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Abstract
Industry 4.0 has started to transform the manufacturing industries by embracing digitalization, automation, and big data, 
aiming for interconnected systems, autonomous decisions, and smart factories. Machine learning techniques, such as artifi-
cial neural networks (ANN), have emerged as potent tools to address the related computational tasks. These advancements 
have also reached the pharmaceutical industry, where the Process Analytical Technology (PAT) initiative has already paved 
the way for the real-time analysis of the processes and the science- and risk-based flexible production. This paper aims to 
assess the potential of ANNs within the PAT concept to aid the modernization of pharmaceutical manufacturing. The cur-
rent state of ANNs is systematically reviewed for the most common manufacturing steps of solid pharmaceutical products, 
and possible research gaps and future directions are identified. In this way, this review could aid the further development of 
machine learning techniques for pharmaceutical production and eventually contribute to the implementation of intelligent 
manufacturing lines with automated quality assurance.

KEY WORDS artificial neural network · machine learning · Pharma 4.0 · Process Analytical Technology · real-time release 
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INTRODUCTION

In the new century, manufacturing industries have started to 
undergo a vast transformation, fueled by digitalization, auto-
mation, and the tremendous amount of data collected during 
the manufacturing processes. Also referred to as the Fourth 
Industrial Revolution (Industry 4.0 (1) or Pharma 4.0 in the 
pharmaceutical industry (2, 3)), the evolving digital technol-
ogy includes data-driven manufacturing and the vision of 
smart factories, where interconnected systems can commu-
nicate with each other and make autonomous decisions (4).

In the pharmaceutical industry, modernization is also 
promoted by the Quality by Design (QbD) (5) and the Pro-
cess Analytical Technology (PAT) (6) frameworks. The 
QbD approach emphasizes the need for product and process 
understanding, i.e., the identification of the critical material 
attributes (CMAs) and critical process parameters (CPPs) 
that significantly influence the critical quality attributes 
(CQAs) of the product and process. This leads to estab-
lishing a design space, within which the quality is deemed 
acceptable. Consequently, the flexibility of production can be 
increased, as operating within a regulatory approved design 
space is not regarded as a change. The PAT initiative also 
aims the science- and risk-based production by emphasizing 
the need for the real-time measurements of the CQAs and 
CPPs with in-process sensors, coupled with the correspond-
ing data analysis methods and control strategy. As the QbD 
and PAT principles are being implemented, the possibility 
of reducing the labor-intensive and time-consuming quality 
control test on the final products is also becoming a reality. 
Instead, the real-time release testing (RTRT) approach can 
be used, that is, the process and product understanding and 
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the adequate real-time monitoring and control of the process 
can serve as the quality assurance (7). Consequently, the 
QbD, PAT, and RTRT concepts—along with the advance-
ments in data processing and automation—are indispensable 
for the aimed agile and innovative manufacturing, and their 
implementation could eventually lead to smart and eventu-
ally autonomous pharmaceutical factories (3).

To realize the aims of Industry/Pharma 4.0, artificial 
intelligence (AI) and machine learning (ML) techniques 
have emerged as versatile tools (2, 8) to tackle several aris-
ing tasks, e.g., the analysis of big data (9) or the develop-
ment of digital twins (the digital counterpart of a physical 
system) (10, 11). Artificial intelligence is mainly referred to 
as the computational methods that perform tasks typically 
associated with human-like thought processes, such as pat-
tern recognition or decision-making. Within AI, machine 
learning techniques accomplish these tasks by learning 
from a provided dataset to produce a response without 
being explicitly programmed to do so (12). ML can adjust 
the model behavior to continuously improve its performance 
as the training dataset is expanding, which makes it espe-
cially suitable for data-driven manufacturing purposes. The 
medical regulatory agencies also show increasing openness 
for AI/ML approaches. For example, the Danish Medicines 
Agency has recently published a list of questions to con-
sider for developing and applying ML-based models in GxP-
regulated areas (13). Furthermore, the US Food and Drug 
Administration has issued an action plan for establishing a 
“Good Machine Learning Practice” (14). Although it deals 
with ML-based medical devices, the approach (e.g., how to 
evaluate robustness, bias, and real-world performance) could 
be potentially further generalized for other ML applications.

ML comprises several different mathematical approaches, 
such as artificial neural networks (ANNs), deep learning, 
support vector machines (SVM), and decision trees (12, 15). 
This work primarily focuses on ANNs, which have gained 
tremendous attention due to their flexibility in describing 
complex, linear, or non-linear relationships for different pur-
poses, such as pattern recognition, regression, or time-series 
forecasting. ML techniques have already found several appli-
cations in the different stages of pharmaceutical research 
and development, such as for target selection, clinical trials, 
quantitative structure-activity relationships studies, or for-
mulation optimization (16–21).

However, in preparation for smart manufacturing, the 
real-time applicability of ML in the pharmaceutical manu-
facturing processes also needs to be studied, which, to the 
best of the authors’ knowledge, has not been studied in detail 
in previous review papers yet. Therefore, this paper aims to 
explore the current state of ML techniques (mostly ANNs) 
within the PAT framework. The application of ML together 
with analytical sensor systems for process monitoring and 
control purposes is reviewed, considering the most common 

upstream and downstream manufacturing steps of small mol-
ecule active pharmaceutical ingredients (APIs) and solid 
pharmaceutical formulations (e.g., tablets or capsules). This 
overview also aims to identify potential research directions, 
future challenges, and risks associated with implementing 
ANNs within PAT. Consequently, this review could facili-
tate the development of smart pharmaceutical manufacturing 
approaches and aid the digitalization efforts of the pharma-
ceutical industry.

ARTIFICIAL NEURAL NETWORKS

The development of ANNs was inspired by the information 
processing behavior of the human brain, as the calculation 
is based on interconnected information processing units, 
i.e., artificial neurons (also called nodes or perceptrons), 
which receive inputs and convert them to desired outputs 
(Fig. 1a). This is achieved by first weighting and summariz-
ing the inputs by an activation function and then calculating 
the outputs using a predefined transfer function (see Fig. 1b). 
In such a way, the information is passed through numerous 
neurons to produce the final output (Fig. 1c).

Depending on the purpose of the model, arbitrary NN 
topologies can be built, e.g., by varying the number of 
neurons, their connections to each other, and the applied 
transfer functions. In most applications, the nodes with the 
same tasks are organized into layers. A standard topology 
is the feedforward neural network (Fig. 1c)—or multilayer 
perceptron (MLP)—where the information passes through 
the network without any back loops to previous layers. The 
nodes in the input layer receive the information from the 
outside world and pass it to further nodes. The actual calcu-
lations happen in the hidden layer(s), which have no direct 
connection to the outside world but pass the information to 
the output nodes. The output layer, where the final transfor-
mations happen, provides the network results. Loops are also 
possible within the network, creating feedback, or recurrent 
neural networks (RNN), where the information also travels 
back to previous processing units, which exhibits a memory-
like behavior. This is especially important for analyzing, 
e.g., sequential and time-series data. Several RNNs have 
been developed for different purposes, such as the Elman 
network, layer recurrent neural network (LRNN), non-linear 
autoregressive exogenous model (NARX), the long short-
term memory (LSTM) NN (22).

According to the universal approximation theorem (23), 
a network with one hidden layer with a finite number of 
neurons can estimate any continuous function with arbitrary 
transfer functions. However, the utilization of multiple hid-
den layers (called a deep neural network if it contains at least 
three hidden layers) can also be necessary or more effec-
tive for complex tasks, e.g., for processing unstructured 
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data. Most famous deep networks include, e.g., RNNs (22) 
and convolutional neural networks (CNN) (24). CNNs are 
mainly used in image analysis for segmentation, classifi-
cation, and object detection. They contain several hidden 
layers for different purposes, such as convolutional layers 
for feature extraction, pooling layers for reducing the dimen-
sion, and fully connected layers for classification or making 
a prediction. As training CNNs from scratch can have vast 
computational and data demand, several pre-trained CNN 
architectures are available, such as the AlexNet, GoogLeNet, 
or ResNet model, consisting of 8, 22, and 152 layers, respec-
tively. These models can be utilized for transfer learning, 
i.e., using them as the starting point (e.g., for feature extrac-
tion) to model a new problem and to tune the model to the 
required training data. For more information on deep learn-
ing, CNNs, and transfer learning, see (24, 25).

Besides the network topology, the nodes’ transfer func-
tions significantly determine the model’s behavior. Some of 
the frequently used transfer functions are the linear (often 
used in the output neurons for function fitting), the log-sig-
moid (provides output between 0 and 1, used for discrete 
and binary outputs, e.g., in pattern recognition problems), 
and tangent sigmoid function (resulting in an output from 

−1 to +1, often used for regression tasks). Another widely 
used transfer function for deep NNs is the rectified linear 
unit (ReLU), which does not change the input if it is posi-
tive while outputting zero otherwise. Radial basis function 
(RBF) might also be used, creating RBF networks, which 
have the advantages of good generalization and the ability 
to learn in real-time.

ANNs need to be trained for a given task, which means 
adjusting the weights and biases of the neurons. In super-
vised learning, this is done using a training dataset con-
sisting of known input-output pairs. Backpropagation is a 
widely used iterative training approach. First, the weight 
and biases of the neurons are initialized, either randomly or 
by following an initialization technique (26) to speed up the 
learning. Next, an error (cost function), e.g., the mean abso-
lute error (MAE), mean square error (MSE), and the sum 
of squared error (SSE), is calculated between the network’s 
output and the known target. Based on the obtained error, 
the training algorithm adjusts the weights and biases, con-
trolled by either a fixed or adaptive learning rate: the lower 
the rate, a smaller corrective step is taken, which causes 
longer training but potentially more accurate result. Finally, 
the cost function is calculated again. One such iteration is 

Fig. 1  Representation of a human neuron, b a single artificial neuron, and c a multi-layered feedforward backpropagation (FF-BP) neural network
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called an epoch, and the process is iterated until a stopping 
criterion is reached.

The used training algorithms can significantly affect the 
training time and the performance of the ANN. For example, 
the gradient descent training algorithm (27) is slow, aiming 
to find the steepest descent of the error by calculating the 
first derivatives of the cost function. A widely used method 
is the Levenberg-Marquardt algorithm (28), the fastest for 
medium-sized networks but only applicable when the cost 
function is in the form of the sum of squares. Furthermore, 
it is sensitive to the weight initialization and prone to overfit-
ting. Bayesian regularization (29, 30) can tackle these prob-
lems by expanding the cost function to minimize the linear 
combination of the squared errors and the sum of squared 
weights. Consequently, the effective number of the param-
eters used in the model for the given problem can also be 
optimized, leading to better generalization and robustness.

APPLICATION OF ANNs IN UPSTREAM 
PROCESSES

Synthesis

The synthesis of organic compounds is the first step in indus-
trial pharmaceutical manufacturing to produce the API. The 
process monitoring and control can be utilized in continuous 
and batch processes to maintain a steady-state, determine 
endpoint, or optimize operating conditions. ANNs have 
found applications in the optimization process parameters 
to improve the outcome and efficacy of the reactions and 
describe non-linear relationships between spectroscopic data 
and the desired parameters through black-box multivariate 
modeling.

The effect of the process parameters (i.e., time, tempera-
ture, enzyme amount, molar ratio) on the yield of an enzy-
matic synthesis of betulinic acid ester could be described 
by a feedforward (FF) ANN, using 21 training experiments 
(31). As learning algorithms, quick propagation, incremental 
backpropagation (BP), batch BP, and Levenberg-Marquardt 
algorithm were compared, of which the quick propagation 
gave the best robustness.

Several studies have dealt with the optimization of syn-
thesis using ANNs. For example, Valizadeh et al. applied 
a MLP (32) to optimize the preparation of glucosamine 
from chitin based on three inputs, i.e., the acid concentra-
tion, the acid solution to solid ratio, and the reaction time. 
The built network was compared to the results of genetic 
algorithm (GA) and particle swarm optimization methods, 
which were better in model fitting than the MLP model, but 
the ANN outperformed them during validation. Optimiza-
tion of four two-component reactions was also performed by 
deep reinforcement learning, using RNN (33). The method 

iteratively found the optimal flow rate, voltage, and pres-
sure of the microdroplet reactions, using fewer steps than 
other black-box optimization algorithms. ANN-based opti-
mization could also be performed with the combination of 
computational fluid dynamics (CFD) model, where the CFD 
model was the source of the training data (34), where several 
parameters such as conversion, selectivity, and yield were 
maximized in butadiene synthesis.

RNN could replace a true plant model (35) or state-space 
model (36) in control algorithms. This could be beneficial to 
predict the process dynamics within a model predictive con-
trol (MPC) of a continuous pharmaceutical synthesis, as the 
computational demand is significantly decreased compared 
to the mechanistic models. Moreover, the ANN can greatly 
benefit from the data-rich environment of the PAT-supported 
manufacturing.

Although the above examples show that the API synthesis 
could greatly benefit from ANN modeling, the results are 
mainly based on historical instead of PAT data. There are 
a few examples in the literature where the evaluation of in-
line or on-line PAT measurement by ANNs was presented. 
For example, in a fermentation, the glucose and the glu-
curonic acid concentration were determined from Fourier 
transform infrared (FT-IR) spectroscopic measurements (37) 
using a multilayer feedforward network with 15 calibration 
samples. The ANN outperformed the classical partial least 
squares (PLS) regression. Phenol and chlorophenols were 
also simultaneously quantified employing an ANN model 
from UV-Vis spectra, collected by an immersion probe (38). 
In this case, principal component scores were used to com-
press the spectra for the training of networks.

Crystallization

Crystallization is crucial in connecting the API synthesis 
and the downstream formulation steps by providing solid 
crystalline API, which greatly impacts the final product’s 
yield, purity, further manufacturability, and even bioavail-
ability. PAT sensors are often used, such as ATR-IR, and UV 
probes can be used to monitor the solute concentration, and 
focused beam reflectance (FBRM) or in situ microscopic 
measurements (e.g., particle vision and measurement, PVM) 
can indicate the crystal size and count (39).

ML can estimate the crystallization outcome based on 
historical process data. For example, Velásco-Mejía et al. 
developed ANN and GA models based on the records of 
54 industrial batch crystallizations (40). They used nine 
descriptors and modeled the crystal density as the outcome, 
which resulted in identifying the most critical parameters 
and, after optimization, a substantial improvement in the 
product. In another work, the design space of a cocrystal-
lization process could be explored based on 25 experimen-
tal runs and four input variables (41). Using the operating 

Page 4 of 1874



The AAPS Journal (2022) 24: 74

1 3

variables (such as temperature, supersaturation, agitation 
speed, seeding properties) as ANN inputs, a more accurate 
crystal growth rate could also be predicted than with multi-
ple non-linear regression (42).

ANNs have been used for extracting information from 
data-rich PAT tools, such as in-line microscopic images. A 
ResNet CNN has proved to be effective in classifying crys-
tals detected in PVM images, which was used for contamina-
tion classification with >98 % accuracy (43). Such in-line 
technique can contribute to identifying traces of undesired 
polymorphs and, therefore, can be used in a feedback control 
to improve the product purity. Furthermore, the growth rate 
could also be predicted by measuring the particle size distri-
bution using CNN-based in-line image analysis (44). FBRM 
measurements provide chord length distribution as particle 
size information, which, together with the solid concentra-
tion, could be used as input for a layer RNN (45) to calculate 
the crystal size distribution (CSD). Szilágyi and Nagy (46) 
demonstrated the opposite approach: a direct and fast trans-
formation of two-dimensional CSD (needle-shaped crystals) 
to chord length distribution and aspect ratio distribution was 
achieved by a neural network. This was necessary for ena-
bling FBRM and PVM to be used as quantitative direct feed-
back control tools in a population balance model (PBM)-
based control, as the outcome of the PBMs and the analytical 
sensors are not comparable. The presented approach resulted 
in 6 times faster calculation than a direct conversion, which 
could be essential in real-time applications.

ANNs are also getting increasing attention in the con-
trol of crystallization. Possible approaches include the 
self-tuning of the PID controllers by ANN (e.g., by a 
diagonal RNN (47)) for temperature and level control or 
the determination of the optimal temperature profile to 
control the crystal size, e.g., to reduce fines. For the latter, 
Paengjuntuek et al. (48) generated data with a PBM for 
NN training and then predicted the solution concentra-
tion and crystal volume from the temperature and solu-
tion concentration data at the previous time points. The 
ANN was used as a state predictor in the optimization 
and provided better control performance than conven-
tional methodologies. Furthermore, the trained ANNs have 
a much lower computational cost than a first-principles 
model; therefore, they have a great potential to be used in 
MPC as the predictive model. This has been demonstrated 
by simulation (49) and experimental studies, using dif-
ferent network types (e.g., feedforward, recurrent, RBF 
networks) and batch and fed-batch crystallizations (50, 
51). However, Öner et al. (52) highlighted that mostly 
historical data were used for model development. In their 
study, a fully automated laboratory crystallization system 
has been developed, with temperature and FBRM sensors 
and using a RBF network. The training was accomplished 
real-time, using a reference batch and in-line collected 

data and an updated or a growing data strategy. That is, 
the network was updated as new experimental data was 
available. Despite the limited data, the control strategy was 
robust to various disturbances, such as solvent impurity, 
seed size, or impeller speed. This approach is applicable 
even when limited historical data or process understand-
ing is available.

APPLICATION OF ANNs IN DOWNSTREAM 
PROCESSES

Powder Blending

The proper execution of powder blending primarily 
ensures the homogeneous distribution of components in 
manufacturing solid dosage forms. ML techniques have 
been applied a few times to assist the real-time analysis of 
API concentration during a blending process and predict 
the powders’ behavior in various scenarios.

Since the 2000s, it has been shown that predicting the 
API concentration of powders by ANNs based on near-
infrared (NIR) spectra (53, 54) is as effective as the PLS 
regression. Besides, ANNs can predict the required time 
to achieve a homogeneous mixture. For example, Tewari et 
al. (55) utilized NIR spectroscopy, ANN, and other multi-
variate data analysis methods for at-line blending endpoint 
detection techniques.

Mujumdar et al. (56) created a discrete element method 
model of a sectorial container subjected to oscillations and 
then simulated the mixing of two particle fractions with 
different particle sizes under various operating parameters. 
The simulated results were used as a training dataset to 
create a FF-BP ANN model—which has much less compu-
tational demand—to predict the mean mixing concentra-
tion, a parameter describing the effectiveness of the mix-
ing process based on the amplitude of oscillations, the 
frequency of oscillations, the particle size of the smaller 
and larger fraction, and the number of cycles. It was con-
cluded that the ANN is an excellent choice when several 
operating parameters have a non-linear relationship. Fur-
thermore, such techniques could be helpful in the future 
for control purposes. ANNs could also be applied to pro-
cess data where the effects of certain factors appear after 
a time delay. For example, the composition of the blend 
that leaves the continuous blender could be predicted by an 
RNN (Fig. 2)—serving as the digital twin of the blender—
based on the mass flow rate of the input material streams 
and the residence time distribution of the system (57). It 
was found that a non-linear autoregressive network with 
exogenous inputs can yield results comparable to that of a 
residence time distribution model.
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Granulation

Granulation is a particle enlargement technique that is often 
quintessential to ensure further processability, which can 
also greatly influence the quality (e.g., content uniformity 
and dissolution) of the final product. Granulation is imple-
mented as a wet or dry technique, e.g., in high-shear, flu-
idized bed, roller compactor apparatus, or the continuous 
solution of twin-screw wet granulation (TSWG) is also 
emerging.

For more than 25 years, ANN models have been created 
to predict the quality of the product based on process param-
eters of fluidized bed (58–61), high-shear wet (62), and dry 
granulation (63, 64). For example, Kesavan et al. (65) mod-
eled both high-shear and fluid granulation by ANNs to pre-
dict the particle size, flow rate, bulk density, and tap den-
sity. The inputs were the type and percentage of diluent, the 
type of granulation equipment, and the amount and addition 
method of the binder. The product CQAs could be predicted 
with good accuracy, and the ANN performed better than 
multilinear stepwise regression analysis. The process param-
eters have also been applied to predict the disintegration time 
of tablets compressed from the granules (66). Furthermore, 
the scale-up of wet and fluid bed granulation processes was 
also facilitated by ANNs (67–69). Korteby et al. (70) dem-
onstrated with a fluid hot-melt granulation process that the 
relative importance of the independent input variables of the 
ANN model could be determined when combined with the 
Garson equation (71). They identified that the particle size 

of the binder had the highest impact on the properties of the 
final granules, followed by binder viscosity grade and binder 
content. In this way, the ANN combined the advantages of 
first-principles and data-driven modeling by providing infor-
mation about the effect of factors, while its construction was 
significantly easier than that of a first-principles model. In 
the case of dry granulation, the granule size distribution 
obtained after milling (72), the ribbon friability (63), or the 
ribbon density (73) could also be predicted. Modeling the 
granule quality based on operating parameters by ANN was 
also possible for continuous granulation (74), when the d10, 
d50, and d90 values of granules were calculated based on the 
liquid to solid ratio, screw speed, screw configuration, and 
material throughput. It has been suggested (74, 75) that the 
ANN models could be applied for the MPC of the process. 
Furthermore, ANNs can be combined with other data pro-
cessing techniques such as Kriging of finite volume scheme 
to create hybrid models which ideally combine the benefits 
of both methods (76, 77), and consequently, ANN can be 
integrated into more complex systems, too.

AI can also process the data yielded by real-time sensors 
used as PAT tools in the granulation process, e.g., to moni-
tor the API content or the residual moisture content. Zhao 
et al. (78) measured the concentration of three APIs with an 
off-line NIR spectrometer in sugar-free Yangwei granules 
manufactured on a commercial-scale apparatus. The BP 
ANN and other ML methods yielded similar results to the 
PLS regression. Rantanen et al. (79) created PLS and ANN 
models to predict the moisture content of granules based on 

Fig. 2  Concentration prediction 
from time-series data by ANN 
in continuous blending
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NIR spectra. They found that the ANN had more predictive 
power for independent test samples. Gupta et al. (80) used 
a NIR and a microwave spectrometer to record spectra of 
a ribbon leaving a roll compactor. The pretreated spectra 
were processed by PLS and ANN models to predict the API 
content, moisture content, and density of the ribbons, where 
ANN and PLS performed similarly except for the moisture 
content.

The flexibility of ANNs allows us to process any kind of 
signal effectively. For instance, thermocouples could also 
serve as PAT tools. Korteby et al. (81) placed three sets 
of thermocouples inside a conical fluidized bed granula-
tor. They recorded the temperatures under different condi-
tions, as the temperature distribution inside the granulator 
can influence the granule properties; thus, understanding its 
dependence on manufacturing parameters can contribute to 
the creation of a more reliable process. The obtained data 
were used to train an ANN, which provided very accurate 
predictions for the test cases, and such a model could be the 
basis of a real-time quality control scheme. The acoustic 
emission of the fluidized bed granulation could also be mon-
itored, as demonstrated by Carter et al. (82). They placed 
piezoelectric microphones in different positions outside 
the apparatus and recorded their signal while intentionally 
blocking parts of the distributor plate. After extracting time 
and frequency domain feature vectors from the sound signal, 
an ANN was trained to recognize different blockage sce-
narios based on the emitted sound. According to this revela-
tion, AI can facilitate novel applications of acoustic signals, 
possibly leading to the creation of powerful PAT tools.

Tableting, Coating

In most pharmaceutical manufacturing processes, tableting 
creates the individual units of the end product. Ensuring 
that each tablet the patient receives meets the strict qual-
ity requirements is essential. The advent of predictive mod-
eling and PAT technologies offers great help in achieving 
this goal.

One of the first things to consider when developing a 
tableting process is how the compressed powder mixture 
behaves inside the tablet press. The flowability of the blend 
must be good enough that each time the die is filled, an 
almost identical mass of powder moves into it. Kachrimanis 
et al. (83) used an FF-BP ANN to predict the flow rate of 
various powders through a circular orifice. They used typi-
cal powder properties as input, such as bulk density, tapped 
density, particle diameter, aspect ratio, roundness, convexity, 
and true density. The obtained flow rate predictions were 
more accurate than those of the flow equation proposed by 
Jones and Pilpel. Powder properties can also be utilized to 
predict the compressibility of the material. CMAs, such as 
the type and particle size of diluent, the type of glidant, 

bulk density, Carr’s compressibility index, and parameters 
of Kawakita’s equation (84–86), were used with various ML 
algorithms based on the results of a design of experiments 
(DoE) consisting of 30–50 settings.

Capping, i.e., the premature detachment of the tablet’s top 
layers, means serious quality problem in further processing 
(e.g., film coating and packaging) and should be avoided. 
Therefore, Belič et al. (87) predicted the capping tendency 
with neural networks and fuzzy logic by accounting for the 
particle size of the tableted powder and tablet press settings. 
They concluded that the technique makes formulation devel-
opment significantly more effective than traditional trial-
and-error approaches.

As a dosage form is developed, large datasets are cre-
ated that enable the fitting of design spaces within the QbD 
approach by using suitable mathematical tools. Zawbaa et al. 
(88) applied a combination of ANN with variable selection 
algorithms to find which manufacturing parameters have the 
strongest influence on tablets’ porosity and tensile strength. 
Results from the variable selection enabled the authors to 
identify that the compaction pressure was the dominant 
factor.

These studies showed that ANNs are suitable to deter-
mine the design space and predicting the processability of 
the powder and the quality of the tablets based on CMAs, 
but the tableting step is still lacking PAT-based ANN model 
applications. The CQA of the final tablets is influenced not 
only by the tableting step but also by the previous manu-
facturing techniques and the material attributes of the raw 
materials. Therefore, the works tackling the characterization 
of the final tablets are further detailed in the next section.

CHARACTERIZATION OF THE FINAL 
PRODUCTS

Content Uniformity, Assay

The content uniformity (CU) of the final products or inter-
mediates is one of the most frequently studied CQAs that 
must fall within certain limits. Spectroscopic PAT tools 
are widely used to quantify the API content in solid dos-
age forms to reach these goals. However, linear quantitative 
methods are not always feasible for evaluating multivariate 
data. In these cases, ANNs may provide a solution to reach 
a validated CU method.

Traditionally, UV-Vis spectroscopy is used to ana-
lyze assays, and ANNs have been applied several times to 
improve the quantification of numerous APIs (89–91), even 
in minor amounts. However, it is a destructive technique 
which is not compatible with the PAT concept.

In contrast, vibrational spectroscopy, e.g., Raman and NIR 
spectroscopy, can be helpful as an in-line, nondestructive 
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method for the characterization of solid samples. However, 
only one study has been found for the quantification of API 
by Raman spectroscopy and ANN (92), wherein commercial 
tablets and capsules containing diclofenac sodium were stud-
ied. PLS, principal component regression (PCR), and coun-
ter-propagation ANNs (CP-ANN) methods were compared, 
the latter combining unsupervised and supervised learning. 
While PCR yielded consistently higher errors, the PLS and 
CP-ANN showed comparable results for both tablets and 
capsules. A 2.6–3.5% and 1.4–1.7% relative standard error 
of validation was reached for tablets and capsules, respec-
tively, and a good correlation with reference analysis was 
obtained for commercial formulations. NIR spectroscopy is 
a more widely used technique, despite the severe overlapping 
between the signals of the components. Several APIs have 
been studied by ANNs, such as paracetamol, caffeine, cipro-
floxacin, aspirin, and phenacetin (53, 93, 94). Different vari-
able selection techniques have also been tested for improving 
the quantification by NNs. For example, variable selection 
by orthogonal projection to latent structures (O-PLS), com-
bined with ANN (95), genetic algorithms (GA-ANN) (96), 
or wavelet transformation (WT) (97), could be applied to 
increase model accuracy. WT could also be used for the 
dimensional reduction of the original spectra (98), which is 
an essential step in ANN building to decrease the computa-
tional demand of the training.

It can be concluded that for the API content determination 
in solid samples, ANNs mainly improved results compared 
to the linear multivariate methods, e.g., PLS regression with 
the same number of calibration samples. Another emerg-
ing application of ANN might be predicting the amount of 
analyte from process data, even without spectroscopic meas-
urements, which is the realization of the RTRT concept. For 
example, it was possible to estimate the ascorbic acid con-
centration in nutraceutical products from physicochemical 
properties, namely, pH, specific gravity, and viscosity (99). 
In this case, the ANN, which served as the soft sensor, pro-
vided a regression coefficient of 0.92 for the quantification.

Tensile strength, Friability

The appropriate hardness is also a CQA of the tablets, 
impacting the further processability, e.g., the coating and 
the packaging, and is mainly characterized by the tensile 
strength (TS) or the friability (FR). However, these prop-
erties are not easily measurable by available PAT tools. 
Attempts have been made to monitor the TS by NIR 
spectroscopy, where, e.g., the change of the baseline can 
correlate with the tablet hardness, which could be easily 
turned into a real-time technique (100, 101). By creating 
the optimal WT-ANN architecture, the tablet hardness was 
approximated satisfactorily, exceeding the accuracy of the 
linear PLS regression model. In another study (102), the 

hardness of theophylline tablets was predicted similarly by 
PLS and ANN at the lowest set point, but ANN produced 
better results for harder tablets.

Another possible approach is modeling the TS and FR 
based on their CMAs and CPPs. An ANN network was 
shown by Bourquin (103), where the weight ratio of four 
ingredients, the dwell time, and the compression force were 
used as input, and the TS and FR were predicted as outputs. 
The predicted TS had a good correlation with the observed 
values (R2=0.753), but for the friability, the ANN model 
gave a very slight correlation (R2=0.413). In this case, the 
tendency of overfitting can be recognized, which could have 
been avoided by using a larger training set.

Similarly, an ensemble ANN was used to study the effect 
of the type and amount of the filler (e.g., microcrystalline 
cellulose, HPMC, crospovidone/PVP) and lubricant (mag-
nesium stearate, sodium stearyl fumarate), with different 
APIs (104, 105). In (105), the crushing strength could be 
predicted with below 0.1 N error in the range of 30–60 N.

Furthermore, tablet properties and tableting process 
parameters could also be incorporated into the NNs, such as 
diameter, compression force, weight, height, porosity, speed 
of sound in the radial direction, and tablet compression 
speed (106). In (107), the type of polymers and their con-
centration were varied to predict the tablets’ tensile strength, 
the total work of compression, the detachment work, and the 
ejection work with six different ML algorithms, involving 
four ANN methods.

In Vitro Dissolution

In vitro dissolution testing is an important indicator of prod-
uct quality and therefore plays a vital role in the research, 
development, and routine quality control of the drug prod-
ucts. The tests, however, need to be carried out in standard-
ized instruments and are labor- and time-intensive meth-
ods. Consequently, it could greatly benefit from an RTRT 
approach, for which ANNs have also been studied.

However, most of the ANN studies connected to the 
prediction of the dissolution deal mostly with formulation 
optimization for the required dissolution properties. In this 
context, several different ANN structures have proved to 
be applicable, such as MLP, Elman networks, and RNNs 
(108–112), and several process parameters were modeled, 
such as the effect of retardation polymer in the tablets (108), 
the tableting compression force (108, 113), and the crushing 
strength (114).

PAT tools can be used for predicting the dissolution if 
the effect of the CMAs/CPPs on the dissolution is detect-
able in the PAT data. For example, NIR spectra with PLS 
regression predicted the dissolution where the variation of 
the moisture content (115), compression force (116), mixing 
shear forces (117), or tablet composition were the critical 
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factors (118). Pawar et al. used at-line NIR spectroscopy 
in a continuous direct compression process, where the API 
content, compression force, feed frame speed, and blender 
speed simultaneously influenced the dissolution (117). The 
use of Raman chemical maps to non-destructively predict 
the dissolution has also been recently demonstrated (119). 
In this case, not only the chemical composition of the tab-
lets, but the spatial distribution and CSD of the components 
could also be derived from a chemical map. However, to use 
it as a PAT technique, the speed of the chemical mapping 
still need to be further decreased.

Applying a single PAT tool might not always be suffi-
cient. ANNs can aid the data fusion of different PAT sources 
and process data for a surrogate dissolution model. Our 
group demonstrated the merging Raman and NIR spectra 
of an extended-release tablet formulation by an ANN first. 
The data-fused ANN models outperformed both the PLS 
modeling results, as well as the models built by only using a 
single PAT sensor (120). ANNs could be developed not only 
using spectroscopic data but including additional process 
data in the ANN (Fig. 3), such as the registered compres-
sion force (121) and CSD data (122). Furthermore, SVM 
and an ensemble of regression trees were also tested, but 
ANNs provided the most accurate results. The concept can 
be generalized for arbitrary numbers and types of input data, 
which could significantly aid the implementation of predic-
tive dissolution models in an RTRT framework.

FUTURE PROSPECTS

By reviewing the existing ANN applications for the phar-
maceutical manufacturing steps, we could identify two 
major groups of the works: the utilization of ANNs (1) 
for non-linear regression for the evaluation of analytical 
sensor data and (2) to establish a relationship between 
arbitrary input and output parameters. Table I summarizes 
the works where the developed models were based on PAT 
data or where the input could be directly collected during 
a process.

As for the first group, mainly UV and (N)IR spectra were 
applied, but Raman spectroscopy can also be identified as a 
rapidly emerging tool. ANNs were consistently recognized 
as comparable and often superior to traditional PLS regres-
sion. Comparable results are expected when no significant 
non-linear relationship exists between the inputs and out-
puts, while ANNs could be superior when there is strong 
non-linearity. ANNs might also provide inferior results. One 
of the possible reasons for this is the overfitting of the ANN 
model when there is not enough training data to adequately 
capture the input-output relationship. Furthermore, outlier 
training data can significantly diminish the predictive power 
of the model, as in this case, the network might be fitted to 
inadequate non-linear behavior. However, these problems 
can be eliminated by expanding the training dataset and 
applying outlier filtering techniques.

Fig. 3  Prediction of in vitro dissolution by neural network from PAT data
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Therefore, it might be worth considering the application 
of ANNs for spectral data evaluation when PLS models 
cannot provide sufficient accuracy due to a possible non-
linear effect. It is also worth noting that the development 
of ANNs did not require significantly more calibration data 
than for the PLS models, which is a common preconception 
about ANNs. Different types of ANNs have been used in 
this context with varying dimensional reduction methods, 
such as using principal component scores or wavelet trans-
formation. However, to the best of the authors’ knowledge, 
these techniques have not been thoroughly compared yet. 
Consequently, their systematic evaluation could significantly 
contribute to establishing good modeling practices to facili-
tate the application of ANNs. It is also noticeable that deep 
learning with spectroscopic data has rarely been applied. 
However, in (123), Zhang et al. demonstrated by using four 
different IR datasets (corn, wheat, soil, and pharmaceutical 
tablets) that deep NNs provide improved accuracy compared 
to conventional quantitative analysis. The same conclusions 
were drawn with other deep NNs with agricultural and food 
IR data (124, 125).

Although spectroscopies are probably the most com-
mon PAT tools, ANNs could be successfully applied for 
other types of PAT sensors, such as acoustic emission (82), 
FBRM, image analysis (44, 45), or for fusing different PAT 
data (e.g., NIR and Raman) (120). The application of ML 
might be especially important for image analysis, for which 
deep learning has already proved its capacity, but mainly 
outside the pharmaceutical manufacturing (e.g., in self-driv-
ing cars). Therefore, it would be worth further investigat-
ing NNs for machine vision in the pharmaceutical industry 
(126), e.g., to identify faulty tablets automatically.

Most works have been found related to establishing rela-
tionships between CMAs, CPPs, and different CQAs of the 
individual process steps. These studies demonstrate the 
capability of ANNs utilized within the QbD framework to 
fit, e.g., design spaces, primarily using a limited number of 
(off-line) designed experiments (usually 30–70 experiments) 
or historical data. However, the most significant shortcoming 
of this approach is that it does not realize the PAT initiative. 
Nevertheless, possibly the biggest prospect of ANNs lies in 
incorporating this approach into the PAT concept by utiliz-
ing these models in real-time, using the actual material and 
process parameters and the in situ registered PAT measure-
ments. Furthermore, as the previous sections demonstrate, 
the individual unit operations have already been explored by 
several researchers, but ANNs have rarely been incorporated 
into integrated processes, yet. Roggo et al. (75) reported 
on its first realization by examining a manufacturing line 
consisting of feeding, TSWG, fluid bed drying, sieving, and 
tableting. Seven CPPs were recorded with a frequency of 1 
s for a total of 148.000 data points, which were used to pre-
dict eight different CQAs of intermediate and end products. Ta
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The developed deep NNs (3 hidden layers) could learn from 
noisy PAT data and, consequently, be utilized for real-time 
control of continuous systems. Further studies are still 
needed in the future to examine the capabilities of machine 
learning in integrated manufacturing processes, which is the 
ultimate aim of commercializing the concept.

Digital Transformation

Following the Pharma 4.0 concept, digitalization is expected 
to spread significantly in the following years, as it can con-
siderably improve the transparency, flexibility, efficiency, 
productivity, and quality of manufacturing (127). The 
authors of (128) from Novartis Global Drug Develop-
ment—a leader in the digitalization of the pharmaceutical 
industry—have expressed that the historical operational 
data could be the goldmine to represent the pharmaceutical 
company’s experience. However, this information is cur-
rently greatly fragmented, inconsistent, and time-consum-
ing to reach. Digitalization platforms, such as the “Nerve 
Live” platform of Novartis (128), could help collect, clean, 
and analyze this goldmine. For example, centralized, easily 
accessible databases (data lakes) of raw materials’ attributes, 
process parameters of each unit operation and the different 
PAT measurements could be obtained for the manufacturing 
process, as illustrated in Fig. 4.

Digitalization imposes multiple challenges on pharmaceu-
tical companies and initializes changes at the business, opera-
tional, and technological levels (129). First of all, the role of 
data scientists and informational technology (IT) personnel 

significantly grows as new competencies and resources are 
required. For example, it is necessary to build cross-functional 
teams, cybersecurity needs to be addressed, and in the long 
term, standardization will be essential to assure compatibility 
(127). Multiple handbook chapters deal with the digital trans-
formation of laboratories (e.g., analytical, research, solid-state 
labs) (130, 131), providing an information knowledge base to 
the central concepts and providing guidance for their practi-
cal realization. For example, information management tools, 
e.g., the Electronic Laboratory Notebook (ELN), Laboratory 
Information Management System (LIMS), and Enterprise 
Resource Planning (ERP), are introduced, and principles of 
cybersecurity, communication protocols, data and modeling 
technologies, reporting, and creating FAIR (findable, acces-
sible, interoperable, reusable) data are discussed.

Most of these concepts are extensible to the opera-
tion of the labs and manufacturing sites of pharmaceuti-
cal companies, too. In (132), a complex IT infrastructure 
is proposed explicitly for pharmaceutical development, 
involving data management tools, knowledge modeling, 
and information sharing guidelines to aid the managing 
and interpreting different sources of complex informa-
tion. The industrial realization of such an IT system is the 
“Nerve Live” platform of Novartis (128) or the commer-
cially available cloud-based, open IoT operating system of 
Siemens, called MindSphere (129). MindSphere integrates 
all data sources and information management tools, con-
nects different types of equipment in a cloud platform, and 
provides the highest level of data protection and storage, 
which is crucial for pharmaceutical companies.

Fig. 4  Artificial intelligence 
models for PAT in the Pharma 
4.0 concept
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In all publications related to digitalization, the central role of 
AI and ML is recognized to analyze the data lake, AI solutions 
standing above the whole hierarchy of data (Fig. 4.), having 
access to each data management level (130). In this way, NN 
models can be built to monitor CQAs of processes, develop 
digital twins, and realize model-predictive control for intelligent 
decisions, self-optimization, predictive maintenance, or making 
business decisions. Several software solutions are aiming to 
realize this, e.g., the Siemens Predictive Analysis (SiePA) tool 
is readily available to optimize a process based on historical 
data, analyze failure modes, and realize predictive maintenance 
(133). Despite, based on the published scientific papers, we 
could conclude that the application of ANN with real-time col-
lected pharmaceutical manufacturing data and integrated multi-
ple process steps is still scarce. However, it is worth noting that 
implementing such platforms means a substantial competitive 
advantage for pharmaceutical companies, which might cause 
the publication of these results to be hindered.

Nevertheless, we believe that further academic and indus-
trial research would significantly facilitate the widespread 
realization of digital transformation and autonomous smart 
factories. For example, the adaptation and real-time training 
capabilities of NNs for continually increasing data should 
be further studied, as well as the role of time-series ANNs 
could be investigated in more detail. Furthermore, it is vital 
that an AI black-box model should not replace and dimin-
ish the scientific, chemical understanding of the research, 
development, and manufacturing process of drug products, 
which could be achieved by integrating physical-chemical 
process knowledge into the automatized platform, e.g., as a 
form of hybrid mathematical models.

CONCLUSIONS

ML techniques, such as ANNs, have emerged as one of the 
essential data analysis tools for processing big data and real-
izing the Industry/Pharma 4.0 concepts. To assess the readi-
ness of pharmaceutical manufacturing for this, this paper 
aimed to review the application of ANNs in the context 
of PAT. It can be concluded that ANNs have already been 
tested for several purposes in the most common manufac-
turing steps, but their real-time application for PAT is still 
scarce. The possible future directions and research gaps 
have also been identified. In this way, ANNs could signifi-
cantly contribute to realizing smart, autonomous pharma-
ceutical manufacturing lines in the future. This can help the 
faster, cost-effective production or the reduction of waste, 
i.e., reducing the environmental load, and the automatized 
systems could minimize human exposure to dangerous pro-
cesses or drug substances, e.g., hormones or cytostatics.
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