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Abstract. The International Prostate Symptom Score (IPSS), the quality of life (QoL)
score, and the benign prostatic hyperplasia impact index (BII) are three different scales
commonly used to assess the severity of lower urinary tract symptoms associated with benign
prostatic hyperplasia (BPH-LUTS). Based on a phase II clinical trial including 403 patients
with moderate to severe BPH-LUTS, the objectives of this study were to (i) develop
traditional pharmacometric and bounded integer (BI) models for the IPSS, QoL score, and
BII endpoints, respectively; (ii) compare the power and type I error in detecting drug effects
of BI modeling with traditional methods through simulation; and (iii) obtain quantitative
translation between scores on the three abovementioned scales using a BI modeling
framework. All developed models described the data adequately. Pharmacometric modeling
using a continuous variable (CV) approach was overall found to be the most robust in terms
of type I error and power to detect a drug effect. In most cases, BI modeling showed similar
performance to the CV approach, yet severely inflated type I error was generally observed
when inter-individual variability (IIV) was incorporated in the BI variance function (g()). BI
modeling without IIV in g() showed greater type I error control compared to the ordered
categorical approach. Lastly, a multiple-scale BI model was developed and estimated the
relationship between scores on the three BPH-LUTS scales with overall low uncertainty. The
current study yields greater understanding of the operating characteristics of the novel BI
modeling approach and highlights areas potentially requiring further improvement.
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INTRODUCTION

Benign prostate hyperplasia (BPH) is a common condi-
tion in the aging male and is estimated to affect 50% of males
by age 60 years and 90% by age 85 years (1,2). The increase
in prostatic weight frequently leads to a spectrum of clinical
manifestations known as lower urinary tract symptoms
(LUTS). The severity of BPH-LUTS is most commonly
measured by the International Prostate Symptom Score
(IPSS) (also known as the American Urological Association
score) (3), which consists of seven questions describing the
severity of symptoms. These comprise the feeling of

incomplete bladder emptying, frequency of urination, inter-
mittency during urination, the urgency to urinate, weakness
of the urinary stream, straining during urination, and
nocturia. Each IPSS question can be scored from 0 to 5,
resulting in a summary IPSS that may range from 0 to 35. The
IPSS is commonly used as a primary efficacy endpoint in
BPH-LUTS clinical trials and is considered the gold standard
diagnostic tool in the clinic (4,5). In addition to the IPSS, two
additional endpoints for assessing BPH-LUTS are regularly
implemented in clinical trials: the quality of life (QoL) score
(6) and the BPH impact index (BII) (7). The QoL question
evaluates a patient’s perception of his ability to tolerate his
current level of BPH-LUTS for the rest of his life. It is rated
between 0 and 6, with 0 corresponding to feeling “delighted”
regarding this outlook and 6 corresponding to feeling
“terrible.” Research has previously pointed towards the
utility of the QoL score to diagnose BPH-LUTS severity
and its significant correlation to the IPSS (6). The BII
questionnaire consists of four questions that respectively aim
to assess the impact of BPH-LUTS on a patient’s level of
physical discomfort, degree of worrying, general inconve-
nience caused by urinary problems, and impediment of
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desired activity. A summary BII score between 0 and 13 is
possible. Significant correlation with the IPSS and QoL score
has been established (8), as well as clinical significance
thresholds of changes in the IPSS and the BII (9). However,
the direct connection between observed scores on each of the
three abovementioned BPH-LUTS scales has to our knowl-
edge not been investigated. Given the use of different rating
scales in the clinic and in clinical trials within BPH-LUTS,
such knowledge may allow for informed translation between
scales. This may be important in the context of clinical
research as well as for bridging between clinical trials.

Traditionally, model-based analysis of rating scales with
more than 10 categories treats the data as a continuous
variable (CV) (10), which violates the inherent discrete
nature of the data. On the other hand, using an ordered
categorical (OC) approach may require too many parameters
and does not allow for prediction of categories that are not
observed in the data. Recently, bounded integer (BI)
modeling was presented as a method for describing data
originating from scales (11). The BI approach often showed
lower Akaike information criterion values compared to the
CV and OC approaches in the analysis of several different
scales (11), indicating that it may be a promising method for
longitudinal analysis of clinical trials employing scale end-
points. However, the power to detect a drug effect and
corresponding type I error of the BI modeling approach has
not yet been examined. This knowledge may contribute to
solidifying the utility of BI modeling in comparison to
traditionally used methods. The objectives of the current
work were hence to (i) develop BI models for the IPSS, QoL
score, and BII BPH-LUTS scales based on data from a phase
II double-blind parallel-group clinical trial; (ii) compare the
power and type I error in detecting a drug effect of the
developed BI models with traditional continuous variable
and/or ordered categorical modeling models, respectively;
and (iii) develop a BI model regarding trial data from the
three BPH-LUTS scales simultaneously to establish the
connection between scores on the different scales.

METHODS

Data

Ferring Pharmaceuticals A/S trial CS36 (NCT00947882)
was a phase II double-blind, parallel-group, dose-finding
study evaluating the efficacy and safety of a single subcuta-
neous injection of the GnRH antagonist degarelix over 6
months. Four hundred and three patients with moderate to
severe BPH-LUTS were randomized to placebo, 10-, 20-, or
30-mg degarelix 40 mg/mL solution. For trial inclusion, all
patients were required to have an IPSS ≥ 13 and a QoL ≥
3 at screening 2 weeks before dosing at the baseline visit.
Each patient had seven scheduled visits post-baseline (14, 30,
61, 91, 121, 152, and 182 days post-dose). The IPSS and QoL
score was measured at all eight trial visits, while the BII was
measured at baseline, 91 days post-dose, and 182 days post-
dose. CS36 was conducted in accordance with the Declaration
of Helsinki and Good Clinical Practice guidelines. Further
details regarding the CS36 trial have been presented previ-
ously elsewhere (12,13).

Modeling methodology

Model development

Continuous variable modeling. A continuous variable
(CV) longitudinal IPSS model previously presented else-
where (12) was used as basis for comparison with the BI
approach in the current study. The CV IPSS model was
developed on the current CS36 data and was modified to
contain no covariates or IIV distribution transformations. The
longitudinal trajectory of the IPSS was described according to

IPSS ¼ Baselineþ Placebo tð Þ þDrug

Placebo tð Þ ¼ Pmax 1−e−
ln 2ð Þ
Tprog*Time

� �
þDrift*Time

Drug ¼ 0 if Dose ¼ 0 or Time ¼ 0
Drug ¼ θ if Dose > 0 & Time > 0

with Baseline representing the baseline IPSS, Pmax the
maximal placebo effect, Tprog the half-life to reach Pmax,
Drift describing relapse or continued remission over time, and
Drug the offset drug effect of degarelix. IIV was included for
Baseline and Tprog assuming a lognormal distribution while
IIV for Pmax and Drift, respectively, were assumed normally
distributed. A combined residual error model was used.

For the modeling of BII data, time-varying placebo effect
models such as the linear, bi-linear, power, exponential,Weibull,
and inverse Bateman structural placebo models were tested, as
well as a time-independent placebo effectmodel (intercept), and
combinations thereof (slope-intercept). Offset, linear, and onset
drug effect models were examined to describe degarelix
treatment effect on the BII scale.

Ordered categorical modeling. A rule of thumb is to use an
ordered categorical (OC) approach when there are less than ten
categories (10). As the QoL score consists of seven categories,
an OC proportional odds (PO) model (14) was used to model
these data. The BII total score contains fourteen discrete
response values, all of which apart from the extreme values
can be arrived at through many different combinations of
responses. However, it may be viewed by some modelers as an
ordered categorical variable. An OC PO model was therefore
also applied to the total BII score in the current work.

In the OC PO model, the logit of the probability of an
observation Y being equal or greater than a score j in the ith
individual at time t is given by

logit P Yit≥ jjηið Þ½ � ¼ f j þ ηi where j ¼ 1;…;X
with X ¼ 6 for the QoL score and X ¼ 13 for the BIIð Þ

giving P Yit≥ jjηið Þ ¼ e f jþηi

1þ e f jþηi

where fj is a function of the baseline probability of each score
(αm) and the effect of predictors (in the current work, the
time-dependent placebo, and drug effect, respectively):

f j ¼ ∑
j

m¼1
αm þ Placebo tð Þ þDrug tð Þ

and ηi is the inter-individual variability (IIV), with mean zero
and variance ω2. Similar placebo and drug effect models to
those mentioned for CV BII model development were
investigated in OC model development for the QoL and BII
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scales, respectively. Lastly, the probability of observing a
particular score is given by

P Yin ¼ 0ð Þ ¼ P Yin≥0ð Þ−P Yin≥1ð Þ ¼ 1−P Yin≥1ð Þ
P Yin ¼ 1ð Þ ¼ P Yin≥1ð Þ−P Yin≥2ð Þ

P Yin ¼ Xð Þ ¼ P Yin≥Xð Þ

Bounded integer modeling. The methodology has been
described in detail elsewhere (11). Briefly, given a scale of n
categories, the probits (Z1/n to Z(n-1)/n) are first calculated to
specify n-1 cut-offs, which border n equally-sized areas under
a standard normal distribution N(0,1). For the IPSS, 35 cut-
offs were used, six cut-offs were used for the QoL, and 13 cut-
offs were used for the BII. Subsequently, in conjunction with
the probits, the probability of each category is determined
through a function describing a normal distribution of fixed
(θ) and random effects (ηi), time, and covariates f(θ, ηi,f, t,
Xi,f), along with a variance function g(σ, ηi,g, t, Xi,g), i.e.,
N(f(θ, ηi,f, t, Xi,f) and g(σ, ηi,g, t, Xi,g)). The probability for the
kth category, Pi,j(k), is defined as

Pi; j kð Þ ¼ Φ
Zk

n
− f θ; ηi; f ; t;Xi; f

� �

g σ;ηi;g; t;Xi;g

� �
0
@

1
A−Φ

Zk−1
n
− f θ;ηi; f ; t;Xi; f

� �

g σ;ηi;g; t;Xi;g

� �
0
@

1
A

with Φ being the cumulative distribution of the normal
distribution function, i.e., the area under the latent function
curve within the cut-off interval. For the first category (k = 1):

Pi; j 1ð Þ ¼ Φ
Z1

n
− f θ;ηi; f ; t;Xi; f

� �

g σ;ηi;g; t;Xi;g

� �
0
@

1
A

representing the cumulative distribution function in the
interval [-∞, Z1/n], and for the last category (k = n):

Pi; j nð Þ ¼ 1−Φ
Zn−1

n
− f θ;ηi; f ; t;Xi; f

� �

g σ; ηi;g; t;Xi;g

� �
0
@

1
A

representing the cumulative distribution in the interval [Z(n-
1)/n, ∞].

Similar placebo and drug effect models to those described
within CV BII model development were tested on the latent
probit scale. Moreover, the addition of aDrift parameter similar
to what was incorporated in the CV IPSS model was also
examined. BI models with and without inter-individual variabil-
ity (IIV) in the BI variance function, g(), were developed for
each scale to precisely assess potential sources of variation in
performance. Including an IIV term in the BI variance function
allows the scoring consistency to vary between subjects and has
previously been shown to reduce the Akaike information
criterion substantially (11). In all of the developed BI models
that included IIV in g(), a lognormal distribution was specified
for this IIV term as described in Wellhagen et al. (11).

Joint bounded integer modeling of multiple scales. Due to
its utilization of a latent scale, a multivariate approach can be

implemented under the BI framework, which regards multiple
scale measures describing the same disease simultaneously (15). In
the current analysis, a joint BI model describing changes in IPSS,
QoL, and BII over time in individual patients was developed. The
IPSS cut-offs (Z1/36 to Z35/36) were specified as the reference (i.e.,
identical to the probits in the BI model considering only the IPSS
scale), while the cut-offs for the QoL and the BII scores,
respectively, were estimated on this same latent scale. The
relationship between scores from each scale could thereby be
established. Given that the IPSS was used as the reference scale in
the joint BI model, the longitudinal model was developed
according to the trajectory of the IPSS. The same longitudinal
model described the longitudinal trajectory of probabilities for the
QoL score and the BII. Differences in scale measurement
frequency over the trial period is likely to influence the consistency
in patients’ scores, and therefore, incorporation of a separate g()
variance function was investigated for the BII scale in the joint BI
model: BII measurements were only available at three visits in the
CS36 trial period compared to eight measurements over the trial
period for the IPSS and the QoL score.

Model selection and evaluation

For nested models, the difference in objective function
value (OFV) corresponding to a significance level of 0.05 was
considered statistically significant assuming a χ2 distribution.
For non-nested models, the difference in Akaike information
criterion (AIC) was used. AIC was computed as the objective
function value (OFV) plus two times the number of model
parameters. Model stability based on the convergence of
minimization and covariance steps, parameter precision
assessed through NONMEM’s relative standard error esti-
mate, and graphical diagnostics was also considered during
model selection. Visual predictive checks (VPCs) were used
to assess the adequacy of the model characterization of the
observed longitudinal data on each scale.

Power and type I error calculation

The analysis of power and type I error considered
multiple simulation scenarios from different types of models
using BPH-LUTS scales that differ in the number of possible
scores as case studies. The latter allowed for comparison of
the BI model with different types of reference models (CV
and/or OC). Simulating data from only type of model would
bias the analysis and therefore the current work sought to
gain an overall understanding of the operating characteristics
of the BI approach by testing its performance under different
conditions. A stochastic simulation and estimation (SSE)
procedure with 500 trial replicates at different sample sizes
was used to assess the power to detect a drug effect of the
developed models. In the SSE, a drop in OFV of 3.841 (p =
0.05 assuming a χ2 distribution) was used as the threshold to
establish statistical significance of the drug effect between the
reduced (without a drug effect parameter) and full models
(with a drug effect parameter). All simulated trials had the
same allocation ratio of patients in the placebo and treatment
arms as in the CS36 clinical trial. No dropout was simulated
for simplicity purposes. For the comparison of power of the
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BI IPSS model and the CV IPSS model, a pharmacometric
item response theory (IRT) model (12) that was previously
developed on the same CS36 data set as in the current study
was used as the simulation model. Simulated total IPSS
responses were hence obtained from the sum of simulated
item-level IPSS responses. For power estimation of models
regarding the QoL score and the BII, respectively, the
simulation model was a previously developed integrated
IRT model (13), which was also developed on the same data
used in the current work. In the investigation of power to
detect of a drug effect of the developed models within each
BPH-LUTS scale, pharmacometric IRT models, which de-
scribe the respective observed longitudinal trajectories of the
IPSS, QoL score, and BII in the CS36 trial adequately
(12,13), were chosen as the simulation model in the main
investigational scenario to minimize simulation model bias
and generate integer scores as would be observed in, e.g., an
actual clinical trial within BPH-LUTS. Additionally, SSE
procedures were also performed using each of the different
developed models that inherently respect the integer nature
of the data (i.e., OC and BI models) as the simulation model.
The type I error of the models in detecting a drug effect was
investigated in an identical fashion to power, except for the
simulation models containing no drug effect.

Software

Modeling was carried out using the Laplace estimation
method in NONMEM version 7.4.3 and Perl-Speaks-
NONMEM (PsN) (16) version 4.9.0. Laplacian estimation
with interaction was used for the continuous variable models.
R version 3.6.0 and the xpose4 package (16) were used for
the post-processing of results and graphics.

RESULTS

The baseline CS36 trial characteristics and the mean time
course of each BPH-LUTS scale have been presented
elsewhere (12,13). In summary, each of the four trial arms
showed a marked mean decrease from baseline for all three
BPH-LUTS scales. Furthermore, by visual inspection of the
mean data from the three degarelix treatment arms, no dose-
response relationship was evident on any of the symptom
scales. In total, 3117 IPSS, 3119 QoL scores, and 1116 BII
responses from 403 patients were available for analysis.

Model development

International Prostate Symptom Score

Reference model. The parameter estimates along with
their relative standard errors in the CV IPSS model (IPSS-A)
are shown in Table I. Implementing dose-response or
exposure-response models (linear and Emax) did not de-
crease the OFV significantly. A VPC of the CV IPSS model
indicated adequate description of the data and is shown in the
Supplemental Material.

Bounded integer models. A BI model without inter-
individual variability (IIV) in the variance function, g(), was
first developed (model IPSS-B). In this model, the

longitudinal trajectory of the IPSS was described by the same
structural model as in the CV approach (model IPSS-A). In
Table I, the Baseline parameter refers to the z-score from a
normal distribution, and consequently the placebo and drug
effect represent changes on this latent scale. Normally
distributed IIV was included for the Baseline, Pmax, and
Drift parameters, while lognormal IIV was specified for
Tprog. Incorporation of an offset drug effect resulted in an
OFV drop of 22.2. In the second BI model (IPSS-C), IIV was
included for the g() function assuming a lognormal distribu-
tion, and this yielded a drop in OFV of 393.6 compared to
IPSS-B. However, in the presence of the g() IIV parameter,
the Drift parameter was no longer significant and was
removed in a fourth model (IPSS-D). Incorporation of an
offset drug effect resulted in an OFV reduction of 38.2 and
51.9 in IPSS-C and IPSS-D, respectively. Parameter estimates
for the three BI IPSS models are shown in Table I. Similar to
the CV IPSS model (IPSS-A), no dose-response or exposure-
response relationship was found to be significant. VPCs for
each of the three BI IPSS models showed adequate descrip-
tion of the data and are presented in the Supplemental
Material, along with the NONMEM code used for estimation
and simulation.

Quality of life score

Reference model. An OC proportional odds model was
developed (QoL-A) where the longitudinal change in logit
probability of observing a QoL score, Y, was described by

logit P Y≥Xð Þð Þ ¼ Bx þ Pmax 1−e−
ln 2ð Þ
Tprog*Time

� �
þ ηi

where X = 1,..,6, Bx is the baseline logit probability, Pmax is
the maximal placebo effect, Tprog is the half-life to reach
Pmax, and ηi is the IIV in logit baseline probability. Inclusion
of a drug effect parameter did not result in significant OFV
reduction. Parameter estimates for the proportional odds
model for the QoL score are shown in Table II. A VPC for
the OC QoL model (QoL-A) is shown in the Supplemental
Material, indicating good fit to the data.

Bounded integer models. First, a BI model without IIV in
g() was developed (QoL-B). A longitudinal model similar to
the BI IPSS model without IIV in g() (IPSS-B) described the
data. Next, in the second BI QoL model (QoL-C), IIV was
included in the g() function, yielding an OFV drop of 590.5
points. No significant drug effect was identified in either BI
QoL model. Overall low parameter uncertainty (Table II)
and adequate fit to the data as evidenced by VPCs
(Supplemental Material) was observed.

Benign prostatic hyperplasia impact index

Reference models. One CV (model BII-A) and one OC
model (BII-B) were developed to describe the BII data. In the
BII CV model (BII-A), the longitudinal model was specified by
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BII ¼ Baselineþ PlaceboInt þDrug
if Time ¼ 0 then Placebo ¼ 0 else Placebo ¼ θx

Drug ¼ 0 if Dose ¼ 0 or Time ¼ 0
Drug ¼ θy if Dose > 0&Time > 0

where Baseline is the baseline BII, PlaceboInt is the
intercept placebo effect model, and Drug is the offset
degarelix effect. IIV was included for Baseline as well as
PlaceboInt assuming a normal distribution. An additive
model best described the residual error. Incorporation of

an offset drug effect decreased the OFV by 4.6. Incorpo-
rating of dose-response or exposure-response models did
not yield a significant decrease in OFV. A VPC for the
CV BII model (BII-A) is presented in the Supplemental
Material, indicating adequate fit of the model to the
observed data.

In the OC model (BII-B), the same type of longitudinal
model as in the BII CV model (BII-A) described the time
course of the logit probability for each score. An additive IIV
term was added to the baseline logit probability. Incorpora-
tion of an offset drug effect yielded an OFV reduction of 7.1

Table I. Parameter estimates in the continuous variable and bounded integer (BI) models of the International Prostate Symptom Score. g() is
the variance function in the bounded integer (BI) model

Parameter Continuous
variable (IPSS-A)

RSE BI model without
random effect
in g() (IPSS-B)

RSE BI model
with random
effect in
g() with
Drift (IPSS-C)

RSE BI model with
random effect
in g() without
Drift (IPSS-D)

RSE

Baseline 19 1.2% 0.152 12.6% 0.108 18.1% 0.109 3%
Asymptote -3.82 11.7% -0.287 13.7% -0.29 10.6% -0.284 24.7%
Progression half-life 13.6 22.4% 14.3 35.7% 17.8 18.5% 19 6.6%
Drug effect -2.08 22.5% -0.173 27.7% -0.13 19.8% -0.145 9.9%
Standard deviation BI (g()) - - 0.208 3.1% 0.163 5.9% 0.162 10.1%
IIV
Baseline 19% 4.8% 30.7% 6.6% 27.9% 7.8% 27.8% 7.6%
Asymptote 119.2% 17.9% 37.4% 17.3% 34.6% 9.7% 38.5% 5.6%
Progression half-life 47.6% 15.6% 47.9% 17.6% 72% 12% 70.9% 10.9%
Drift 2.6% 9.4% 0.2% 9.3% 0.0002% 76.8% - -
Asymptote-Drift correlation 39.3% 19.8% -39.0% 28.2% 99% 34.4% - -
Standard deviation BI (g()) - - - - 63.7% 13% 64.3% 11.6%
Residual error
Proportional 11.7% 11.4% - - - - - -
Additive 187.6% 8.6% - - - - - -

IIV Inter-individual variability, RSE relative standard error

Table II. Parameter estimates in the ordered categorical proportional odds model and the bounded integer (BI) models of the quality of life
score. g() is the variance function in the bounded integer (BI) model

Parameter Ordered categorical
(QoL-A)

RSE BI model without
random effect in g()
(QoL-B)

RSE BI model with
random effect in
g() (QoL-C)

RSE

B1 10.4 4.1% - - - -
B2 -3.42 8.9% - - - -
B3 -2.73 5.7% - - - -
B4 -2.93 5.0% - - - -
B5 -2.49 5.9% - - - -
B6 -3.03 8.3% - - - -
Baseline - - 0.402 5.4% 0.393 67.70%
Asymptote -2.95 5.4% -0.426 7.0% -0.368 54.90%
Progression half-life 15 9.9% 17.1 12.0% 13.5 9.60%
Standard deviation BI (g()) - - 0.199 5% 0.108 8.50%
IIV
Baseline 286.7% 5.7% 34.9% 6.6% 34.6% 14.9%
Asymptote - - 39.9% 17.5% 33.5% 11.8%
Progression half-life - - 39.5% 111.2% 20% 33.5%
Drift - - 0.2% 43.6% 0.2% 43.6%
Standard deviation BI (g()) - - - - 92.7% 5.3%
Asymptote-Drift correlation - - -36.7% 36.7% -28.9% 21.3%

Bm is the baseline logit probability of a QoL score ≥ m (where m = 1,..,6). IIV Inter-individual variability, RSE relative standard error
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points. A categorical VPC shows the adequate fit of the
model to the data (Supplemental Material), and parameter
estimates for both the CV (BII-A) and OC (BII-B) model are
shown in Table III.

Bounded integer model. Including IIV for the g() pa-
rameter did not result in a statistically significant improve-
ment in OFV, and therefore only a single BI model was
developed for the BII scale. In the BII BI model (BII-C),
incorporation of an offset drug effect decreased the OFV by
5.1. The parameter estimates for the BI model are shown in
Table III. No dose-response or exposure-response model
provided a significant decrease in OFV. AVPC for the BI BII
model is shown in the Supplemental Material, indicating
adequate fit of the model.

Akaike information criterion

Table IV shows the AIC for all the developed models.
Within the IPSS and QoL scales, BI models displayed a lower
AIC compared to the reference models when a random effect
was included in the BI variance function, g(). Furthermore,
the BI model for the BII (that did not include a g() random
effect) (BII-C) also showed a lower AIC compared to the CV
BII model (BII-A), and so did OC QoL model (QoL-A)
compared to the BI QoL model without a g() random effect
(QoL-B). However, the CV IPSS model (IPSS-A) performed
better in terms of fit compared to the BI model without a g()
random effect (IPSS-B), and the same was seen with the OC
BII model (BII-B) compared to the BI BII model (BII-C).

Power and type I error in detecting a drug effect

The power to detect a drug effect and associated type I
error of the four IPSS models under four different simulation
scenarios is shown in Fig. 1. The type I error of detecting a
drug effect of the BI model with IIV in g()and omitting the
Drift parameter (model IPSS-D) was very high across all
investigated simulation scenarios except for when data was
simulated from model IPSS-D itself. On the other hand, the
BI IPSS model that retained both the Drift parameter and the
g() random effect (model IPSS-C) generally showed a type I
error rate at the nominal level in all scenarios, similar to the
CV IPSS model (IPSS-A). The BI IPSS model without a g()
random effect (model IPSS-B) showed an adequate type I
error control except when the data was simulated from BI
models incorporating IIV in the g() function (i.e., simulation
from models IPSS-C and IPSS-D, respectively, in Fig. 1).
Overall, the CV model (model IPSS-A) showed the best type
I error control and power across the different scenarios.
Figure 2 shows the power and type I error of the developed
QoL models. As reported in the model development section,
these models did not include a drug effect parameter due to
lack of statistical significance of the latter in the CS36 trial. A
hypothetical offset drug effect parameter was therefore
specified in the OC simulation model (QoL-A) as well as in
the respective BI simulation models (QoL-B and QoL-C),
similar to the offset drug effect included in the IRT simulation
model (13). The magnitude of the drug effect was specified as

-0.5 in OC simulation model QoL-A and -0.1 in the BI
simulation model QoL-B and QoL-C, respectively. Conse-
quently, an offset drug effect was also included and estimated
in the full OC PO QoL score and the BI QoL score models in
the SSE procedure in order to estimate type I error and
power. BI model QoL-B showed the best type I error control
among the three models across all four simulation scenarios,
as the 95% CI for the type I error estimate consistently
included 5%. Meanwhile, the OC model QoL-A and the BI
model with a random effect in g() QoL-C had highly inflated
type I error in detecting a drug effect, except when data was
simulated from the OC model QoL-A.

Figure 3 shows the power and type I error of models for
the BII scale under three different simulation scenarios. The
type I error and power of the CV BII model (BII-A) and BI
model BII-C that did not contain IIV in g() was comparable
in all simulated scenarios, while the OC BII model (BII-B)
showed inflated type I error except when data was simulated
from this model (Fig. 3, top right panel).

Joint bounded integer modeling

A joint BI model describing responses to the IPSS, QoL
score, and BII over time in 403 patients was successfully
developed. A longitudinal model similar to the BI IPSS
model with a random effect in g() and without a drift
parameter (IPSS-D) described the data. Incorporation of a
separate BI variance function for the BII scale decreased the
objective function by 583.5 points. An offset drug effect was
estimated yielding an OFV drop of 50.5 points. The
relationship between scores on each scale was estimated with
overall low uncertainty as shown in Fig. 4. The estimated cut-
offs allowing translation between the IPSS and the QoL score
all had low uncertainty associated with them (< 8% RSE).
Higher uncertainty (< 14% RSE) was observed for the cut-
offs relating the IPSS to the BII compared to the IPSS-QoL
cut-offs, and this was especially pronounced for BII scores
greater than 10 (RSE ranging from 17.9 to 32.5%). The
longitudinal parameter estimates of the joint BI model are
shown in the Supplemental Material. All three scales were
adequately described in the joint BI model as assessed
through VPCs. These are shown in the Supplemental
Material along with the NONMEM code used to generate
the joint BI model.

DISCUSSION

This study presents the application of BI modeling within
a BPH-LUTS clinical trial setting, where multiple disease-
specific scale endpoints traditionally assess the efficacy of new
treatments. Building further upon previous investigations
focusing on AIC comparison of BI models with CV and OC
models, respectively (11), the current study assesses the
power and type I error in detecting a drug effect of the BI
modeling approach compared to these traditional methods.
Lastly, by way of development of a joint BI model, the
relationship between scores of the IPSS, QoL, and BII scales
was established, which to our knowledge has not been shown
beforehand.
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Akaike information criterion

The first objective of the current paper was to develop BI
models for each of the three BPH-LUTS scales used in trial
CS36. Models with and without IIV in g() were developed,
and this led to the development of three different BI models
for the IPSS (IPSS-B, IPSS-C, and IPSS-D), two for the QoL
score (QoL-B and QoL-C), and one for the BII scale (BII-C).
Similar to previous BI models of different scales (11), the BI
models with IIV in g() (models IPSS-C, IPSS-D, and QoL-C)
showed the best data description in terms of AIC among all
models within each scale. It can however be argued that since

including IIV in the BI variance function translates to
incorporating IIV in the residual variance of a CV model
(11), this would be a fairer comparison. Hence, the CV IPSS
model (model IPSS-A) was exploratorily further developed
to include IIV in the residual variance (which we in the
“Discussion” section refer to as model IPSS-A-2). An
additive error model and a log-normally distributed IIV
similar to the implementation by Karlsson et al. (17) were
used, as the combined error model resulted in convergence
issues. Furthermore, similar to model IPSS-D, the Drift
parameter was no longer statistically significant and was
removed from the model. Model IPSS-A-2 showed a sub-

Table III. Parameter estimates in the continuous variable, ordered categorical (OC), and bounded integer (BI) models of the benign prostatic
hyperplasia impact index

Parameter Continuous
variable (BII-A)

RSE OC proportional
odds (BII-B)

RSE BI model without
random effect in g() (BII-C)

RSE

Baseline 6.7 2.1% - - 0.0312 130.8%
Placebo effect -1.5 19.2% -1.44 15.8% -0.316 19.4%
Drug effect -0.577 56% -0.595 43.2% -0.141 44.5%
Standard deviation BI (g()) - - - - 0.328 5.2%
IIV
Baseline 228.3% 6% 213.3% 6.5% 43.8% 6.5%
Placebo effect 191.3% 11.6% - - 38.7% 11.5%
Baseline—placebo effect correlation -32.5% 15.4% - - - -
Residual error
Additive 147% 4.7% - - - -
OC parameters
B1 - - 5.98 4.4% - -
B2 - - -1.08 12.1% - -
B3 - - -1.06 11.4% - -
B4 - - -0.993 8.8% - -
B5 - - -0.968 8.7% - -
B6 - - -0.701 9.9% - -
B7 - - -0.704 9.1% - -
B8 - - -1.01 8.3% - -
B9 - - -1.54 8.6% - -
B10 - - -0.75 13.1% - -
B11 - - -1.03 14.3% - -
B12 - - -1.2 21.5% - -
B13 - - -2.79 26.1% - -

g() is the variance function in the bounded integer (BI) model. Bm is the baseline logit probability of a BII ≥ m (where m = 1,..,13). IIV inter-
individual variability, RSE relative standard error

Table IV. Difference in Akaike information criterion (AIC) between reference and bounded integer (BI) models

Scale AIC
reference model(s)

AIC BI model
without IIV in g()

ΔAICReference model AIC BI model with IIV in g() ΔAICReference model

IPSS IPSS-A 16869.2 IPSS-B 17009.9 140.7 IPSS-C 16618.3 -250.9
IPSS-D 16619.1 -250.1

QoL score QoL-A 7702.1 QoL-B 7390.6 -311.5 QoL-C 6802.1 -900
BII BII-A 5320.5 BII-C 5250.1 -70.7 - - -

BII-B 5225.2 BII-C 5250.1 24.9 - - -

The reference models treated the International Prostate Symptom Score (IPSS) as a continuous variable (model IPSS-A) and the quality of life
(QoL) score as ordered categorical (OC) (model QoL-A), while both a CV (model BII-A) and an OC model (model BII-B) were developed
for the benign prostatic hyperplasia impact index (BII). AIC was calculated as the objective function value multiplied by two times the number
of parameters. ΔAICreference was calculated as AICBounded Integer Model – AICReference Model. g() is the variance function in the BI model. Two BI
models with IIV in g() were developed for the IPSS scale: one with (model IPSS-C) and one without (model IPSS-D) the Drift parameter. IIV
inter-individual variability
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stantially lower AIC compared to the BI IPSS model with a
g() random effect (decrease of 789.2 points). However, its
simulation properties were poor, as substantial data was
simulated well below and above the possible minimally and
maximally possible IPSS of zero and 35, respectively (Sup-
plemental Material). Hence, compared to the CV approach
which implements an additional random effect in the
residual error, BI modeling with IIV in g() may have the
advantage of describing the data well while preserving
high predictive ability.

Unlike the previous analysis of the Likert pain data (11),
the BI model of the QoL score without an IIV random effect in
g() (model QoL-B) showed substantially better fit in terms of

AIC compared to the OCmodel (modelQoL-A). However, the
fit of the BI BII model without IIV in g() (modelBII-C) was not
superior to the OC BII model (BII-B). The current data had
eight measurements for the QoL score and three BII measure-
ments per patient over the 6-month trial period. The number of
longitudinal measurements may hence potentially influence the
descriptive performance of BI modeling compared to the OC
method; as the number of visits increases, more complex
longitudinal trajectories may be captured by the BI model.
The latter allows for inclusion of more IIV components
compared to the standard OC model with a single random
effect. Further discussion on comparison of BI and OC
modeling has been reported elsewhere (11).

Fig. 1. Power and type I error in detecting a drug effect for the four developed pharmacometric models describing
the International Prostate Symptom Score (IPSS) under four different simulation models and varying trial sample
sizes. Five hundred trial replicates were generated under each sample size for both power and type I error
estimation. Model IPSS-A used a continuous variable (CV) approach with a combined residual error model. The
bounded integer (BI) model IPSS-B did not contain inter-individual variability (IIV) in the BI variance function
(g()), BI model IPSS-C contained both IIV in g() as well as a Drift parameter, while IPSS-D contained IIV in g()
but did not estimate a Drift parameter.
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In previous work, BI models were reported to result
in certain parameters becoming “superfluous” compared
to their corresponding CV models (11). In the current
work, however, the same structural model was ultimately
developed for the BI model without IIV in g() (model
IPSS-B) and the CV IPSS model (IPSS-A). However,
following introduction of IIV in g() during BI IPSS
modeling (models IPSS-C and IPSS-D), the Drift param-
eter was no longer statistically significant. The introduc-
tion of an IIV random effect in g() may therefore be a
source of explanation for parameters losing statistical
significance, as its flexibility may affect parameter
identifiability.

Type I error and power

The second objective of the current analysis was to
investigate the type I error and power of BI models, and this
was achieved through a series of different simulations within
each scale. Results overall indicated that incorporating IIV in
the g() function of BI models may result in very high type I
error as evidenced within different simulation scenarios for
the IPSS and for the QoL scale. In the IPSS simulations, the
increase in type I error may be attributed to model
misspecification: When simulating from models that incorpo-
rate the Drift parameter (the IPSS IRT model, model IPSS-B,
and model IPSS-C in Fig. 1), the BI model without this

Fig. 2. – Power and type I error in detecting a drug effect for the three developed pharmacometric models
describing the Quality of Life (QoL) score under four different simulation models and varying trial sample sizes. 500
trial replicates were generated under each sample size for both power and type I error estimation. Model QoL-A
used an ordered categorical (OC) approach. The bounded integer (BI) model QoL-B did not contain inter-
individual variability in the BI variance function (g()) while BI model QoL-C did
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parameter (IPSS-D) consistently showed severely inflated
type I error. When simulating from model IPSS-D, this same
model performed well in terms of type I error and showed

higher power to detect a drug effect compared to other
models (IPSS-A, IPSS-B, IPSS-C); however, it is to be noted
that the latter models still controlled type I error adequately

Fig. 3. Power and type I error in detecting a drug effect for the three developed pharmacometric models describing
the BPH impact index (BII) score under three different simulation models and varying trial sample sizes. Five
hundred trial replicates were generated under each sample size for both power and type I error estimation. Model
BII-A used a continuous variable (CV) approach with an additive residual error model. Model BII-B used an
ordered categorical (OC) approach. Bounded Integer (BI) model BII-C did not contain inter-individual variability
in the BI variance function (g())

Fig. 4. Schematic representation of the relationship between scores of the International Prostate Symptom Score (IPSS),
quality of life (QoL), and the benign prostatic hyperplasia impact index (BII) scales in the joint bounded integer model. The
probits of the IPSS were used as reference cut-offs. The bold red and green vertical lines indicate the estimated cut-offs for
the QoL and BII scores, respectively, along with their relative standard errors. Back translation of latent z-score values to
observe score values allowed for mapping of scores
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(except for model IPSS-B, which had slightly inflated type I
error). In the case of QoL score simulations, the BI model
with a g() random effect (model QoL-C) had high η-
shrinkage (> 80%) in the Tprog IIV term. This likely
rendered this IIV term largely uninformative due to model
parameter identifiability issues, thereby resulting in model
misspecification. Furthermore, for models IPSS-D and QoL-
C (with IIV in g()), the type I error was seen to increase with
increasing sample size, namely, in the IRT simulation
scenarios in Figs. 1 and 2, respectively. This may indicate
that the more patients are included in the trial (and hence the
larger the IIV in the longitudinal trajectories of patients), the
larger room for error in detecting a drug effect with this type
of BI model. It is however to be noted that the type I error of
an exploratory CV model with IIV in the residual variance
(model IPSS-A-2 presented earlier in the “Discussion”
section) was similar to model IPSS-D across the four different
simulation scenarios (data not shown). The severely inflated
type I error as observed with model IPSS-D may therefore
not be exclusive to the BI approach, but may instead be
associated with incorporating IIV in the residual error
component of models. Including IIV in the residual variance
has shown adequate type I error control in terms of covariate
inclusion in PK models (18). However, to our knowledge, it
has not previously been investigated within the context of
detecting drug effects in longitudinal drug-disease modeling
using a nonlinear mixed effects modeling framework. Further
research on these types of models may be of interest.

Misspecification of random effects is known to increase
type I error for hypothesis testing on the fixed effect of
interest within the context of linear mixed models (19,20).
Authors have furthermore pointed towards data-driven
random effects specification having higher potential for type
I error inflation compared to the design-driven approach (20–
22). This may also apply to the current findings; e.g., in the
IRT simulation scenarios, the CV (IPSS-A) and BI models
(IPSS-B, IPSS-C, and QoL-B) included similar random
effects as the simulation models (12,13). The developed BI
models were therefore more in line with the design of the
simulated trial data and consequently in general showed
better type I error rates. Oppositely, the IPSS BI model that
included IIV in g() and omitted the Drift IIV parameter
(model IPSS-D) could be said to adhere to a data-driven
random effect specification approach. The IRT models used
for simulation (12,13) were previously developed on the same
CS36 data set as the current models, explaining the similarity
between random effects.

To preserve both good data description as well as
adequate type I error control in detecting a drug effect, it
could be advised that if IIV is to be included in the BI g()
function, this should be performed as the last model
development step. Careful consideration of the influence of
this parameter on the original structural model parameters
(i.e., without IIV in g()) should be given, e.g., η-shrinkage.
Furthermore, parameters that were significant prior to
inclusion of IIV in g() may have to remain in the model
regardless of their significance after its inclusion (e.g., similar
to the Drift parameter in model IPSS-C). However, although
this proposed approach may afford better type I error control,
it may also limit the power to detect a drug effect: This was
observed with model IPSS-C when simulating data from

models IPSS-C and IPSS-D, respectively, in Fig. 1. This loss
of power was also seen with models IPSS-A, IPSS-B, and
IPSS-C when simulating from model IPSS-D with no Drift
parameter.

Even though the IPSS CV model (IPSS-A) inherently
violates the integer nature of the scale data, it was overall
more robust in terms of type I error control and preservation
of power compared to the different BI models across the
different IPSS simulation scenarios. Notably and surprisingly,
when simulating from BI model IPSS-C, the CV model
(IPSS-A) had substantially higher power compared to BI
model IPSS-B although they both shared a similar longitudi-
nal model structure. Furthermore, model IPSS-A had higher
power to detect a drug effect than the BI simulation model
IPSS-C. A potential explanation may be that probabilistic
models such as BI (and OC) do not incorporate residual error
in the same manner as the CV approach. The residual error
component in CV models may be an important factor in
terms of signal-to-noise, as it describes residual error through
a random effect (or two in the case of a combined error
model) and thereby differs from the standard BI fixed effect
g() function (e.g., as in model IPSS-B). Model IPSS-A
implemented a combined residual error model, and in
sensitivity analyses, similar power and type I error was
observed with a CV model implementing an additive residual
error model (data not shown). CV modeling of bounded
scores using a combined error model has previously been
reported to result in ill behavior (23). However, this was not
the case in the current work, as model IPSS-A converged
successfully, yielded a lower AIC than implementing an
additive residual error model, and did not suffer in terms of
type I error and power performance in detecting a drug
effect. Lastly, the loss of power in IPSS-C may potentially be
explained by the very high correlation between random effect
parameters Drift and Asy in model IPSS-C, hindering clear
distinction between these parameters during estimation, and
thereby limiting the power to detect a drug effect.

The BI QoL model with no random effect in g() (model
QoL-B) showed the best type I error control with no loss of
power across the different QoL score simulation scenarios
(Fig. 2), highlighting that this type of BI approach may be
well-suited for detecting drug effects in trials using smaller
scales for which using a CV approach is not viable. The poor
type I error control observed with the OC models of the QoL
score (QoL-A) and the BII (BII-B), respectively, may be
explained by the limited number of IIV parameters that may
be incorporated into OC models. A standard OC PO model
with a single random effect on the baseline logit probability
was used in the current work. BI models may allow for a
greater number of IIV parameters to be incorporated and
hence potentially would allow for more flexibility for
describing heterogeneous and stochastic data while accurately
detecting drug effects.

Meaningful comparison of the power to detect a drug effect
betweenmodels can only be made when their type I error rate is
comparable. Therefore, no comparison of power was made
when the type I error of models differed substantially. Adjust-
ment for type I error was performed for power comparison in an
exploratory fashion (data not shown), yet accurate determina-
tion of type I error adjusted power may require many more trial
replicates (e.g., ~ 10,000) (24).
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This work is the first to investigate the power and type I
error of the BI approach. The overall findings indicate that
the methodology performs well in comparison to traditional
methods when no IIV is included in the g() function.
However, further research to optimize its performance in
detecting drug effects may be required, particularly when
including IIV in the g() variance function. Individual model
averaging (25,26), which has recently shown high ability to
control the type I error of detecting a drug effect in the
presence of model misspecification, may be of interest to
investigate in this context. Moreover, in the original presen-
tation of the BI methodology (11) as well as in the current
study, probits as driven by the standard normal distribution
determined the score cut-offs, and a normal distribution
described the mean-variance (f()-g()) function. The impact
on type I error and power when using other distribution
functions in BI models as well as further developments to the
BI g() function may be of interest to inspect. Moreover, as
other methods for analyzing bounded score data have been
presented, such as beta-regression (27), censoring (28), and
the coarsened grid (29), the current results emphasize that
further research examining the power and type I error of
these methods is also of interest. Lastly, the current simula-
tion scenarios assumed a parallel-group placebo-controlled
trial design spanning a 6-month period, similar to the CS36
trial. Offset drug effects were also exclusively investigated in
the simulation scenarios. Future research may potentially
seek to investigate the performance of models while varying
trial design characteristics (such as study duration) and other
types of drug effects.

Joint bounded integer model

A joint BPH-LUTS scale BI model was developed,
incorporating responses to the IPSS, QoL score, and BII in
individual patients over the 6-month trial period. This
allowed for quantification of the connection between scores
on each scale and thus achieved the third objective of the
current paper. Knowledge of the relationship between scores
on different BPH-LUTS scales may be useful, e.g., for
comparison of patient population characteristics in different
BPH-LUTS clinical trials, where trial inclusion is commonly
contingent on patients’ response to one or more BPH-LUTS
scales and may differ substantially between trials. In clinical
diagnosis of BPH-LUTS, three categories of BPH-LUTS
severity have been specified based on the IPSS: mild (0 to 7),
moderate (8 to 19), and severe (20 to 35) (3). In the current
model, it was estimated that mild BPH-LUTS translates to a
QoL score ≤ 1 or a BII ≤ 2, moderate BPH-LUTS translates
to a QoL score of 2 or 3 or a BII of at least 3 and maximally 6,
and lastly, severe BPH-LUTS translates to a QoL score ≥ 4
or a BII ≥ 7. Furthermore, it was estimated that an IPSS ≥ 13
corresponds to a QoL score ≥ 3, which is consistent with the
inclusion criteria used in the currently analyzed trial, as well
as many other BPH-LUTS clinical trials. Within the scope of
BPH-LUTS clinical trials designed in similar fashion to the
CS36 trial, the joint BI model may also be used for predictive
purposes. For example, it may be served in obtaining
knowledge regarding the longitudinal trajectory of the QoL
and BII in patients should only IPSS data be available from
patients. Given that similar longitudinal parameter estimates

were obtained in the IPSS BI approach (model IPSS-D) and
in the joint BI model, prediction of QoL and BII data may be
achieved through initial development of an IPSS BI model
followed by input of the longitudinal parameter estimates into
a joint BI model to be used for simulation. The currently
reported cut-off estimates for the QoL score and the BII (as
well as the latter scale’s separate variance g() function) could
then be used to simulate these scores. It is to be noted that
using a joint BI modeling approach may serve as the primary
modeling strategy (instead of developing separate BI models
for each scale) and has been utilized in previous work (15,30).
Use of a joint BI approach is also supported in the current
work given the adequate description of data from each scale
as assessed through VPCs. Ultimately, the choice between
individual and joint BI modeling likely depends on the goal of
the pharmacometric analysis, and further research may seek
to emphasize the benefits of each of the two approaches
depending on the latter.

The relationship between the IPSS and QoL scores in
the joint BI model was estimated with low uncertainty, while
larger imprecision was observed for the estimated BII cut-
offs. This may be explained by the fewer observed BII
measurements per patient compared to the QoL in the
current data (three versus eight measurements per patient
over the 6-month trial period). The high uncertainty was
especially evident for cut-offs for BII scores above 10, which
may be explained by fewer of these scores being observed in
the current data set. Another way to connect scores on
different scales is by the use of IRT modeling, where patients’
underlying disability serves as the link between scales. Good
alignment with the results of such analysis (13) was seen with
the current BI approach. Lastly, covariate relationships may
be of interest to investigate to further improve the joint BI
model. Due to long run times with the current model, this was
not performed in this study.

CONCLUSION

This paper presents the development of BI models for
three different commonly used scales within BPH-LUTS
based on data from a Phase II clinical trial. Through
simulations, this study sheds light on the type I error and
power to detect a drug effect of BI modeling in comparison to
traditional methods for analyzing bounded score data from
different BPH-LUTS scales. Overall, the CV approach was
more robust compared to the BI approach although it violates
the integer nature of the data. BI modeling without IIV in the
variance function performed similarly to the CV approach in
most cases; however, further research may seek to optimize
its performance. Further research on type I error control of
BI models with IIV in the BI variance function may be of
high interest. In general, the OC approach showed higher
type I error in detecting a drug effect compared to the BI
approach, and the latter may therefore be an attractive
approach for detecting drug effects in longitudinal analysis
of trials using scales with few categories as endpoints. Lastly,
a joint BI model was allowed for estimation of the relation-
ship between scores of the IPSS, QoL, and BII scales, which
may be useful knowledge in clinical diagnosis and translation
between clinical trial inclusion criteria and results.
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