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Abstract. Three global sensitivity analysis (GSA) methods (Morris, Sobol and extended
Sobol) are applied to a minimal physiologically based PK (mPBPK) model using three model
drugs given orally, namely quinidine, alprazolam, and midazolam. We investigated how
correlations among input parameters affect the determination of the key parameters
influencing pharmacokinetic (PK) properties of general interest, i.e., the maximal plasma
concentration (Cmax) time at which Cmax is reached (Tmax), and area under plasma
concentration (AUC). The influential parameters determined by the Morris and Sobol
methods (suitable for independent model parameters) were compared to those determined
by the extended Sobol method (which considers model parameter correlations). For the three
drugs investigated, the Morris method was as informative as the Sobol method. The extended
Sobol method identified different sets of influential parameters to Morris and Sobol. These
methods overestimated the influence of volume of distribution at steady state (Vss) on
AUC24h for quinidine and alprazolam. They also underestimated the effect of volume of
liver (Vliver) for all three drugs, the impact of enzyme intrinsic clearance of CYP2C9 and
CYP2E1 for quinidine, and that of UGT1A4 abundance for midazolam. Our investigation
showed that the interpretation of GSA results is not straightforward. Dismissing existing
model parameter correlations, GSA methods such as Morris and Sobol can lead to biased
determination of the key parameters for the selected outputs of interest. Decisions regarding
parameters’ influence (or otherwise) should be made in light of available knowledge
including the model assumptions, GSA method limitations, and inter-correlations between
model parameters, particularly in complex models.

KEY WORDS: Global sensitivity analysis; Morris method; Sobol method; extended Sobol method;
physiologically based pharmacokinetic (PBPK) modelling.

INTRODUCTION

Sensitivity analysis, in its broad sense, has been widely
used to identify and rank the most influential model
parameters affecting the model outputs. Many factors deter-
mine the sensitivity of a model’s outputs to its parameters.
Those are most notably: the number of input parameters,
uncertainty, correlation, and interactions between them, and
the non-linearity or non-monotonicity of the model (1).
Correlation between two parameters means that the values
of one parameter relate in some way to the values of the

other, i.e., values of one parameter generally co-occur with
certain values of the other. That implies that, for a given value
of parameter A (correlated to parameter B) parameter B has
a certain distribution, which in turn results in a given
distribution of outcome C. If the value of A changes, so does
the distributions of B, and the distribution of C. For example,
Darwich et al. found that extremely high values of CYP3A
intrinsic clearance can never occur simultaneously with high
values of Michaelis-Menten constant (Km) of CYP3A and
similarly no low values of CYP3A intrinsic clearance happens
at the same time as having low Km (2).

There are two types of sensitivity analyses: local analysis
(LSA) and global analysis (GSA). Generally, local sensitivity
analysis is based on model parameters set at baseline values
with consideration of only minor perturbations to these
baseline values within a specified range. LSA evaluates the
model parameters’ impact on a specified output by altering
one parameter at a time or a few simultaneously. It commonly
does not consider parameters having a specific distribution
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and does not investigate the impact of parameters correla-
tions on model outputs. GSA samples all parameters over an
entire measurable parameter space (where the measure is a
joint statistical distribution it can account for possible
correlations), evaluating simultaneously the relative contri-
butions of all model parameters and their potential interac-
tions to a set of specified model outputs variance. Therefore,
GSA is able to rank the importance of the model parameters
while considering their uncertainty and correlations (3).

Various GSA methods have been proposed to support
model design and parameter selection in the fields of
engineering, biology, and clinical studies (4–16) some are
listed here:

– Screening for elementary effects (Morris
method) (7,17,18)

– Variance-based methods, such as Sobol’s
method, Fourier amplitude sensitivity test (FAST), and
extended FAST (eFAST) (7,11,17–19)

– Partial rank correlation coefficients method
(PRCC) (11)

– Regional sensitivity analysis (RSA) (20,21)
– Dynamic identifiability analysis (DYNIA) (22)
– Density-based sensitivity analysis (PAWN) (21)
– Factors’ mapping and meta-modelling (17–19)

GSA methods can be further classified into two main
categories: Restricted methods that assume independent
input parameters, and methods that allow sampled parame-
ters to be correlated. Most popular and commonly used GSA
methods, e.g., Morris, PRCC, eFAST, and Sobol, assume the
input parameters are non-correlated. These GSA methods
provide information about the model structure or under-
standing the physiological mechanisms of biological re-
sponses. However, unrealistic parameter combinations,
which bias sensitivity analysis, can be generated using random
sampling with assumption of independent parameters. Fur-
thermore, the validity of the sensitivity metrics or indices used
by those methods depend on the assumption of non-
correlated input parameters. If that assumption is not
fulfilled, parameters determined as ‘influential’ may not be
truly so. Fortunately, GSA methods accounting for correlated
input parameters have recently been developed such as
another extension of FAST (23,24), an extended high-
dimensional model representation (HDMR) (3), or extended
Sobol (9,25). Due to the complexity of these methods, they
have had limited applications (26). A review of GSA
algorithms is given in Supplemental Material. The main
features of GSA algorithms assuming independent input
parameters, and those accounting for correlation among
parameters, are summarised in Table S1-2 and in the
supplemental material, respectively.

In this work, we applied three GSA methods to a
minimal physiologically based PK (mPBPK) model, in order
to identify the most influential model parameters affecting
three PK properties of three drugs dosed orally (quinidine,
alprazolam, and midazolam). The three GSA methods were
Morris screening, Sobol, and extended Sobol. The three PK
properties studied were Cmax, the maximum plasma concen-
tration, Tmax, the time at which Cmax happens, and AUC, the
area under the plasma concentration of the drugs. Quinidine
and midazolam are Biopharmaceutical Classification System

(BCS) class I, and alprazolam is a BCS class II drug. The
model parameters identified as ‘important’ by the Morris and
Sobol methods were compared to those determined by the
extended Sobol method. This allowed us to assess the effect
of ignoring parameters correlations when searching for
influential parameters.

METHODS AND MATERIALS

Morris Screening Method

Morris screening is simple to implement and does not
require extensive computations. Implementation of Morris
method is available in the supplemental material. Two metrics
will be available from Morris method to assist parameter
ranking, i.e, mean μ or μ* and standard deviation σ. A high μ
or μ* indicates a parameter with an important overall
influence on the model outputs; a high σ indicates either a
parameter interacting with other factors or that its effect is
non-linear. The magnitudes of μ and σ for each model
parameter are relative to the others (12). Although they are
not that informative, they still show some information about
rate of changes.

Sobol Method

The Sobol method is a variance-based type GSA
method, which decompose the variance of the model outputs
into sums of variances for combinations of input parameters
of increasing dimensionality (27). Details of the derivation of
Sobol sensitivity indices are explained in (28–32). Although
there is no assumption about the relationship between the
model inputs and outputs in variance-based GSA methods,
they do assume that the input parameters are independent.
Generally, when using Sobol, three sensitivity indices are
calculated to determine the importance of input parameters:

– A first-order ‘main effect’ sensitivity index
evaluating only the main influence of each parameter without
considering the interaction with others

– A ‘total effect’ sensitivity index to assess the
impact of each parameter including all possible interactions
with others

– An ‘interaction’ index, which is the difference
between total effect and main effect, representing only the
contribution of parameters interactions

Extended Sobol Method

The GSA method proposed by Kucherenko et al. (9) can
consider models where the input parameters are correlated.
The main (first-order) and total effect sensitivity indices,
analogous to standard Sobol indices, are calculated using a
copula-based method. Details of extended Sobol method can
be found in (9). A brief description is also available in the
Supplemental Material.

Sensitivity Metrics to Detect Influential Parameters

For Morris screening, a global index (GI) (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2 þ σ22

p
)

was adopted to rank parameters (33). For the Sobol method,
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two sensitivity indices will be used for comparison, i.e., the
first-order sensitivity index (Si) and the total sensitivity index
(STi). Due to the difference between Sobol and extended
Sobol in the presence of correlations of input parameters, the
first-order sensitivity index (Si,ext) of estimated parameters
using extended Sobol can be higher than the corresponding
total effect sensitivity index (STi,ext) and can be bigger than 1,
which mainly quantifies the partial variance contributed by
uncorrelated variations (9). However, both indices can be
used for ranking of the parameters.

For Sobol and the extended Sobol, only parameters with
either first-order or total effect sensitivity index > 0.01 were
considered as influential parameters and ranked, i.e., only
parameters contribute > 1% to the total variance of outputs.
Parameters with sensitivity index > 0.1, i.e., 10%, were
considered as key parameters with significant impact on the
model outputs. For Morris screening, input parameters were
only ranked based on the GI metric, a relative comparison
index, which does not tell what fraction of the total variance
explained by the input parameters.

The performance of the Morris method depends on
the number l of levels for each variable and on the

number r of samples generated. Choices of l 0 4 and r 0 10
produce reasonable results (34). In this work, values of l 0
10 and r 0 1500 were adopted for a robust estimation. For
Sobol, the number of random samples N higher than 1000
is recommended for a good estimation of the first-order
and total effect Sobol indices (7). In this work, N 0 8000
was used for the Sobol and the extended Sobol methods.
Finally, 10 repetitions of Sobol and extended Sobol were
performed to evaluate the variance of the calculated
sensitivity indices. Thus, the total number of model
evaluations was 80,000 using either Sobol or extended
Sobol methods. Although, more samples or levels would
potentially give more robust results, they would have
required much more computational resource and calcula-
tion time.

Minimal PBPK Model

A minimal PBPK model was used to simulate the PK
properties of interest for orally administrated alprazolam,
quinidine, and midazolam (see Fig. 1). Briefly, the mPBPK
model equations are as follows (35):

dCsys

dt
¼ 1

Vsys
QHA þQpv

� � Cliver

Kpliver=BP
− QHA þQpv

� �
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Vss ¼
KpliverV liver þ VsysBP−VsacBW
� �

BW
ð5Þ

CLuintH ¼ ΣM
i¼1CLintCYP;i þΣN

i¼1CLintUGT;i ð6Þ

where Cliver is the drug concentration in liver; Cpv is the
blood drug concentration in portal vein; Csys is the systemic
blood concentration; Csac is the drug concentration in the
single adjusting compartment (SAC); QHA and Qpv are the
arterial and portal vein blood flow rates to the liver
respectively; Vliver, Vpv, Vsys, and Vsac represent volume of
liver, portal vein, systemic compartment, and SAC (per kg
of body weight) respectively; Kin and Kout are mass
transfer rate constants in and out of SAC; fa is the fraction
of drug absorbed into enterocytes; ka is the absorption rate
constant; Fg is the fraction of drug escaping gut wall
metabolism; Kpliver is the ratio of drug concentration in the
liver to the plasma concentration (drug tissue partition
coefficient in liver); BW is the body weight; BP is the
blood to plasma ratio; Vss is the volume of distribution at
steady state (per kg of body weight); CLu,inH is the
unbound hepatic intrinsic clearance; CLint, CYP and CLint,

UGT stand for drug intrinsic clearance contributed by CYP
and UGT enzymes respectively; and CLR is the renal
clearance with respect to plasma. SAC was only used for
modelling midazolam. M and N represent the number of
contributing CYPs and UGTs for each drug metabolic
clearance respectively.

Enzyme kinetics for each of the drugs were modelled in
the mPBPK on the basis of their assigned elimination
pathways in the Simcyp simulator (35). For quinidine three
enzymes contribute to the hepatic intrinsic clearance CLuintH

0 CLint, CYP2E1 + CLint, CYP2C9 + CLint, CYP3A4. For
alprazolam, two enzymes contribute to the hepatic intrinsic
clearance CLuintH 0 CLint, CYP3A4 + CLint, CYP3A5. For
midazolam, three enzymes contribute and CLuintH 0 CLint,
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CYP3A4 + CLint, CYP3A5 + CLint, UGT1A4. In all cases, enzyme
kinetics followed the Michaelis-Menten equation:

CLint;enz ¼ Aenz �Vm;enz= Km;enz þ Cu;liver
� � ð7Þ

Here, Aenz is the abundance of enzyme (total pmol P450
or pmol UGT), Vm is the drug maximum metabolite
formation rate constant (pmol/min/pmol of isoform for CYPs
or UGT), Km is Michaelis-Menten constant (μM), Cu,liver is
the unbound drug concentration in liver (μM).

Parameter Distributions and Ranges

The range of each model parameter is required by all
three GSA methods, and distributions should also be
specified for the Sobol and ext-Sobol methods. Furthermore,
a parameter correlation matrix is required by the extended
Sobol method (in the absence of any correlation this
method’s results are similar to those of the Sobol method).
In our case study, distribution and ranges of parameters were
obtained from population simulations of quinidine, alprazo-
lam, and midazolam pharmacokinetics, using the Simcyp
simulator V16 default settings. Samples of parameters for
2000 healthy adult North European Caucasians (20–50 years
old and 50% female) were generated and a normal,
lognormal, or Weibull distribution was fitted to the generated
data, for each parameter. The best-fitted distribution, on the
basis of the lowest Akaike information criterion, was selected.
As no variability for the volume of portal venous blood (Vpv)
and renal clearance (CLR) were initially considered a normal
distribution with 10% coefficient of variation (CV) were
assumed for each of these parameters. The same lower and
upper limits of each parameter were set the same as the
values used in the Simcyp simulator. The parameter

distributions and ranges used for GSA are summarised in
Tables I, II, and III for each drug, respectively.

Many of anatomical and physiological parameters, such as
age, sex, body weight, volume of organ, enzyme abundance, and
renal function, are inter-correlated. Prior knowledge on these
correlations can be obtained through mechanistic understand-
ing, in vitro or in vivo studies. They may be generated by
obvious physiological processes or can be hidden in observed
data in which case further investigations are needed to reveal
such relationships. To simulate correlated parameter values, we
used standard multivariate normal sampling, with a correlation
matrix capturing the strength of the underlying links. That
correlation matrix was estimated directly from the data set
generated using the Simcyp simulator, which accounts for many
known correlations among anatomical and physiological pa-
rameters. The correlation matrix, as a prior estimate of
correlations among input parameters, was further adjusted by
setting non-significant (p > 0.05) and very week (r < 0.1) corre-
lation coefficients to zero.

RESULTS

Evaluation of the Implementation of GSA Methods

The GSA methods and the mPBPK model were both
coded in Matlab 2016b. The correctness of the Matlab
implementations of these three GSA methods was validated
using four test functions comparing the calculated sensitivity
indices with the corresponding analytical solutions or pub-
lished results. For the Sobol method, sensitivity indices were
cross-checked using two test functions, i.e., the non-linear and
non-monotonic Ishigami-Homma function and the g-function
(Figure S1-3 in Supplemental material). The performance of
the Morris method was also evaluated comparing the
determined parameters importance with ranking of the
analytical solutions (Figure S1-3 in Supplemental material).

Fig. 1. Illustration of the structure of an mPBPK model, please see the text for description
of the parameters
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For the extended Sobol method, the calculated sensitivity
indices were compared against the analytical solutions of a
linear function and the published sensitivity indices of
Ishigami-Homma function by Kucherenko et al. (9)
(Figure S4-5 in Supplemental material). Results are
summarised in the Supplemental material, and show good
agreement between the calculated sensitivity indices, the
analytical solutions, and the published results.

Quinidine

In the mPBPK model of quinidine, inter-enzymes
correlations was considered as well as the correlations
between system parameters and enzyme intrinsic clearance

(Fig. 2), the extended Sobol sensitivity indices (Table S3 in
the supplement material, Fig. 3) suggest that:

1) fa, CLint,CYP3A4, QHA, BW, and Vliver, are the most
important parameters affecting Cmax. CLint,CYP2C9,
CLint,CYP2E1, Qpv, Vss, Fg, and BP also have influence
on Cmax.

2) ka, CLint,CYP3A4, and Vliver are the key influential
parameters affecting Tmax. Second tier influential param-
eters, such as BW, CLint,CYP2C9, CLint,CYP2E1,Qpv,Vss, Fg,
and BP, can also result in notable changes of Tmax.

3) CLint,CYP3A4, fa, Vliver, and CLint,CYP2C9 have signifi-
cant impact on AUC24h and AUC48h. Meanwhile,
CLint,CYP2E1, QHA, BW, Qpv, ka, and Fg also contrib-
ute to up to 10% variation of AUC each.

Table I. The parameter values and distribution for quinidine

Parameters Abbreviation Unit Values/distribution Min Max

Dose Mg 200
Fraction of absorption fa n/a Weibull (8.86, 0.94) 1e-6 1
Absorption rate ka 1/h Lognorm (1.05, 0.09) 1e-6 10
Gut availability Fg n/a Weibull (46.3, 0.96) 1e-6 1
Blood to plasma concentration ratio BP n/a Norm (0.89, 9.64e-5) 0.55 100
Fraction of unbound drug in plasma fu n/a Lognorm (− 1.61, 7e-3) 1e-6 1
Liver tissue to plasma partition coefficient Kpliver n/a Norm (4.37, 3.95e-2) 1e-6 10
Hepatic CYP2E1 intrinsic clearance CLint,CYP2E1 L/h Lognorm (0.47, 4.23e-1) 1e-6 100
Hepatic CYP2C9 intrinsic clearance CLint,CYP2C9 L/h Lognorm (0.18, 4.27e-1) 1e-6 100
Hepatic CYP3A4 intrinsic clearance CLint,CYP3A4 L/h Lognorm (4.35, 2.59e-1) 1e-6 1000
Hepatic arterial blood flow QHA L/h Lognorm (3.05, 1.44e-2) 1e-6 50
Portal vein blood flow QPV L/h Lognorm (4.19, 1.05e-2) 1e-6 150
Body weight BW Kg Lognorm (4.30, 3.8e-2) 30 200
Volume of portal vein *Vpv L Norm (0.008, 6.4e-7) 1e-6 0.15
Volume of liver Vliver L Lognorm (0.39, 2.97e-2) 0.1 5
Distribution volume in plasma Vss L/kg Lognorm (0.63, 2.83e-2) 1e-6 5
Renal clearance with respect to plasma *CLR L/h Norm (1.95, 3.8e-2) 1e-6 5

*Parameter was assumed to be normally distributed with 10% CV

Table II. The parameter values and distributions for alprazolam

Parameters Abbreviation Unit Values/distribution Min Max

Dose mg 0.5
Fraction of absorption fa n/a Weibull (8.86, 0.94) 1e-6 1
Absorption rate ka 1/h Lognorm (1.21, 0.09) 1e-6 10
Gut availability Fg n/a Weibull (512.33, 1) 1e-6 1
Blood to plasma concentration ratio BP n/a Norm (0.84, 2.05e-4) 0.55 100
Fraction of unbound drug in plasma fu n/a Lognorm (− 1.25, 5.4e-3) 1e-6 1
Liver tissue to plasma partition coefficient Kpliver n/a Lognorm (− 0.146, 4.9e-3) 1e-6 10
Hepatic CYP3A4 intrinsic clearance CLint,CYP3A4 L/h Lognorm (2.10, 0.26) 1e-6 100
Hepatic CYP3A5 intrinsic clearance CLint,CYP3A5 L/h Lognorm (1.58, 0.18) 1e-6 100
Hepatic arterial blood flow QHA L/h Lognorm (3.05, 1.44e-2) 1e-6 50
Portal vein blood flow QPV L/h Lognorm (4.19, 1.05e-2) 1e-6 150
Body weight BW kg Lognorm (4.30, 3.8e-2) 30 200
Volume of portal vein *Vpv L Norm (0.008, 6.4e-7) 1e-6 0.15
Volume of liver Vliver L Lognorm (0.39, 2.97e-2) 0.1 5
Distribution volume in plasma Vss L/kg Norm (0.76, 1.06e-2) 1e-6 5
Renal clearance with respect to plasma *CLR L/h Norm (0.68, 4.6e-3) 1e-6 5

*Parameter was assumed to be normally distributed with 10% CV
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Table III. The parameter values and distributions for midazolam

Parameters Abbreviation Unit Values/distribution Min Max

Dose mg 5
Fraction of absorption fa n/a Weibull (8.86, 0.94) 1e-6 1
Absorption rate ka 1/h Lognorm (1.05, 0.09) 1e-6 10
Gut availability Fg n/a Norm (0.47, 0.01) 1e-6 1
Blood to plasma concentration ratio BP n/a Norm (0.64, 1.05e-3) 0.55 100
Fraction of unbound drug in plasma fu n/a Lognorm (− 3.46, 1e-3) 1e-6 1
Liver tissue to plasma partition coefficient Kpliver n/a Lognorm (− 0.21, 9.6e-3) 1e-6 10
Hepatic abundance of CYP3A4 ACYP3A4 pmol P450 Lognorm (15.84, 0.26) 1e6 1e8
Hepatic abundance of CYP3A5 ACYP3A5 pmol P450 Lognorm (15.72, 0.18) 1e6 1e8
Hepatic abundance of UGT1A4 AUGT1A4 pmol UGT Lognorm (14.92, 0.18) 1e5 1e8
Maximum metabolite formation rate

by CYP3A4 (1-OH pathway)
Vm,CYP3A4 pmol/min/pmol

of isoform
5.23+

Maximum metabolite formation rate
by CYP3A5 (1-OH pathway)

Vm,CYP3A5 pmol/min/pmol
of isoform

19.7+

Maximum metabolite formation rate
by CYP3A4 (4-OH pathway)

Vm,CYP3A4 pmol/min/pmol
of isoform

5.2+

Maximum metabolite formation rate
by CYP3A5 (4-OH pathway)

Vm,CYP3A5 pmol/min/pmol
of isoform

4.03+

Maximum metabolite formation rate by UGT1A4 Vm,UGT1A4 pmol/min/mg
microsomal protein

445+

Michaelis-Menten constant for CYP3A4 (1-OH pathway) Km,CYP3A4 μM 2.16+

Michaelis-Menten constant for CYP3A5 (1-OH pathway) Km,CYP3A5 μM 4.16+

Michaelis-Menten constant for CYP3A4 (4-OH pathway) Km,CYP3A4 μM 31.8+

Michaelis-Menten constant for CYP3A5 (4-OH pathway) Km,CYP3A5 μM 34.8+

Michaelis-Menten constant for UGT1A4 Km,UGT1A4 μM 40.3+

Hepatic arterial blood flow QHA L/h Lognorm (3.05, 1.44e-2) 1e-6 50
Portal vein blood flow QPV L/h Lognorm (4.19, 1.05e-2) 1e-6 150
Body weight BW kg Lognorm (4.30, 3.8e-2) 30 200
Volume of portal vein *Vpv L Norm (0.008, 6.4e-7) 1e-6 0.15
Volume of liver Vliver L Lognorm (0.39, 2.97e-2) 0.1 5
Distribution volume in plasma Vss L/kg Norm (0.91, 4.09e-2) 1e-6 5
Renal clearance with respect to plasma *CLR L/h Norm (0.085, 4.6e-3) 1e-6 5
Absorption rate constant for SAC Kin 1/h 0.2+

Eliminate rate constant for SAC Kout 1/h 0.25+

Volume of distribution for SAC Vsac L/kg 0.23+

*Parameter was assumed to be normally distributed with 10% CV
+Values were fixed

Fig. 2. Correlation of model parameters based on the Simcyp simulator simulation results; a quinidine, b alprazolam, and c midazolam, please
see the text for description of the parameters
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The half-life of quinidine is about 6–8 h. In 24 h around
87~93% of quinidine will be cleared from the body, suggest-
ing AUC24h≈AUC48h≈AUC∞.

Not accounting for input parameters correlations, Morris
and Sobol methods mostly agree and suggest that:

1) BW, Vss, fa, and CLint, CYP3A4 are the parameters
significantly affecting Cmax.

2) ka and CLint, CYP3A4 are the key influential parame-
ters for Tmax. Extra influential parameters were BW,
Vss, and fu.

3) CLint, CYP3A4, and fa have most significant impact on
AUC24h; additional parameters, such as BW, fu, and
Vss, still contribute to variance of AUC24h. However,
when considering AUC48h, the impact of fu and Vss

diminished (Fig. 3, Table S3 and Figure S6 in
supplemental material), as expected.

Alprazolam

For alprazolam, the extended Sobol sensitivity indices
(Table S4 in the supplement material, Fig. 4) indicate that:

1) Vss, fa, BW, QHA, Qpv, and Vliver are the most
important parameters affecting Cmax, followed by
CLint,CYP3A4, CLint,CYP3A5, fu, and Kpliver.

2) For Tmax, ka, CLint,CYP3A4, and CLint,CYP3A5 are the most
important parameters, followed by Vliver, Vss, and BW.

3) CLint,CYP3A4, CLint,CYP3A5, fa, Vliver, BW, and QHA

have significant impact on AUC24h. Other less influ-
ential parameters identified are Qpv, Vss, and ka.

4) Apart from Vss, the effect of which on AUC48h

became negligible, nearly the same sets of influential
parameters have been identified for AUC48h as those
for AUC24h. Considering the half-life of alprazolam ~
11.2 h, for a daily repeated oral dose only ~ 77% of
the drug will be cleared from body in 24 h. However,
about 95% of the drug will be cleared at 48 h,
suggesting AUC24h <AUC48h≈AUC∞.

Likewise, Morris and Sobol methods (Fig. 4, Table S4
and Figure S7 in supplemental material) still agree and
determined that:

1) BW, Vss, and fa are the most important parameters for
Cmax followed by CLint,CYP3A4, which only has limited
impact about < 10% variance.

Fig. 3. The extended Sobol indices vs. Sobol indices for quinidine: a Cmax, b Tmax, c AUC24h, and d AUC48h
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2) ka has been identified as the most influential param-
eters for Tmax. CLint,CYP3A4, BW, Vss, CLint,CYP3A5,
and fu, also contribute to the variance of Tmax.

3) For AUC24h, CLint,CYP3A4, fa, and CLint,CYP3A5 are
the most important parameters followed by BW, Vss,
and fu.

Except Vss, the same sets of influential parameters were
identified between AUC24h and AUC48h. However, their
relative importance changes (Table S4 in the supplement
material).

Midazolam

For midazolam, extended Sobol sensitivity indices
(Table S5 in the supplement material, Fig. 5) indicate that:

1) Apart from Vpv and CLR, all other model parameters
will contribute to the variance of Cmax, in which Vss,
Fg, enzyme abundance ACYP3A4 and ACYP3A5, and
BW, are the most important parameters.

2) ka and Vss are identified as the most significant
parameters affecting Tmax, followed by ACYP3A4,
ACYP3A5, AUGT1A4, Vliver, BP, and BW.

3) ACYP3A5, ACYP3A4, Fg, Vliver, and fa have significant
impact on AUC24h. Other less effective parameters
identified are BW, QHA, Qpv, BP, and ka.

4) The same sets of influential parameters as for AUC24h

were recognised for AUC48h.

Dissimilar to quinidine and alprazolam, the key influen-
tial parameters (accounting for > 10% variance) for Cmax,
Tmax, and AUC identified by Morris and Sobol are nearly the
same as the extended Sobol (Fig. 5, Table S5 and Figure S8 in
supplemental material). This may be due to the short terminal
half-life of midazolam ~ 1.5 to 2.5 h. When giving a q.d. oral
dose, ~ 99.9% midazolam will be eliminated in 24 h; hence,
AUC24h≈AUC48h≈AUC∞.

DISCUSSION

Sensitivity analysis can help in narrowing down the
number of parameters to be estimated prior to model
calibration, avoiding model over-parameterisation, and
assisting in model understanding or experimental design. In
this study, Morris, Sobol, and extended Sobol methods were
used to identify the most influential parameters of mPBPK

Fig. 4. The extended Sobol indices vs. Sobol indices for alprazolam: a Cmax, b Tmax, c AUC24h, and d AUC48h

93 Page 8 of 13 The AAPS Journal (2020) 22: 93



models of quinidine, alprazolam, and midazolam affecting
Cmax, Tmax, and AUC. We investigated the ability of the three
methods to identify the contributions of all model parameters
and their potential interactions to a set of specified model
outputs, contributions coming not only from inter-individual
variability but also from parameter correlations and model
structure. Of the three drugs selected, (1) quinidine is an
antiarrhythmic agent (36); (2) alprazolam one of the most
commonly used drugs for short-term management of anxiety
disorders with a relativley low clearance (37); (3) midazolam
a widely used drug in anaesthesia (38,39) or as a preanes-
thetic medication (40). Although alprazolam and midazolam
are both BCS class I drugs and cleared by the similar
enzymes, their pharmacokinetics in the body are different,
due to different clearance and volume of distribution (Vss).

GSA methods that are not considering input parameters’
correlation have been applied to PBPK modelling
(6,12,15,16,41,42) or systems biology or pharmacology
(1,13,19). For example, Fenneteau et al. applied PRCC to a
PBPK model in order to identify important parameters
affecting drug distribution in tissues with P-glycoprotein
expressing aiming to reduce the uncertainty of model
predictions (6). PRCC is robust for non-linear problem, but
assumes monotonic relationships between parameter and
outputs. If that assumption is not fulfilled, it is assessment
can be inaccurate (11). McNally et al. proposed a two-stage
GSA workflow for PBPK; in the first stage, the Morris
method is applied to screen and select a subset of model
input parameters, then eFAST is run to pinned down the most
significant parameters (12). Similarly, Scherholz et al. pro-
posed a two-stage global sensitivity analysis of the GastroPlus
compartmental model, using Morris first and Sobol after that
(15). Melillo et al. applied the Sobol method to identify key
parameters influencing fraction absorbed and bioavailability
for BCS class I–IV drugs (42). Variance-based method, e.g.,
Sobol and eFAST, do not assume model linearity or
monotonicity and can evaluate interactions among input
parameters. However, the fact that they do not consider
correlations among input parameters is a major weakness of
those GSA methods. To assess their performance, we have
also applied the extended Sobol method, a GSA method
considering parameter correlations. Our results support the
assertion that GSA methods which do not take into account
parameters correlations, when those in fact exist, can lead to
wrong determinations of influential parameters. A compari-
son of the sensitivity indices given by the Sobol and extended
Sobol methods with the analytical solution of a linear test
function (Figure S4 in Supplemental material) suggests that
Sobol, developed for models with non-correlated input
parameters, will incorrectly determine parameter importance
in the presence of moderate correlations among input
parameters. Extended Sobol can properly recover the true
main and total effects, assuming the parameters correlation is
known and incorporated (test functions 3 and 4, and
Figure S4 and S5 in supplemental material), hence correctly
determining parameter contributions to the specified outputs.

As shown in Fig. 2, inter-enzymes correlations were
considered in this work, as well as the correlations between
system parameters and enzyme intrinsic clearance or enzyme
abundance. However, the potential correlation between liver
and gut enzymes were ignored, and Fg was considered as a

single input parameter and independent of liver enzyme
intrinsic clearance. Kpliver distribution was predicted using the
Rodgers and Rowland method in the Simcyp simulator,
indicating that there is a strong correlation between Kpliver
and fu with coefficient of determination R2 ~ 1. In order to
individually explore the impact of fu and Kpliver on Cmax,
Tmax, and AUC, a strong correlation of 0.9 was used instead
of 1. Obviously, the correlation between Kpliver and fu can
vary depending on, for example, equations used to predict
Kpliver and the drug charge type.

For the three drugs investigated, similar sets of most
influential parameters (i.e., parameters accounting for more
than 10% variance of PK outputs) were determined by the
three GSA methods exercised (Table S3-5 in the supplement
material). However, the parameters ranking and their impact
on the specified outputs were different. Generally, more
influential parameters were identified by the extended Sobol
method than by Morris or Sobol, as a result of parameter
correlation.

For quinidine, the importance of parameters correlated
with BW and CLint, CYP3A4, which are the key influential
parameters affecting Cmax, Tmax, and AUC, was under-
estimated by Morris and Sobol, particularly:

1) Vliver, Qpv, QHA, which have moderate to strong
correlations with BW in an European Caucasians
population used in the simulations.

2) ka, Vliver, intrinsic CLint of CYP2C9 and CYP2E1,
which correlates moderately with CLint of CYP3A4
(Fig. 2)

Similar to quinidine, more parameters that are influential
were identified by extended Sobol than by Sobol regarding
Alprazolam Cmax and AUC. However, for midazolam, the
key influential parameters determined by Morris and Sobol
methods are nearly the same as extended Sobol for Cmax,
Tmax, and AUC (Table S5 in the supplement material). This
might be due to much shorter half-life (higher clearance) and
larger volume of distribution Vss of midazolam than alpraz-
olam and quinidine.

Although we expect fu to affect drug clearance, hence
AUC, all three GSA methods suggest that its impact is low
for the three drugs. Morris and Sobol methods slightly
overestimated the influence of fu on Tmax and AUC (~ 3 to
6% of variance by Sobol, see Figs. 3, 4, and 5), which was
determined as negligible in extended Sobol (< 1% of vari-
ance, Figs. 3, 4, and 5). Drug tissue distribution among many
other parameters depends on its protein binding. Therefore,
it is generally expected to see a strong correlation between fu
and Kpliver. A moderate positive correlation (r ~ 0.5) was
observed in the simulated population between fu and Vss.
Kpliver and Vss were predicted using the Rodgers and
Rowland method in the Simcyp simulator and showed an
insignificant impact on Tmax and AUC. The negligible impact
of Vss, which should be independent of AUC24h or
AUC48h≈AUC∞ (at least in linear cases), was identified
correctly by extended Sobol for all three drugs. However,
Morris and Sobol overestimated the influence of Vss on
AUC24h for quinidine and alprazolam.

Although portal vein (Qpv) blood flow rate is higher than
the hepatic artery (QHA) blood flow the impact of QHA is
calculated to be higher than Qpv on Cmax and AUC using the
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extended Sobol (Table S3-5 in the supplement material). This
is mainly due to the fact that the Simcyp simulator simulated
population data indicated a slightly stronger correlation
between QHA and BW than Qpv and BW as shown in Fig. 2.
As BW and enzyme intrinsic clearance strongly impact Cmax

and AUC, the influence of QHA on these two parameters was
also higher. When this correlation was ignored, a higher
impact of Qpv than QHA on Cmax and AUC was estimated by
Sobol and Morris methods (Table S3-5 in the supplement
material).

The renal clearance (CLR) variability simulated using the
Simcyp simulator is determined using the simulated subject
renal function. In the Simcyp simulator, renal function is
assumed to be correlated with the creatinine concentration,
which itself is a function of age and gender. However, since
CLR is small for the three explored drugs, it did not
significantly affect the PK parameters.

Furthermore, one should be aware that GSA results are
highly dependent on the model explored. For the same
underlying physiology or biology, if different mathematical
models are used or a model is parameterised in different
ways, the influential parameters determined by GSA to

explain the same outcome can be different. For example, if
one reparametrizes the mPBPK model with normalised blood
flow rate; in this case, the hepatic artery and portal vein (to

exclude the effect of BWon blood flow) as dQHA ¼ QHA
BW using a

lognormal (− 1.24, 1.44e-2) distribution and dQPV ¼ QPV
BW using a

lognormal (− 0.11, 1.77e-2) distribution, the impact of dQPV on

AUC48h becomes higher than dQHA for alprazolam (Fig. 6a).
However, when using the original settings for QHA and Qpv,
the impact of QHAwill be higher than Qpv due to correlations
with BW as explained earlier. Similarly, if one ignores the
liver inter-enzyme correlations but keep all other correlations
among input parameters the same, the impact of CYPs on PK
parameters can change. For example, for alprazolam, the
effect of liver CYP3A5 on AUC48h becomes much lower
compared to the analysis with consideration of correlation
between CYP3A4 and CYP3A5 (Fig. 6b).

Although extended Sobol is a more advanced GSA
method than Morris and Sobol, it still has limitations. For
instance, it assumes that parameter correlations are linear.
The same assumption is made in other GSA methods
developed so far for models with correlated parameters

Fig. 5. The extended Sobol indices vs. Sobol indices for midazolam: a Cmax, b Tmax, c AUC24h, and d AUC48h
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(3,9,23–26). In reality, the correlation between parameters
can be complicated, and linear correlations may not well
represent the relationship between parameters. Therefore,
more sophisticated sensitivity algorithms are needed to fully
account for realistic correlations. Nevertheless, in comparison
with many GSA methods that do not consider parameter
correlation, e.g., Morris and Sobol, the extended Sobol
method performs well in terms of distinguishing the influen-
tial parameters in the mPBPK model for the three investi-
gated drugs as well as test functions. Besides, based on the
assessment by Vu-Bac et al. using an example to quantify
uncertainty for multiscale modelling of polymer nanocom-
posites (26), the first-order sensitivity index (Si) of extended
sobol is matching the first-order sensitivity index reflecting
correlation in other developed methods to handle correlated
input parameter, such as the regression-based method by Xu
and Gertner (23) and the extension of the matrix combination
approach by Most (25). Similarly, the total effect sensitivity
index STi of extended Sobol mainly reflects the influence of
uncorrelated components in the input parameters on the
metrics of interest. Thus, stronger correlation between certain
input parameters gives higher first-order sensitivity index
than the total effect index reflected by extended Sobol
methods. Therefore, the extended Sobol method can thus
provide valuable guidance to correctly recognise influential
parameters.

The need to account for correlations in GSA and the
availability of data to identify them is somewhat of a circular
argument: simple methods unable to consider correlations
still give ‘results’ and there seem to be no need for gathering
data about them. Our point is precisely that parameter
correlations should be investigated carefully first. In the
absence of evidence for correlations, simpler GSA methods
can be used. Otherwise, more powerful methods are needed
to obtain correct results, whether the aim is uncertainty

analysis, model development, or study design assessment.
Evidence for correlations can come from several sources:

– Mechanistic knowledge of inter-individual vari-
ability and parameter dependencies; this was the approach
taken here. The Simcyp simulator was used to produce
realistically correlated PBPK parameter values, any other
PBPK model able to generate such correlated samples could
be used: the performance of the different GSA methods in
case of correlations were probably not strongly affected by
our choice of software. The input correlation values obtained
from the Simcyp sample are probably not perfect, but that
model is well validated, state of the art and generally trusted
(43).

– Statistically modelled relationships between ob-
served parameters (a reasonable modelling choice in the
absence of causal explanations).

– Previous model calibration with system-level
data. For example, fitting commonly induces correlation
between Michaelis-Menten Vmax and Km, by partial
identifiability. Unfortunately, the less data we have, the more
correlations we are likely to observe, still from identifiability
problems. In that case, uncertainty should be modelled with
its correlations (using marginals would be unrealistic and
would lose information).

Independent measurements of individual parameters, by
definition, lead to uncorrelated priors, but this does not mean
that those measurements are perfect or even realistic in real-
life systems.

Apart from parameter correlation, other essential fea-
tures affecting the determination of influential parameters in
GSA are the distributions and ranges of input parameters.
Rather than assuming uniform distributions for model
parameters (12,15), the distributions and ranges used in this
study were directly obtained from virtual population

Fig. 6. The extended Sobol analysis for AUC48h of alprazolam: a first-order and total effect sensitivity indices were reported
for model reparametrized using normalised dQPV and dQHA, or b first-order sensitivity indices were compared for model with
or without assumptions that liver CYPs are independent
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simulations using the Simcyp simulator, which can realistically
simulate human physiology and associated variabilities (43).
Since we used physiologically compatible distributions, our
results should be more relevant to real-world conditions,
rather than being artefacts resulting from arbitrary choices.

Although only three drugs have been investigated using
the mPBPK model in the study, the proposed methodology
can in principle be applied to any PBPK model to explore the
influential parameters of any drug with consideration of
parameter correlations.

CONCLUSION

We have highlighted some key areas for consideration
when applying GSA to identify influential parameters in a
model, namely limitations and assumptions of the applied
GSA algorithms, assumptions in the investigated physiologi-
cal or biological model, correlations among model parame-
ters, and distributions or ranges of the parameters of interest.
All of these may impact the outcomes, interpretation and
application of GSA.

For the three drugs investigated (quinidine, alprazolam,
and midazolam), the influential parameters determined by
the extended Sobol method, and their ranking, were consis-
tent with the PK properties expected from their physico-
chemical, plasma/blood binding attributes and the elimination
pathways. However, by ignoring correlation among parame-
ters, the Morris and Sobol GSA methods may not correctly
identify all important model parameters affecting the model
outputs of interest. Particularly, as shown in this study, the
effect of Vss can be overestimated, and the influence of Vliver

and some enzyme intrinsic clearance/abundance may be
underestimated. Almost the same sets and orders of influen-
tial parameters have been identified by both the Sobol
method and Morris screening, suggesting Morris method can
be as informative as the Sobol method to identify the
important parameters in the presence of negligible parameter
correlations.

Global sensitivity analysis is useful as a general method
to assist in model evaluation and feature selection and is
particularly valuable to identify influential parameters in
models with many input parameters. The GSA algorithms
available are developed under various model assumptions,
such as linear or non-linear models, monotonic or non-
monotonic input-output relationships, and no-correlated or
correlated input parameters. It is essential to be fully aware of
their limitations to avoid potentially inaccurate conclusions.
To the same degree, it is essential, to be fully aware of the
model structure and assumptions.
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