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Population Pharmacodynamic Modeling Using the Sigmoid Emax Model:
Influence of Inter-individual Variability on the Steepness
of the Concentration–Effect Relationship. a Simulation Study
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Abstract. The relationship between the concentration of a drug and its pharmacological
effect is often described by empirical mathematical models. We investigated the relationship
between the steepness of the concentration–effect relationship and inter-individual variability
(IIV) of the parameters of the sigmoid Emax model, using the similarity between the sigmoid
Emax model and the cumulative log-normal distribution. In addition, it is investigated whether
IIV in the model parameters can be estimated accurately by population modeling. Multiple
data sets, consisting of 40 individuals with 4 binary observations in each individual, were
simulated with varying values for the model parameters and their IIV. The data sets were
analyzed using Excel Solver and NONMEM. An empirical equation (Eq. (11)) was derived
describing the steepness of the population-predicted concentration–effect profile (γ*) as a
function of γ and IIV in C50 and γ, and was validated for both binary and continuous data.
The tested study design is not suited to estimate the IIV in C50 and γ with reasonable
precision. Using a naive pooling procedure, the population estimates γ* are significantly
lower than the value of γ used for simulation. The steepness of the population-predicted
concentration–effect relationship (γ*) is less than that of the individuals (γ). Using γ*, the
population-predicted drug effect represents the drug effect, for binary data the probability of
drug effect, at a given concentration for an arbitrary individual.

KEY WORDS: pharmacokinetic-pharmacodynamic modeling; sigmoid Emax model; inter-individual
variability; simulation.

INTRODUCTION

The relationship between the concentration of a drug
and its pharmacological effect is often described by empirical
mathematical models, as a convenient method to explore this
relationship quantitatively, e.g., to predict the time course of
drug effect by pharmacokinetic-pharmacodynamic modeling
(1–3). This approach can be used for both continuous and
binary (also denoted quantal or dichotomous) drug effects,
and can be extended to combinations of drugs using response
surface modeling to investigate the interaction of two or more
drugs (4–7).

The concentration–effect relationship is usually described
by the sigmoid Emax model. This model has a limited physio-
logical and mechanistic basis, since it reflects the relationship
between drug concentration and effect in the case that the drug
effect is proportional to the receptor occupancy; in this case, the
concentration at which the drug effect is 50% of the maximal
effect (C50) equals the dissociation constantKd and the slope of
the concentration–effect relationship (γ) equals 1 (see
“METHODS” for details). In other cases, the sigmoid Emax

model should be considered as an empirical equation that
describes the concentration–effect relationship sufficiently ac-
curately, as has been shown in numerous papers over the last
four decades.

An interesting characteristic of the sigmoid Emax model
is that the concentration–effect relationship is close to that of
the cumulative log-normal distribution (8). This implies that it
can be used in cases where the concentration–effect is likely
to follow a cumulative log-normal distribution, e.g., in the
case of binary responses, where the probability of response is
modeled as a function of drug concentration. However, the
similarity of the sigmoid Emax model and the cumulative log-
normal distribution has not been investigated in detail in
pharmacological literature.
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The relationship between the concentration of anesthetic
drugs and binary measures of depth of anesthesia, e.g.,
response to a standardized stimulus, is often rather steep.
However, the reported steepness varies widely between
studies, even for the same stimulus and using a similar study
design (9–12). In some studies, the population analysis
resulted in a final analysis including inter-individual variabil-
ity (IIV) in C50, based on the lower value for the objective
function value (10, 11), but in another study no IIV in C50
could be identified (9). This results in remarkable differences
in γ, which was reported as 3.46 for propofol (without IIV),
17.6 for sevoflurane + propofol (with 31–32% IIV), and 7.41
for sevoflurane (with 20% IIV). A simultaneous analysis of
the data of these three studies revealed that the steepness of
the concentration–effect relationship is, among other factors,
dependent on the inclusion or exclusion of IIV in model
parameters (12). Exclusion of IIV in C50 resulted in a lower
value for steepness.

This phenomenon has been investigated in two papers
(3, 13), demonstrating that, when data from multiple patients
is naively pooled, the estimates of γ may be biased, and the
95% confidence intervals may not contain the true value. The
authors stated: “We believe that estimates of γ from studies in
which data from multiple patients was naively pooled must be
viewed with suspicion. In this type of analysis, intra-patient
variability (embodied in the parameter γ) cannot be distin-
guished from inter-patient variability. Accurate estimates of γ
necessitate methods of analysis that take inter-patient vari-
ability into account.” However, they did not provide insight in
how such a study design should be chosen.

It is the aim of this paper (procedure 1) to describe
quantitatively the relationship between the steepness of the
concentration–effect relationship and IIV in the model
parameters, and (procedure 2) to investigate whether IIV in
the model parameters can be estimated by population
analysis with data obtained from study designs as used in
reported clinical research studies. To this purpose, several
simulation studies were performed. Finally, we discuss the
question whether or not IIV should be included in population
modeling of binary responses.

METHODS

We describe the procedures for a continuous drug effect
as well as for a binary drug effect. For convenience, we
consider here the situation where only one drug is adminis-
tered. Once the principle has been developed, the method
can be extended for any combination of drugs, including
combinations of hypnotic and opioid drugs (12).

Sigmoid Emax Model

If we assume that the drug effect in an individual can be
predicted from the sigmoidEmaxmodel, the drug effect P is defined:

P ¼ Cγ

C50γ þ Cγ ð1Þ

where C is the effect-site concentration, C50 is the effect-site
concentration resulting in P = 0.5, and γ is a dimensionless
model parameter, reflecting the steepness of the

concentration–effect relationship. In the case of a binary drug
effect, P reflects the probability of a drug effect at drug
concentration C.

Throughout this paper, it is assumed that the model
parameters are log-normally distributed within the popula-
tion. An example is shown in Fig. 1 (upper panel, thin lines).
As a result of IIV in C50 and γ, the concentration–effect
relationship is different for each individual.

Cumulative Log-Normal Distribution

If we assume that P in an individual can be predicted
from the cumulative log-normal distribution function, P is
defined:

P ¼ Φ zð Þ ð2Þ
where Φ(z) is the cumulative normal distribution function
(ranging from 0 for z = −∞ to 1 for z = +∞), and z is the
normalized distance to the mean; for a log-normal distribu-
tion:

z ¼ ln Cð Þ − ln C50ð Þ
σ

ð3Þ

where σ is the (dimensionless) standard deviation of the log-
normal distribution, which determines the steepness of the
concentration–effect relationship.

Fig. 1. Concentration–P relationship of 20 simulated individuals (thin
lines) using the sigmoid Emax model (upper panel) and cumulative
log-normal distribution (lower panel. Typical individual (dashed line)
and population prediction (solid line). C50 = 1 (arbitrary unit); γ = 30
(sigmoid Emax model); σ = 0.0567 (cumulative log-normal distribu-
tion); ωC50 = 0.1; ωγ = 0.1
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Anexample is shown in Fig. 1 (lower panel, thin lines). As a
result of IIV in C50 and σ, the concentration–effect relationship
is different for each individual. Note the similarity between the
profiles in both panels of Fig. 1; Fig. 2 shows that the difference
in P (ΔP) is less than 0.01 (1%) over the entire scale and is
minimal for P = 0.5 and at P = 0.115 and P = 0.885.

Comparison of Sigmoid Emax Model and Cumulative Log-
Normal Distribution

A logistic approximation of the cumulative normal distri-
bution has been described by Bowling and colleagues (8):

P ¼ 1
1 þ exp −a⋅zð Þ ð4Þ

where z is a normally distributed random variable with mean
zero and variance one, and a is a constant. The best
agreement between the cumulative log-normal distribution
(Eqs. (2) and (3)) and the logistic function (Eq. (4)) was
found for a = 1.702 (8). For our purposes, a constant value of
1.7 was found to be sufficiently accurate (and more conve-
nient in practice) and was used throughout this article.

Equating P from Eqs. (1) and (4), it follows that

C
C50

� �γ

¼ exp a⋅zð Þ ð5Þ

Combining Eqs. (1), (3), and (5), it follows for a = 1.7

γ ¼ 1:7
σ

ð6Þ

Using Eq. (6), σ (describing the steepness of the
concentration–effect relationship in the cumulative log-
normal distribution) can be converted to γ (describing the
steepness in the sigmoid Emax model), and vice versa. Note
that Eq. (6) is an approximation, since both distributions are
close to each other, but not identical. However, as shown in
Fig. 2, the difference between the two distributions is small
and likely not distinguishable when applied to clinical data.

Influence of IIV in Population Analysis

The influence of IIV in population analysis is shown in Fig.
1. Each individual (thin lines) shows a steep concentration–
effect relationship, with a different steepness due to IIV in γ
(upper panel) orσ (lower panel), whereas IIV in C50 results in a
shift along the concentration axis. The steepness of the
concentration–effect relationship of the typical individual
(dashed line) is similar to that of the individuals. However, the
population-predicted concentration–effect relationship, which
can be calculated by averaging P at each concentration value
(solid line), is less steep than that of the individual patients. This
population-predicted P represents the probability of a drug
effect at a given concentration averaged across all individuals,
which may be interpreted as the probability of a drug effect at a
given concentration for an arbitrary individual. The steepness of
the population-predicted P may be expressed by the sigmoid
Emax model (using symbol γ*, to discriminate from the model
parameter γ) or cumulative log-normal distribution (using
symbol σ*, to discriminate from the model parameter σ) and is
a function of γ (or σ) and the IIV in C50 and γ (or σ).

Procedure 1: Population Predictions for σ* and γ*

Using the similarity between the probability of drug
effect according to the sigmoid Emax model and the cumula-
tive log-normal distribution, an equation for the relationship
between γ and IIV in C50 and γ on the population-predicted
γ* was derived in a Monte Carlo simulation study.

The combined effect of γ and IIV in C50 and γ on the
population-predicted γ* cannot be derived mathematically.
However, the combined effect of σ and IIV in C50 and γ on
σ* may be evaluated from the principle that variances sum
up. According to this principle, we postulated that the
variance σ*2 may be approximated by the following
expression, summing σ2 and the variances ωC50 and ωγ

(using the symbol omega in NONMEM for inter-individual
variance) and the interaction of ωC50 and ωγ:

σ*2 ¼ p1 ⋅
σ2

γp5
þ p2 ⋅

ωC50

γp6
þ p3 ⋅

ωγ
γp7

þ p4 ⋅
ωC50 ⋅ ωγ

γp8
ð7Þ

where σ is defined by Eq. (6) and pi (i = 1 to 8) are constants,
which were estimated using the numerical procedure de-
scribed below. Note that all parameters and constants in Eq.
(7) are dimensionless.

The popu la t ion -pred i c ted s teepness o f the
concentration–effect relationship (γ*) can be obtained from
the analogue of Eq. (6)

γ* ¼ 1:7
σ*

ð8Þ

The population-predicted steepness γ* from Eq. (8) can
be used to calculate the profile of population-predicted P.

The value of γ* calculated from Eq. (8) is lower than
that of the typical individual (Fig. 1) since it takes into
account the population variability of C50 and γ.

Fig. 2. Difference (ΔP) between the profiles of P obtained with
sigmoid Emax model and P obtained with cumulative log-normal
distribution, using γ* = 5.27 calculated using Eq. (11) and σ* = 0.323
using Eq. (10), respectively. Parameter values as in Fig. 1: C50 = 1
(arbitrary unit); γ = 30 (sigmoid Emax model); σ = 0.0567 (cumulative
log-normal distribution); ωC50 = 0.1; ωγ = 0.1
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Estimation of Constants pi in Eq. (7) by Monte Carlo
Simulation

The distributions as shown in Fig. 1 cannot be used
directly for population predictions. For population predic-
tions, we need to derive the relationship between the drug
concentration and P within a (large) population of individ-
uals. This was done by estimating the constants pi in Eq. (7)
with the following Monte Carlo simulation procedure:

1. A large number of individuals (here 10,000) was
simulated, with randomly drawn values for C50 and
γ using the sigmoid Emax model. Separate sets were
generated for each combination of population values
for C50 (arbitrary unit with value 1 for each set), γ
(values 0.5, 1, 2, 3, 5, 10, 20, 30, 50), ωC50 (0, 0.05, 0.1,
0.2, 0.3, 0.5) and ωγ (0, 0.05, 0.1, 0.2, 0.3, 0.5); the total
number of generated sets was 1 × 9 × 6 × 6 = 324.

2. For each simulated individual, P was calculated over a
wide range of concentrations, using Eq. (1) (sigmoid
Emax model) or Eq. (2) (cumulative log-normal distri-
bution). The concentrations were equally spaced on a
logarithmic scale, according to the following equation:

Ci ¼ C50 ⋅ exp
i ⋅ ln 1 = p − 1ð Þ

n ⋅ γ*

� �
ð9Þ

where Ci is the ith concentration (i = − 50 to 50), C50 is the
typical C50 value (population mean), p is the lower range of
probability levels tested (here p = 0.01, implying that P for the
lowest and highest concentration is 0.01 and 0.99, respec-
tively, and γ* is defined by Eqs. (7) and (8).

3. When simulating binary data, the actual binary status
of each patient for each calculated P was simulated by
drawing a random number between 0 and 1: if P was
above this value, the drug effect was considered to be
present (assigned a value of 1); if P was below this
value, the drug effect was considered to be absent
(assigned a value of 0). However, it was confirmed by
simulations that this dichotomy step may be left out,
since it results in the same values for P over the entire
concentration range, with much better precision,
avoiding loss of information in the dichotomy step.
Therefore this step was skipped in all presented
results.

4. At each concentration point, the population-predicted
P was calculated as the sum of P for each individual
(obtained by Monte Carlo simulation in step 3),
divided by the number of individuals.

5. At each concentration point, the population-predicted
P was also calculated using Eq. (1) with the
population-predicted γ* calculated using Eqs. (7)
and (8).

6. The best-fitting values of C50 and γ* were obtained
by minimizing the sum of the squared differences
between P calculated in steps 4 and 5 over the entire
concentration range (Eq. 9), using the Solver in Excel
2019 (Microsoft, Redmond, Washington USA).

7. From the 324 combinations of γ, ωC50 and ωγ (step 1),
the best fitting values of pi (i = 1 to 8) in Eq. (7) were

obtained by minimizing the sum of the squared
differences between the logarithms of γ* obtained in
step 4 and γ* calculated from Eqs. (7) and (8), using
the Solver.

To calculate the concentration values used in the
simulations from Eq. (9), γ* must be known, so the constants
pi in Eq. (8) must be known, whereas these simulations are
intended to obtain the empirical values of pi. To solve this
chicken-and-egg problem, initial values of the constants pi
were obtained by a stepwise procedure: (1) p1 and p5 were
solved from the simulation sets with varying values of γ, and
fixed values ωC50 =ωγ = 0 and fixed values p2 = p3 = p4 = p6 =
p7 = p8 = 0; (2) p2 and p6 were solved from the simulation sets
with varying values of γ and ωC50, and fixed value ωγ = 0 and
fixed value p3 = p4 = p7 = p8 = 0; (3) p3 and p7 were solved
from the simulation sets with varying values of γ and ωγ, and
fixed value ωC50 = 0 and fixed value p4 = p8 = 0; (4) p4 and p8
were solved from the simulation sets with varying values of γ,
ωC50 and ωγ; (5) Finally, all constants pi were estimated
simultaneously from all data, until the estimated values of pi
were similar to that used in the preceding step.

Procedure 2: Simulation and population analysis using
NONMEM

To validate the relationship between γ, ωC50, ωγ and γ*
in a situation comparable to that in reported clinical studies
(9–12), a series of simulations were performed with the
sigmoid Emax model, followed by population analysis using
NONMEM version 7.3.0 (Icon Development Solutions,
Hanover, MD).

Synthetic data sets (1000 repetitions for each combina-
tion of model parameters and IIV) were generated, consisting
of 40 individuals each, drawn from the model parameters with
or without IIV in C50 and γ. The population parameters were
varied: C50 (arbitrary value 1 for each set), γ (1, 5, 30), ωC50

(0, 0.02, 0.05, 0.1, 0.2, 0.5) and ωγ (0, 0.02, 0.05, 0.1, 0.2, 0.5;
excluding combinations with ωγ unequal to 0 and ωC50, to
avoid excessive computational burden), resulting in 48 data
sets.

Four drug levels in each individual were chosen for each
combination of model parameters in such a way, that the
population-predicted values of P, calculated from Eq. (1)
using the “true” population C50 and γ* from Eq. (10) were
0.10, 0.25, 0.75, and 0.90, respectively. These four values were
chosen to cover a large part of the informative part of the
concentration–effect profile and to guarantee that the infor-
mation density was similar in each set of simulations.

At each of the four drug levels, P was calculated from the
individual C50 and γ and drug level. A random number
between 0 and 1 was generated; if P was above this value, the
drug effect was considered to be present (assigned a value of
1); if not, the drug effect was considered absent (assigned a
value of 0).

The simulated data sets were analyzed using the sigmoid
Emax model three times, with IIV in C50 and γ, IIV in C50
only, and without IIV, respectively. The resulting population
values of C50 and γ* were evaluated by comparing the
median value of 1000 replications with the “true” value of
C50 and the value of γ* calculated using Eq. (11).
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Calculations

The simulations and population analyses were performed
using NONMEM version 7.3.0. The following code was used
to control the estimation step: $ESTIMATION SIG=4
MAX=9999 METHOD=COND LAPLACE LIKELIHOOD.
For the covariance matrix, the default setting was used. Other
calculations were performed in Excel 2019 (Microsoft,
Redmond, Washington USA).

RESULTS

Procedure 1: Population Predictions for σ* and γ*

To estimate the constants pi in Eq. (7), a series of
simulations were performed using the Monte Carlo procedure
described in the methods section. For each combination of γ,
ωC50, and ωγ, the population predictions for C50 and γ were
estimated by fitting Eq. (7) to the average of 10,000 simulated
probability profiles. The estimated γ* was compared to γ*
obtained from Eq. (7). A selection of results is presented in
Table I (complete results in supplemental table S1). From
these results, the best fitting values, rounded to practical
values, were p1 = 1, p2 = 1, p3 = 1.25, p4 = 2.5, p5 = 0, p6 = 0,
p7 = 2, p8 = 1, resulting in the following equation:

σ*2 ¼ σ2 þ ωC50 þ 1:25 ⋅
ωγ
γ2

þ 2:5 ⋅
ωC50 ⋅ ωγ

γ
ð10Þ

Combining Eqs. (6), (8), and (10), results in the following
approximation for γ*:

γ* ¼ 1:7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:7
γ

� �2 þ ωC50 þ 1:25 ⋅
ωγ
γ2

þ 2:5 ⋅
ωC50 ⋅ ωγ

γ

r

ð11Þ

Note that σ* = σ and γ* = γ in the absence of IIV in C50
and γ (ωC50 = 0 and ωγ = 0). Using Eq. (11), γ* could be
predicted with a mean precision of 1.2% (root mean squared
error; range − 4.4 to + 5.2%) for any of the tested combina-
tions of γ, ωC50 and ωγ.

Figure 3 shows an example of the relationship between
γ* and ωC50 obtained by Monte Carlo simulation (open
symbols), and the model prediction using Eq. (11) (solid
lines), for γ = 1, 5 and 30 and ωγ = 0. In contrast to ωC50, the
influence of ωγ on γ* is rather small; as shown in Fig. 4, γ* is
hardly affected by ωγ. Interestingly, the influence of ωC50 and
ωγ is rather small and comparable for γ = 1, but for γ = 30, the
effect of ωC50 on γ* (and σ*) is much larger than that of ωγ.
This differential effect is well predicted by Eqs. (10) and (11).

To confirm the validity of Eqs. (10) and (11), the
simulated data sets were analyzed also using the cumulative
log-normal distribution function (Eqs. (2) and (3)) instead of
the sigmoid Emax model. As shown in Table I (complete

results in supplemental table S1), the estimated values of σ
were close to the values σ* calculated using Eq. (10), also
with a mean precision of 1.2% (range − 4.7 to 4.5%).

Using Eqs. (11) and (10), the example in Figs. 1 and 2
(γ = 30, σ = 0.0567, ωC50 = 0.1, ωγ = 0.1) results in γ* = 5.27
and σ* = 0.323, respectively.

Procedure 2: Simulation and Population Analysis Using
NONMEM

Estimation of IIV in C50 and γ

To investigate whether the parameters C50 and γ as well
as their IIV (ωC50 and ωγ) could be estimated from clinical
study data with acceptable precision, a series of simulations
was performed using NONMEM. Each simulation consisted
of 1000 runs with 40 individuals each, and 4 binary
observations in each individual (see methods section for
details). The results have been summarized in Table II
(complete results in supplemental table S2).

In all simulations, median C50 was very close to the true
value for each tested value of γ (1, 5, 30), but 95% confidence
intervals of C50 were rather wide for low values of γ. Median
γ was overestimated by about 6%. For γ = 30 and IIV in C50
during simulation, γ became very high, resulting in a “near
boundary” message in NONMEM. Minimization was suc-
cessful in most runs, but often the covariance step was not
performed, in most cases due to a “near boundary”
occurrence.

When IIV was absent during simulation, the estimate of
the corresponding variance became very low, resulting in a
“near boundary” message in NONMEM, indicating the
absence of variance in the corresponding parameter. In most
cases where IIV was present during simulation, the corre-
sponding variance could be estimated, but the estimated
values were far from the variance used in the simulations.
Therefore it can be concluded that the tested study design (40
individuals with 4 binary observations in each individual) is
not suited to estimate IIV in C50 and γ with reasonable
precision.

Estimation of IIV in C50

A similar series of simulations were performed assuming
that IIV in γ was absent during simulation and estimation.
The results have been summarized in Table III (complete
results in supplemental table S3). Comparing the results of
Tables II and III, it can be concluded that the influence of IIV
in γ is small compared to that of IIV in C50. However, for γ =
5 and ωγ = 0.5, the estimated value for γ (18.8) is far from its
true value (supplemental table S3). In addition, accuracy of
estimates of ωC50 is poor. For example, for γ = 30 and ωC50 =
0.1 during simulation, the estimated ωC50 = 0.413 (Table III).

Estimation without IIV

In Table IV the results of estimation without IIV (naive
pooling approach) are shown (complete results in
supplemental table S4). Minimization and covariance step
were successful in almost all runs, irrespective of the values of
γ, ωC50, and ωγ.
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In the absence of IIV in C50, the results are broadly
comparable to that in Table II, but the bias in γ is smaller
(about 2% versus 6% in Table II) and confidence intervals of
γ are narrower. As expected from the results in Table I,
median γ decreases with increasing ωC50 and, to a much
lesser degree, ωγ, and is close to γ* calculated using Eq. (11),
with a mean precision of 1.9% (root mean squared error;
range − 6.2 to + 2.0%) for any of the 48 tested combinations
of γ, ωC50, and ωγ.

Influence of Number of Individuals and Number of
Observations per Individual

Another set of simulations was performed to investigate
whether the number of individuals or the number of binary
observations in each individual may affect the relationship
described in Eqs. (10) and (11). For convenience, ωC50 was
fixed to 0.1 and ωγ = 0 during simulation and IIV was
assumed to be absent during estimation (naive pooling).

The results have been summarized in supplemental table
S5. The median estimates of γ (0.98 to 1.01 for γ = 1; 3.60 to
3.67 for γ = 5; 5.25 to 5.41 for γ = 30) were close to the values
γ* calculated from Eq. (11), which were 0.983, 3.66 and 5.29
for γ = 1, 5, and 30, respectively (Table I), irrespective of the
number of individuals and the number of binary observations
in each individual.

Simulations with Continuous Data

Finally, a set of simulations was performed to confirm
that Eqs. (10) and (11) are valid for continuous data as well.
Data sets were generated similar to that in Tables II, III, and
IV, without the dichotomy step. Instead, random data error
with mean zero and standard deviation (SD) 0.1 (correspond-
ing to 10% of the full scale from 0 to 1) was added to the
simulated values. IIV was assumed to be absent during
estimation (naive pooling).

Table I. Comparison of γ and σ estimated by fitting to the sum of 10,000 simulated probability profiles of the sigmoid Emax model (γmc) and
cumulative log-normal distribution (σmc) and calculated from Eqs. (11) (γ*) and (10) (σ*), respectively (complete results in supplemental table

S1)

Simulation Estimation Calculated from Eq. (11) Estimation cumulative
log-normal distribution

Calculated from Eq. (10)

Sigmoid Emax model Sigmoid Emax model

γ ωC50 ωγ γmc γ* %diffa σmc σ* %diffa

1 0 0 1.000 1.000 0.0 1.698 1.700 0.1
1 0 0.1 0.977 0.979 0.2 1.737 1.736 −0.1
1 0.1 0 0.981 0.983 0.2 1.730 1.729 −0.1
1 0.1 0.1 0.953 0.959 0.7 1.782 1.772 −0.6
5 0 0 5.00 5.00 0.0 0.340 0.340 0.1
5 0 0.1 4.91 4.90 −0.2 0.346 0.347 0.3
5 0.1 0 3.61 3.66 1.4 0.470 0.464 −1.3
5 0.1 0.1 3.49 3.58 2.5 0.486 0.475 −2.3
30 0 0 30.0 30.0 0.0 0.0566 0.0567 0.1
30 0 0.1 29.5 29.4 −0.5 0.0575 0.0579 0.6
30 0.1 0 5.29 5.29 0.0 0.321 0.321 0.1
30 0.1 0.1 5.24 5.27 0.4 0.324 0.323 −0.3

a% difference between γ* and γmc or between σ* and σmc

Fig. 3. Relationship between γ* and ωC50 obtained by Monte Carlo
simulation (open symbols), and the model prediction using Eq. (11)
(solid lines), for γ = 1 (lower line and symbols), 5 and 30 (upper line
and symbols) and ωγ = 0

Fig. 4. Relationship between γ* and ωγ obtained by Monte Carlo
simulation (open symbols), and the model prediction using Eq. (11)
(solid lines), for γ = 1 (lower line and symbols), 5 and 30 (upper line
and symbols) and ωC50 = 0
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The results have been summarized in supplemental table
S6. The median estimates of γ were close to the values γ*
calculated from Eq. (11) (Table I), with a mean precision of
2.5% (root mean squared error; range − 7.6 to + 2.3%) for
any of the 48 tested combinations of γ, ωC50 and ωγ. This
demonstrates that Eqs. (10) and (11) are valid for continuous
data as well as for binary data.

DISCUSSION

The first aim was to describe quantitatively the relationship
between the steepness of the concentration–effect relationship
and IIV in themodel parameters. To this purpose, we derived an
empirical equation using the principle that variances sum up.
According to this principle, we postulated that the variance σ*2

may be approximated by Eq. (7), summing σ2 and the variances
ωC50 andωγ and the interaction ofωC50 andωγ. Using a series of
Monte Carlo simulations (procedure 1), the constants pi in Eq.

Table II. Median (95% Confidence Interval) of 1000 Runs Estimating Parameters C50 and γ and Their IIV (ωC50 and ωγ). Binary Data (40
Individuals with 4 Observations in Each Individual) were Obtained from Simulations with Varying Population Values of γ, ωC50 and ωγ

(Complete Results in supplemental table S2)

Simulation Estimation

γ ωC50 ωγ C50 95% CIa γ 95% CIa ωC50 ωγ #minimb #covarc

1 0 0 1.00 0.66–1.61 1.06 0.78–1.72 0d 0d 958 140
1 0 0.1 1.00 0.66–1.57 1.05 0.75–2.40 0d 0.069 930 145
1 0.1 0 1.00 0.66–1.58 1.05 0.77–2.52 0.059 0d 962 163
1 0.1 0.1 1.00 0.64–1.53 1.03 0.75–2.80 0d 0.051 939 161
5 0 0 1.00 0.91–1.09 5.38 3.97–10.6 0d 0d 985 145
5 0 0.1 1.00 0.92–1.09 5.27 3.77–13.6 0d 0.069 970 136
5 0.1 0 1.00 0.88–1.14 5.41 3.68–47.0 0.092 0d 904 206
5 0.1 0.1 1.00 0.87–1.14 5.16 3.39–46.9 0.079 0.017 922 278
30 0 0 1.00 0.99–1.01 32.0 23.2–49.8e 0d 0d 957 118
30 0 0.1 1.00 0.98–1.01 32.0 22.9–49.8e 0d 0.063 925 131
30 0.1 0 1.00 0.99–1.01 49.8d e 0.416 0d 747 0
30 0.1 0.1 1.00 0.99–1.01 49.8d e 0.425 0d 772 0

a 95% confidence interval
bNumber of runs with successful minimization (out of 1000 runs for each simulation)
cNumber of runs with successful covariance step (out of 1000 runs for each simulation)
dValue near lower boundary
eValue near upper boundary

Table III. Median (95% Confidence Interval) of 1000 Runs Estimating Parameters C50 and γ and IIV in C50 (ωC50). IIV in γ Was Assumed to
Be Absent During Estimation (ωγ = 0). Binary Data (40 Individuals with 4 Observations in each Individual) Were Obtained from Simulations

with Varying Population Values of γ, ωC50, and ωγ (Complete Results in supplemental table S3)

Simulation Estimation

γ ωC50 ωγ C50 95% CIa γ 95% CIa ωC50 ωγ #minimb #covarc

1 0 0 1.00 0.67–1.57 1.05 0.78–1.47 0d 0e 1000 462
1 0 0.1 1.00 0.66–1.51 1.02 0.75–1.49 0d 0e 1000 380
1 0.1 0 1.00 0.66–1.58 1.04 0.77–1.50 0.098 0e 1000 563
1 0.1 0.1 1.00 0.66–1.51 1.01 0.75–1.47 0d 0e 998 475
5 0 0 1.00 0.91–1.09 5.32 3.98–7.56 0d 0e 999 476
5 0 0.1 1.00 0.92–1.09 5.16 3.77–7.34 0d 0e 1000 375
5 0.1 0 1.00 0.88–1.15 5.19 3.64–31.2 0.096 0e 977 970
5 0.1 0.1 1.00 0.87–1.15 4.79 3.31–30.9 0.089 0e 986 962
30 0 0 1.00 0.99–1.01 31.6 23.2–45.0 0d 0e 1000 425
30 0 0.1 1.00 0.99–1.01 30.8 23.1–46.0f 0d 0e 1000 406
30 0.1 0 1.00 0.99–1.01 49.8f 0.413 0e 947 17
30 0.1 0.1 1.00 0.99–1.01 49.8f 45.9–49.8f 0.418 0e 935 58

a 95% confidence interval
bNumber of runs with successful minimization (out of 1000 runs for each simulation)
cNumber of runs with successful covariance step (out of 1000 runs for each simulation)
dValue near lower boundary
e Fixed value
fValue near upper boundary
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(7) were estimated, resulting in Eqs. (10) and (11), describing
the combined effect of γ and IIV in C50 and γ on the population
estimates σ* and γ*, respectively.

Note that Eq. (11) was derived using Eqs. (6) to (8), which
are based on the similarity of the sigmoid Emax model and the
cumulative log-normal distribution. The difference between
both distributions, depicted in Figs. 1 and 2, is less than 0.01
(1%) over the entire scale and likely not distinguishable when
applied to clinical data. Both distributions can be interconverted
using Eq. (6). Note that Eq. (6) is an approximation, since the
distributions are not identical. The close resemblance of both
functions implies that both functions can be chosen in popula-
tion analysis, without a clear preference.

The second aim was to investigate whether IIV in the
model parameters can be estimated by population modeling
with data obtained from study designs as used in reported
clinical research studies (9–12). From our simulations (proce-
dure 2) it can be concluded that the tested study design (40
individuals with 4 binary observations in each individual) is
not suited to estimate IIV in both C50 and γ with reasonable
precision. Assuming that IIV in γ is absent during estimation
results in slightly more precise estimates of C50, γ, and IIV in
C50. Using a naive pooling procedure, i.e., assuming absence
of IIV in all parameters during estimation, results in more
precise estimates. In the case that IIV is present during
simulation, the estimated population estimates γ* are signif-
icantly lower than the value of γ used for simulation.

The effect of model parameters and their IIVon parameter
estimates has been described in a few Monte Carlo simulation
studies and with binary data (3, 13) and continuous data (14, 15).
Lu and colleagues investigated the reliability of pharmacody-
namic analysis by logistic regression. Some of their findings were
confirmed in our study, e.g., the good accuracy of the estimates of
C50 and the minor impact of inclusion or exclusion of IIV in γ
(13). They stated that, when data frommultiple patients is naively

pooled, the estimates of γ may be biased, and the 95%
confidence intervals may not contain the true value. The authors
stated in the legend to their figure 9: “A possible explanation of
how the estimate of steepness of the concentration-effect relation
(γ) may be biased when data frommultiple patients is pooled for
analysis. In this example, single data points are taken from each
of nine different patients, each of whom have a steep
concentration-effect relation but different values of drug concen-
tration associated with a 50% probability of drug effect (C50)
The resultant pooled concentration-effect curve appears flat (i.e.,
the apparent value of γ is lower than the true value.” and in the
conclusion they stated: “When we simulated pooled data from
multiple patients (with log-normal distributions for C50 and γ),
there was a larger bias in γ estimates (up to 30%), even when n
was large and %CI was significantly smaller” (3). The results of
Lu and colleagues are supported by the findings in the present
paper. However, we believe that the qualification “bias” should
not be used here. Instead of stating that the estimate of γ is biased
when obtained from a pooled analysis, we propose to state that
the steepness is reflected in the population estimate obtained
from a pooled analysis, denoted γ* in our paper. This parameter
γ* is not the steepness of the concentration–effect relationship in
an individual. Instead, it describes the population-predicted value
of P as a function of the concentration, and therefore it predicts
the probability of drug effect in an arbitrary individual, which can
be used in pharmacokinetic-pharmacodynamic information dis-
plays that allow bedside prediction of the probability of response
to standardized stimulus, such as the commercially available
SmartPilot® View (Draeger, Germany) and Navigator Applica-
tions Suite (GE Healthcare, USA). In contrast, estimating γ as
well as IIV in C50 and γ provides a value of γ that is not directly
suited for predicting drug effect in an arbitrary individual,
since it does not take into account the inter-individual
variability in C50 and γ. For this reason we used a naive
pooling approach in the development of a triple

Table IV. Median (95% Confidence Interval) of 1000 Runs Estimating Parameters C50 and γ, Assuming Absence of IIV in C50 and γ (ωC50 =
0 and ωγ = 0, Corresponding to a Naive Pooling Approach) During Estimation Step. Binary Data (40 Individuals with 4 Observations in Each
Individual) Were Obtained from Simulations with Varying Population Values of γ, ωC50 and ωγ. γ* Is Calculated from Eq. (11) (Complete

Results in supplemental table S4)

Simulation Estimation

γ ωC50 ωγ C50 95% CIa γ 95% CIa γ* %diffb #minimc #covard

1 0 0 1.00 0.67–1.57 1.01 0.77–1.34 1.00 − 1.0 1000 1000
1 0 0.1 1.00 0.66–1.52 1.00 0.74–1.32 0.98 − 2.1 1000 1000
1 0.1 0 1.00 0.66–1.58 0.99 0.74–1.29 0.98 − 0.4 1000 1000
1 0.1 0.1 1.00 0.66–1.53 0.98 0.74–1.30 0.96 − 2.1 1000 1000
5 0 0 1.00 0.91–1.09 5.11 3.79–6.69 5.00 − 2.2 1000 1000
5 0 0.1 1.00 0.92–1.10 5.00 3.71–6.56 4.90 − 2.3 1000 1000
5 0.1 0 1.00 0.87–1.16 3.67 2.79–4.69 3.66 − 0.2 1000 1000
5 0.1 0.1 1.00 0.87–1.15 3.58 2.71–4.80 3.58 0.0 1000 1000
30 0 0 1.00 0.99–1.02 30.6 23.1–40.1 30.0 − 2.0 998 998
30 0 0.1 1.00 0.99–1.01 30.0 22.3–39.7 29.4 − 2.1 1000 1000
30 0.1 0 1.00 0.89–1.12 5.32 3.98–7.15 5.29 − 0.4 1000 1000
30 0.1 0 1.00 0.89–1.12 5.31 3.97–7.31 5.27 − 0.8 1000 1000

a 95% confidence interval
b% difference between γ* and median estimated γ
cNumber of runs with successful minimization (out of 1000 runs for each simulation)
dNumber of runs with successful covariance step (out of 1000 runs for each simulation)
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interaction model to estimate the potency of a combina-
tion of sevoflurane, propofol, and remifentanil (12).

Our simulations show that it does not seem easy to
design and perform a study to estimate C50 and γ as well as
their IIV. In the data of the investigated studies (9–11) we
found several occasions where patients were responding to a
stimulus after showing tolerance to that stimulus at a lower
drug level, suggesting that γ is not very high; if γ is very high,
such observation would be very unlikely. On the other hand,
such observations may be a result of the preceding stimuli,
and thus a methodological shortcoming of the study design. In
addition, it remains to be determined whether γ is essentially
identical for each patient, or that it includes significant IIV.
Besides, it may be noted that the value of γ cannot be
determined precisely in all cases, since its value becomes very
high during the population analysis with IIV, as shown in
clinical studies (9, 12) as well as in the simulations in the
current paper. A full analysis of optimal study design is out of
the scope of the present paper. More information on sample
size calculations can be found in Ogungbenro and Aarons
(16) and a practical example can be found in the supplemen-
tal digital content to Weerink et al. (17, 18).

In our simulations, we included 4 observations per
individual. It is obvious that the location of the 4 observations
per individual is important. It would have been possible to select
an optimal design for each set of simulations. This would imply
an extremely heavy burden on computer time and would
require the implementation of an efficient procedure for optimal
design. Instead, we choose a fixed design of 4 observations per
individual, chosen in such a way that the “true” probability of
drug effect P is 0.1, 0.25, 0.75, and 0.9 for each set of simulations.

In conclusion: An empirical equation (Eq. (11)) was
derived describing the steepness of the population-predicted
concentration–effect profile (γ*) as a function of γ and the
IIV in C50 and γ and was validated for both binary and
continuous data. The tested study design (40 individuals with
4 binary observations in each individual) is not suited to
estimate the IIV in C50 and γ with reasonable precision.
Using a naive pooling procedure, the population estimates γ*
are significantly lower than the value of γ used for simulation.
The steepness of the population-predicted concentration–
effect relationship (γ*) is less than that of the individuals (γ).
Using γ*, the population-predicted drug effect represents the
drug effect, for binary data the probability of a drug effect, at
a given concentration for an arbitrary individual. Therefore
using γ* is better suited to clinical tools, e.g., in anesthesia.
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