Skip to main content
Log in

Screening of Bioequivalent Extended-Release Formulations for Metformin by Principal Component Analysis and Convolution-Based IVIVC Approach

  • Research Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Bioequivalence (BE) is usually hard to achieve for extended-release (ER) dosage form products due to not only its complicated formulation but also to the BCS classification of the investigated drugs. Considering the difficulties in establishing full-scale IVIVC and limited in vivo pharmacokinetics data in the early stage of formulation development, we have selected BCS III drug metformin as a model drug to demonstrate a novel approach for the selection of BE formulations. Firstly, dissolution tests in both standard and biorelevant media were performed followed by identification of the most similar formulation WM to the reference product (GXR) based on principal component analysis (PCA) of the dissolution data. Then, we developed an IVIVC model using the reported GXR pharmacokinetics profiles via a convolution-based approach. Based on our established IVIVC and in vitro dissolution profiles of generic metformin ER products, we were able to predict their in vivo pharmacokinetic profiles and quantitatively compare the differences in AUC and Cmax to ensure the correct selection of BE product. Finally, the selection of WM as the BE formulation of GXR was confirmed with a pilot BE study in healthy volunteers under fasting state. Moreover, the in vivo data from the fed state study were further integrated into our IVIVC model to identify FeSSIF-V2 as the biorelevant media for WM. Our novel integrative approach of PCA with a convolution-based IVIVC was successfully adopted for the screening of the BE metformin ER formulation and such an approach could be further utilized for the effective selection of BE formulation for other drugs/formulations with complex in vivo absorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Center for Drug Evaluation and Research. Guidance for industry: bioavailability and bioequivalence studies submitted in NDAs or INDs - General Considerations (DRAFT). US Food and Drug Administration; 2014.

  2. Center for Drug Evaluation and Research. Guidance for industry: extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. US Food and Drug Administration; 1997.

  3. Le Guellec S, Ehrmann S, Vecellio L. In vitro - in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev. 2020. https://doi.org/10.1016/j.addr.2020.09.002.

  4. Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res. 2018;79(3):97–110. https://doi.org/10.1002/ddr.21427.

    Article  CAS  PubMed  Google Scholar 

  5. Kazi M, Al Amri R, Alanazi FK, Hussain MD. In vitro methods for in vitro-in vivo correlation (IVIVC) for poorly water soluble drugs: lipid based formulation perspective. Curr Drug Deliv. 2018;15(7):918–29. https://doi.org/10.2174/1567201815666180116090910.

    Article  CAS  PubMed  Google Scholar 

  6. Choi SM, Kang CY, Lee BJ, Park JB. In vitro-in vivo correlation using in silico modeling of physiological properties, metabolites, and intestinal metabolism. Curr Drug Metab. 2017;18(11):973–82. https://doi.org/10.2174/1389200218666171031124347.

    Article  CAS  PubMed  Google Scholar 

  7. Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: where do we stand? J Control Release. 2015;219:644–51. https://doi.org/10.1016/j.jconrel.2015.09.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kollipara S, Gandhi RK. Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations. Acta Pharm Sin B. 2014;4(5):333–49. https://doi.org/10.1016/j.apsb.2014.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin Z, Zhou D, Hoag S, Qiu Y. Influence of drug properties and formulation on in vitro drug release and biowaiver regulation of oral extended release dosage forms. AAPS J. 2016;18(2):333–45. https://doi.org/10.1208/s12248-015-9861-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giuliani A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov Today. 2017;22(7):1069–76. https://doi.org/10.1016/j.drudis.2017.01.005.

    Article  CAS  PubMed  Google Scholar 

  11. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bauer RJ. NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8:525–37. https://doi.org/10.1002/psp4.12404.

    Article  CAS  PubMed Central  Google Scholar 

  13. Gomeni R, Bressolle-Gomeni F. Comparison of alternative population modeling approaches for implementing a level a IVIVC and for assessing the time-scaling factor using deconvolution and convolution-based methods. AAPS J. 2020;22(3):67. https://doi.org/10.1208/s12248-020-00445-0.

    Article  PubMed  Google Scholar 

  14. Gomeni R, Bressolle-Gomeni F. Deconvolution analysis by non-linear regression using a convolution-based model: comparison of nonparametric and parametric approaches. AAPS J. 2019;22(1):9. https://doi.org/10.1208/s12248-019-0389-8.

    Article  PubMed  Google Scholar 

  15. Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304. https://doi.org/10.1016/j.ejps.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  16. Najib N, Idkaidek N, Beshtawi M, Bader M, Admour I, Alam SM, et al. Bioequivalence evaluation of two brands of metformin 500 mg tablets (Dialon & Glucophage)--in healthy human volunteers. Biopharm Drug Dispos. 2002;23(7):301–6. https://doi.org/10.1002/bdd.326.

    Article  CAS  PubMed  Google Scholar 

  17. Center for Drug Evaluation and Research. Guidance for industry: bioanalytical method validation. US Food and Drug Administration; 2018.

  18. Di Maio S, Carrier RL. Gastrointestinal contents in fasted state and post-lipid ingestion: in vivo measurements and in vitro models for studying oral drug delivery. J Control Release. 2011;151(2):110–22. https://doi.org/10.1016/j.jconrel.2010.11.034.

    Article  CAS  PubMed  Google Scholar 

  19. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/s0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  20. Gaynor C, Dunne A, Davis J. A comparison of the prediction accuracy of two IVIVC modelling techniques. J Pharm Sci. 2008;97(8):3422–32. https://doi.org/10.1002/jps.21220.

    Article  CAS  PubMed  Google Scholar 

  21. Gillespie WR. Convolution-based approaches for in vivo-in vitro correlation modeling. Adv Exp Med Biol. 1997;423:53–65. https://doi.org/10.1007/978-1-4684-6036-0_5.

    Article  CAS  PubMed  Google Scholar 

  22. Buchwald P. Direct, differential-equation-based in-vitro-in-vivo correlation (IVIVC) method. J Pharm Pharmacol. 2003;55(4):495–504. https://doi.org/10.1211/002235702847.

    Article  CAS  PubMed  Google Scholar 

  23. Costello C, Rossenu S, Vermeulen A, Cleton A, Dunne A. A time scaling approach to develop an in vitro-in vivo correlation (IVIVC) model using a convolution-based technique. J Pharmacokinet Pharmacodyn. 2011;38(5):519–39. https://doi.org/10.1007/s10928-011-9206-4.

    Article  PubMed  Google Scholar 

  24. Margolskee A, Darwich AS, Galetin A, Rostami-Hodjegan A, Aarons L. Deconvolution and IVIVC: exploring the role of rate-limiting conditions. AAPS J. 2016;18(2):321–32. https://doi.org/10.1208/s12248-015-9849-y.

    Article  PubMed  Google Scholar 

  25. WAGNER JG, NELSON E. Per cent absorbed time plots derived from blood level and/or urinary excretion data. J Pharm Sci. 1963;52:610–1. https://doi.org/10.1002/jps.2600520629.

    Article  CAS  PubMed  Google Scholar 

  26. Loo JC, Riegelman S. New method for calculating the intrinsic absorption rate of drugs. J Pharm Sci. 1968;57(6):918–28. https://doi.org/10.1002/jps.2600570602.

    Article  CAS  PubMed  Google Scholar 

  27. Gomeni R, Fang LL, Bressolle-Gomeni F, Spencer TJ, Faraone SV, Babiskin A. A general framework for assessing in vitro/in vivo correlation as a tool for maximizing the benefit-risk ratio of a treatment using a convolution-based modeling approach. CPT Pharmacometrics Syst Pharmacol. 2019;8(2):97–106. https://doi.org/10.1002/psp4.12378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hovorka R, Chappell MJ, Godfrey KR, Madden FN, Rouse MK, Soons PA. CODE: a deconvolution program implementing a regularization method of deconvolution constrained to non-negative values. Description and pilot evaluation. Biopharm Drug Dispos. 1998;19(1):39–53. https://doi.org/10.1002/(sici)1099-081x(199801)19:1<39::aid-bdd73>3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  29. Center for Drug Evaluation and Research. Guidance for industry: the use of physiologically based pharmacokinetic analyses — Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls. US Food and Drug Administration; 2020.

  30. Balan G, Timmins P, Greene DS, Marathe PH. In vitro-in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J Pharm Sci. 2001;90(8):1176–85. https://doi.org/10.1002/jps.1071.

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs A, Leigh M, Kloefer B, Dressman JB. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. Eur J Pharm Biopharm. 2015;94:229–40. https://doi.org/10.1016/j.ejpb.2015.05.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Innovation Technology and Commission of the Hong Kong Special Administrative Region, China (reference number: ITS/165/16FX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zuo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 10933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, H., Tang, M.J. et al. Screening of Bioequivalent Extended-Release Formulations for Metformin by Principal Component Analysis and Convolution-Based IVIVC Approach. AAPS J 23, 38 (2021). https://doi.org/10.1208/s12248-021-00559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00559-z

Key Words

Navigation