamiltonian Monte Carlo 
(HMC) method. This estimated posterior distribution can 
be used to provide the estimate of θ given the available 
data. When a new observation becomes available, the 
previously estimated posterior distribution can be used 
as a new prior distribution. Then, this new prior distribu-
tion along with the new likelihood distribution derived 
from the newly observed data can be used to estimate a 
new posterior distribution, which will then provide the 
updated estimate for θ. A strong prior can originate from 
known information and previous experience, thus lead-
ing to better control over parameters estimation. How-
ever, a relatively weak prior can still be implemented if a 
parameter is believed to be highly relevant to random or 
indescribable factors.

Depending on the situation, both strong and weak prior 
information in Bayesian inference can be used in parameter 
estimation for modeling the COVID-19 pandemic. Most of 
the essential parameters (e.g., length of the incubation period 
and days of recovery) in the compartment model can be 
assigned with strong priors obtained from clinical research. 
In contrast, the value of the transmission coefficient in SIR 
and SEIR models can be highly affected by external situa-
tions such as evolving public health guidance, and social 
or weather events, and as such can be assigned as a weak 
prior. The Umass-MechBayes model (30) implemented both 
strong and weak Bayesian priors and, as a result, gained a 
high level of accuracy for model prediction in the complex 
pandemic situation.

Fitting with Incidence‑Cumulative Cases Curve Normally, 
when modeling a disease outbreak, the epidemic models 
aim to characterize and fit the curve of the observed daily 
infectious cases. In 2016, a novel approach was developed in 
the compartmental model by fitting the incidence of cumula-
tive cases (ICC), in addition to the observed daily infectious 
cases (32). The EpiGro tool was developed based on this 
concept for disease outbreak forecasting (45).

This method first smooths and interpolates the epidemio-
logical time curve. Then, an ICC curve is generated from 
this converted smooth curve. Next, an inverted parabola is 
fitted by minimizing the root mean square error to the ICC 
curve. Finally, the parameters in the fitted parabola can then 

(14)P(�|Y) ∝ L(Y|�)P(�) identify the corresponding epidemic model. This approach 
was mainly designed to model a single peak of an outbreak, 
especially when available data is limited. Nonetheless, its 
performance is reported to be robust over multiple systems 
and noisy datasets (32).

Estimating Parameters Using the Linearized System In the 
SI-kJα model, the states in the compartmental model are 
further divided into multiple sub-states by different time 
points with varying transmission rates (Fig. 4b). The model 
assumes that the infection occurring at time point t can only 
be caused by the infectious population between t and an 
earlier time point (t − k), indicating that a patient is infec-
tious to others only for a certain period of time after being 
infected. In addition, following a similar dynamic, the local 
population can also be infected by the moving population 
from adjacent areas.

Developed from the basic compartmental model of 
SI components, a model for region p can be written as 
Eqs. 15–16.

where p is the target region, q represents regions connected 
to the target region p, F(q, p) is the moving population 
from q to p, �p

i
 and �q

i
 are the transmission coefficients in 

infectious sub-states (t − i) in the corresponding region p or 
q, δ is the transmission rate between the local and moving 
population, and k is the total number of infectious sub-states 
related to the infections occurring at time t.

To train the model, the system can be linearized by setting 
��

q

i
equal to a new variable �p

i
 and fitting it as an independent 

parameter. This modification enables the model to use dif-
ferent infection rates for the moving population in different 
sub-states, which can capture the rapidly changing trends of 
the epidemic. When using βp to represent the vector contain-
ing �p

i
 ’s and �p

i
’s, the increasing cases in each sub-state can 

be simplified to Eq. 17.

where Xp

t  contains the local and moving population in the 
corresponding sub-states. This linearized equation can then 
be solved using a constrained linear solver.

To train the interested parameters in βp, the following 
weighted least square function is used as an objective func-
tion for data fitting.

(15)ΔS
p

t = −
S
p

t−1

Np

∑k

i=1
�
p

i
ΔI

p

t−i
,

(16)ΔI
p

t =
S
p

t−1

Np

∑k

i=1
�
p

i
ΔI

p

t−i
+ �

∑
q

F(q, p)

Nq

∑k

i=1
�
q

i
ΔI

q

t−i
,

(17)ΔI
p

t = �
p
X
p

t ,

(18)LSE =
∑T

t=1
αT−t

(
ΔÎ

p

t
− 𝛽

p
X
p

t

)2
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where ΔÎpt  is the actual reported number of cases and α is the 
forgetting factor with a value less or equal to 1, which gives 
more weight to more recently reported data.

By modifying the model structure and linearizing the 
system, the SI-kJα model can be used to forecast the spread 
of the virus while accounting for human mobility at the 
state- and country-levels. Since there are no assumptions 
on transmission coefficients, the model can adapt to real-
life situations in a rapidly changing environment. However, 
adding these sub-states/transit compartments increases the 
number of parameters to be estimated and may potentially 
lead to over-parameterization.

Incorporating Real‑World Data for Parameter Estimation 
(e.g., Social Mobility and Distancing) Since the spreading 
of an infectious disease is highly related to the extent of 
social interaction between people, multiple real-world data-
sets, such as social mobility, age structure, and number of 
tests versus population, have the potential to be useful in 
parameter estimation.

Mobility data is an example of a useful dataset to esti-
mate the transmission coefficient (35, 47). Companies such 
as Apple (https:// covid 19. apple. com/ mobil ity) and Google 
(https:// www. google. com/ covid 19/ mobil ity), publicly shared 
mobility data collected by cell phone GPS, thus providing 
high-quality mobility datasets for model building. Figure 5 
shows the Apple mobility score versus the proportional daily 
increasing positive cases (https:// covid track ing. com) from 
June 1, 2020, to January 18, 2021. We calculated the pro-
portional daily increasing positive cases with the following 
equation:

where D(t) is the proportional daily increasing positive cases 
on day t and N(t) is the reported positive cases on day t. To 
account for the incubation period, we aligned the mobility 
scores from a specific day to the proportional daily increas-
ing positive cases with an 8-day delay, i.e. D(t) was aligned 
to the mobility scores for day t − 8. For example, the mobil-
ity score for June 2 was aligned to the proportional daily 
increasing positive cases for June 10.

Mobility data is a good resource for modeling as indi-
cated by the similar trends between the two curves (i.e., 
mobility and the delayed proportional daily increasing posi-
tive cases) (Fig. 5). In addition to the mobility data, other 
datasets (such as social distancing, weather information, and 
turnaround time of COVID-19 testing) can also be applied 
to compartmental modeling (35, 47, 48).

Another example of using real-world data can be found in 
the OliverWyman-Navigator model, in which time-depend-
ent transmission coefficients are deduced from the existing 
datasets. The predicted transmission coefficient values for 
forecasting are then estimated by fitting a function to the 
historical transmission coefficient value in their modified 
SIR-based model. The function can be written as:

which includes the information of an initial value (β0), 
the moving average of a mobility index from 8 days prior 
(T(t − 8)), number of tests per 1K of population (Et), speed 
of testing vs. recent new cases (F(t − 1)), and three fitted 
function parameters (x, y, and z) (35).

(19)D(t) = (N(t) − N(t − 1))∕N(t − 1)

(20)�(t) = �0 × T(t − 8)
x × E(t)y × F(t − 1)

z

Fig. 5  Mobility scores from 
Apple Transit (https:// covid 19. 
apple. com/ mobil ity) aligned to 
proportional daily increasing 
positive cases (https:// covid 
track ing. com). Mobility from 
day 1 is aligned to the number 
of cases from day 8 to account 
for the SARS-CoV-2 incubation 
period
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Although not included in the five well-performed models, 
the IHME model notably uses another interesting approach 
to handle real-world datasets. The model established by the 
IHME COVID-19 Forecasting Team incorporates real-world 
datasets as the covariates in a mixed effect model, instead of 
using a self-defined function (49). The mixed-effect model 
can be described as follows:

where X is a matrix containing all the covariates, α is the 
corresponding coefficients, and α0 is the random intercept. 
The covariates used in the model include both time-related 
features (such as social distance and mobility) and time-
invariant features (such as population density and adult age-
standardized tobacco smoking prevalence). After training 
the model, with the fitted α and predicted/given covariates, 
the future transmission coefficient values can be estimated 
and then used for case forecasting.

Assisting Policymaking using 
Compartmental Modelling

Modeling Government‑Imposed Lockdown Generally, lock-
down is a potential measure to be implemented in severe 
cases to eliminate contact between people and thus prevent 
the spreading of the infectious disease. Since lockdown is a 
costly measure, evaluating the overall outcome of lockdown 
is necessary. The outcome of lockdown directly reflects on 
the basic reproduction number (R0) in the epidemic model. 
Thus, manipulating R0 to simulate the overall outcome of 
a lockdown is the most straightforward method. Chinyoka 
proposed a modified compartmental model built with states 
of susceptible (S), exposed (E), un-quarantined (U), quar-
antined (Q), hospitalized (H), recovered (R), and deaths (D) 
(50). In the model, the transition between compartments can 
represent the rate of (i) infection (S to E and S to U); (ii) 
asymptomatic individuals developing symptoms (E to U 
and E to Q); (iii) hospitalization (U to H and Q to H); and 
(iv) recovery or death (U, Q, H to either R or D). Given the 
transition rate between the states, the model can be written 
into a set of deterministic equations subjected to an initial 
condition. Stochastic variations are then introduced into the 
model, thus making it into a stochastic model containing 
the basic reproduction number R0. The simulation of the 
lockdown outcome can then be conducted by implementing 
different values of R0.

Mellone and colleagues considered that absolute lock-
down is not possible since people must contact others for 
basic life needs, and thus developed a Free-to-Lockdown 
Hybrid model (FL-Hybrid model) (51). This model 

(21)ln(�) = X� + �0

simulates the free and lockdown phases by switching 
between its two sub-models. During the free phase, a rela-
tively simply compartmental model is used, such as suscep-
tible, undetected, detected, extinct, and recovered (SUDER) 
model. The susceptible population can only be infected by 
undetected patients. Undetected patients will become either 
detected or recovered, and the detected patients will transfer 
to either the recovered or extinct states in the model. Upon 
entering the lockdown phase, the population is separated into 
two groups: free and lockdown. The free population, subject 
to the same SUDER model described in the free phase, com-
prises people who must interact with others (e.g., essential 
workers). The lockdown population represents people stay-
ing at home and only going outside for essential needs. The 
unit of the lockdown population is a household composed of 
three individuals. A household can be in one of the following 
four situations: no infected individuals (i.e., infection-free), 
one infected individual, two infected individuals, and three 
infected individuals. An infection-free household can only 
become infected after contact with the free population. In 
an infected household, the disease can spread because of 
contact with one or more infected household member(s) as 
well as with the free population. Using this model, lock-
downs of varying lengths can be simulated by adjusting the 
switching time points of the two sub-models. The differ-
ent levels of lockdown enforcement can also be simulated 
by adjusting the percentage of the free population over the 
whole population.

Modeling the Effect of Vaccination Once vaccination cam-
paigns are implemented, a larger portion of the general 
public is expected to be vaccinated, which should result in 
a reduction in the number of new cases. Thus, including 
vaccination in the model is useful to evaluate the effect of 
vaccination on the epidemic and to guide future policy.

As the vaccinated population is expected to have a signifi-
cantly reduced risk of getting infected by the virus, adding a 
vaccinated state is the most straightforward method. In the 
model proposed by Lu and Ishwaran (52), two vaccinated 
compartments (i.e. vaccinated susceptible and vaccinated 
infected population) are added to a classic SIR model. Popu-
lations of vaccinated and unvaccinated susceptible states will 
transfer into their corresponding vaccinated and unvacci-
nated infected states at different rates. This model success-
fully fitted to the real data, indicating the effectiveness of 
the model design (52).

Considering that vaccination efficiency may differ at the 
individual level, a more sophisticated model can be used to 
model the outcome of vaccination. In the model proposed 
by Lee et al., a modified SEIR model is used as the basic 
epidemic model (53). The infectious and recovered state (I 
and R) are further divided into symptomatic/asymptomatic 
and recovered with/without immunity states, respectively. 
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A hospitalized state (H) is added between the symptomatic 
state and the recovered/death states to represent the patients 
who are hospitalized after being diagnosed. To simulate 
the differences in vaccination efficiency, the population is 
categorized into five groups: unvaccinated, vaccinated, full 
immunity, partial immunity, and vaccinated not immunized. 
Except for the full immunity group which exits the system, 
the remaining groups are subject to the modified SEIR 
model with different parameter settings. Specifically, four 
compartmental models are running simultaneously for the 
four population groups. An individual can transfer from one 
group to another under a given rule. This modeling frame-
work can be used to simulate the outcome of a mass vac-
cination event. The model can assist intervention decision-
making and can be especially useful to plan for the optimal 
outcome when the vaccine supply is limited.

Discussion

We analyzed the forecasting models from the CDC COVID-
19 Mathematical Modeling/COVID-19 Forecast Hub by 
evaluating the average score calculated from the error 
between the model prediction and “ground truth” data.

Based on our analysis, compartmental models can be 
implemented to include novel approaches and efficiently 
modified to fit the need of researchers. A basic compartmen-
tal model was used to predict the outbreak at the beginning 
of the epidemic. As the epidemic progressed, asymptomatic 
infections were reported (54). As a result, asymptomatic 
and undetected infectious states were widely used in the 
models to predict asymptomatic infections. Subsequently, 
multiple locations reported a second peak of the infection, 
showing high variability in terms of shape and timing. Thus, 
dynamic parameters were introduced to replace fixed value 
parameters to correctly predict the change of the infection 
trends. At the same time, more complicated models were 
built to assist policymaking by estimating the outcome of 
interventions. When vaccines became available to the public, 
models with vaccinated states were proposed to estimate 
the outcome of vaccination and guide resource allocation. 
When the Delta variant became the predominant variant of 
the virus in the USA, researchers used the compartmental 
model to analyze its spread (55). In 2022, the Omicron vari-
ant, shown to be more transmissible and able to infect people 
with immunization, caused a new wave of infection in the 
USA (11, 13, 14). Considering the features of the Omicron 
variant, an adapted compartment model was developed and 
used to analyze the outbreak caused by such variant (56). As 
highlighted above, the compartmental model is extremely 
adaptive and can quickly be modified and implemented to 

address new data or issues. It represents a powerful tool to 
help fight pandemic(s).

However, compartmental modelling also shows some 
limitations. Firstly, as the compartmental model naturally 
requires many parameters to be estimated, over-parameter-
ization can potentially pose a challenge for model fitting. 
Secondly, when used by itself, compartmental modelling 
can only perform a single peak prediction. To improve the 
prediction performance in complicated scenarios, compart-
mental modelling must be used in combination with other 
methods or techniques.

Finally, there are a few limitations in our review. It does 
not cover the entire field of the compartmental model as it is 
based on the models listed on the CDC webpage for COVID-
19 outbreak prediction. We focused on country-level data in 
the prediction performance assessment, as the local region 
might be defined differently by different models, and not 
every model included local prediction results. In addition, 
to assess model performance, we selected a 25-week time 
interval when most of the modeling teams had been actively 
reporting their predictions.

Conclusion

The 100-year-old epidemic compartmental model (24) is still 
the most popular method for modeling and forecasting the 
ongoing COVID-19 pandemic. Among the over 50 forecast-
ing models collected by the CDC COVID-19 Mathematical 
Modeling page, around 40% are using the compartmental 
model-based method. The compartmental model is powerful 
(i.e., able to analyze real-world, multi-peak outbreaks) when 
used in conjunction with performance-enhancing methods. 
Compartmental model-based methods have similar accuracy 
as other novel methods that emerged in recent years (e.g., 
deep learning), but are less computationally intensive. The 
flexibility of compartmental models can provide accurate 
short-term COVID-19 predictions and be helpful for long-
term pandemic projection, accounting for situations such as 
vaccination. COVID-19 model predictions can help inform 
decision-making for pandemic intervention, resource allo-
cation, and drug shortage mitigations. Our study identified 
several well-performing models that can be potentially 
employed during a future pandemic like COVID-19.

Abbreviations SARS-CoV-2:  severe acute respiratory syndrome-
associated coronavirus-2; FDA: United States Food and Drug Admin-
istration; WHO: World Health Organization; EUA: emergency use 
authorization; CDC: Centers for Disease Control and Prevention; SI 
Model: susceptible-infectious model; SIR Model: susceptible-infec-
tious-removed model; SEIR Model: susceptible-exposed-infectious-
recovered model; SuEIR Model: susceptible-unreported-exposed-infec-
tious-recovered model; ICC Curve: incidence-cumulative cases curve; 
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