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Abstract. The purpose of this study was to investigate if model-based post-processing of
common diagnostics can be used as a diagnostic tool to quantitatively identify model
misspecifications and rectifying actions. The main investigated diagnostic is conditional
weighted residuals (CWRES). We have selected to showcase this principle with residual
unexplained variability (RUV) models, where the new diagnostic tool is used to scan
extended RUV models and assess in a fast and robust way whether, and what, extensions are
expected to provide a superior description of data. The extended RUV models evaluated
were autocorrelated errors, dynamic transform both sides, inter-individual variability on
RUV, power error model, t-distributed errors, and time-varying error magnitude. The
agreement in improvement in goodness-of-fit between implementing these extended RUV
models on the original model and implementing these extended RUV models on CWRES
was evaluated in real and simulated data examples. Real data exercise was applied to three
other diagnostics: conditional weighted residuals with interaction (CWRESI), individual
weighted residuals (IWRES), and normalized prediction distribution errors (NPDE).
CWRES modeling typically predicted (i) the nature of model misspecifications, (ii) the
magnitude of the expected improvement in fit in terms of difference in objective function
value (ΔOFV), and (iii) the parameter estimates associated with the model extension.
Alternative metrics (CWRESI, IWRES, and NPDE) also provided valuable information, but
with a lower predictive performance of ΔOFV compared to CWRES. This method is a fast
and easily automated diagnostic tool for RUV model development/evaluation process; it is
already implemented in the software package PsN.

KEY WORDS: conditional weighted residuals; diagnostics; model evaluation; nonlinear mixed effects
models; residual error model.

INTRODUCTION

Nonlinear mixed effects (NLME) models are widely used
to describe clinical data in drug development for learning
about the underlying physiological system, confirming drug
effects, simulating different scenarios for dose selection, and
decision making (1). These models incorporate mathematical
description of structural components (fixed effects) and
stochastic components (random effects). Random effects
account for multiple sources of variability: inter-individual
variability (IIV), inter-occasion variability (IOV), and resid-
ual unexplained variability (RUV). RUV incorporates intra-
individual variability, inaccuracies in dosing and sampling

history, measurement errors, and model misspecification.
It is assumed that the RUV model allows the transforma-
tion of a normal, independent, and identically distributed
random variable to capture the full complexity of any
heteroscedasticity, non-normality, and dependence in the
RUV between the model and data. It has been shown
that maximum likelihood estimation of model parameters
with misspecified RUV model results in biased parameter
estimates (2), and conclusions regarding covariate inclu-
sion or parameter uncertainty based on such fit may not
be correct (3,4). Thus, selection of an appropriate RUV
model is important for maximum likelihood estimation,
real-life-like simulations, better utilization of data, and
subsequent model-informed decisions.

Extended RUV models have been developed to various
RUV characteristics. An autoregressive (AR1) error model
has been used to describe serially correlated residuals which
may occur with rich data in particular (2,5). One example of
this was a case study of glucose tolerance test, where AR1
errors provided a better description of the data (6). A
dynamic transform both sides (dTBS) approach account for
skewness and scedasticity of the residuals by estimating a
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shape parameter (λ) and a power term (ζ) using a Box-Cox
transform to both data and model predictions (7,8). Inter-
individual variability IIV in the magnitude of RUV relaxes
the assumption that all subjects display a common residual
error variance (9). A power error model accounts for residual
error scedasticity dependent on model predictions and as
such offers an alternative to the commonly used additive plus
proportional RUV model. A Student’s t-distributed error
model allows for symmetric heavy tails in residual distribution
and thus introduces outlier robustness in the model (9). Time-
varying error magnitude has been observed for example for
oral pharmacokinetic profiles with higher error magnitude
during the absorption phase (2). A simple implementation of
such a RUV extension is through a step function where the
error magnitude changes at a certain time (after dose).

Despite the availability of these extendedRUVmodels, they
are seldom tested. A factor limiting these extended RUVmodels
from being routinely checked is the absence of a fast, easy-to-use
and accurate diagnostic tool, as implementing these extended
RUV models one by one can be time-consuming and computa-
tionally intensive. This gets even more complicated in
simultaneous modeling of multi-dependent variables, where
exploring these extended RUV models for each of the
dependent variables will result in large number of combi-
nations to be tested. The recommended diagnostic tools for
assessing RUV models are limited to plots of residuals
versus time/model prediction (10,11). Such graphical diag-
nostic provide guidance only for selection among the
standard RUV models: additive, proportional, or combined
error model. Extended RUV models are mostly imple-
mented based on subjective decision (e.g., log transforma-
tion of both sides), implementation facility (e.g., numerical
instability of parameter estimation), or expected features
(e.g., autocorrelation with rich frequent sampling schedule).
To avoid this limited and case-dependent RUV modeling,
here, we investigate if post-processing of common model-
based diagnostics can provide additional advantages. We
propose a new diagnostic tool, based on standard output
such as conditional weighted residuals (CWRES), which
scan these extended RUV models for their ability to
improve the description of data, without re-estimating the
original NLME model.

METHODS

We choose to illustrate the diagnostic procedure using
CWRES which are theoretically expected to be normally
distributed with mean 0 and variance 1 for a correct NLME
model (12). CWRES are computed based on individual’s
empirical Bayes estimates regardless what estimation method
is used (Eq. 1–5):
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where y*i is the vector of observations for the ith individual, f
denotes individual model predictions, θ

*
is the vector of

population fixed effects, η*i is vector of random unexplained
individual deviation from the population fixed effects, h is RUV
model, ε*i is the vector of residual errors, E y*i

� �
is the

expectation of the marginal density of the data given the
model, η̂i is vector of empirical Bayes estimates, and COV
y*i

� �
is the covariance of themarginal density of the data given

themodel. Both random effects, η*i and ε*i are assumed to follow
normal distribution withmean 0 and covariancematrixΩ andΣ,
respectively. Hence, CWRES are directly linked to the objective
function used in FOCE estimation method (12).

CWRES Base Model

As a substitute for assessing extended RUV models on the
original data, the extended models were applied to a CWRES
distribution. Thus, CWRES calculated from the original NLME
model execution were treated as the dependent variable (DV)
and modeled first by a linear base model to estimate CWRES
distribution’s mean and variance as follow:

y*i ¼ Θ1 þ η1i þ ɛ*1i ð6Þ

where y*i is a vector of CWRES data from individual i, Θ1 is
the population mean of CWRES, η1i is a univariate random
variable describing the unexplained deviation of individual i
from Θ1, and η1i is assumed to follow a normal distribution
of a mean 0 with variance ω2. ɛ

*
1i is a univariate random

variable describing residual unexplained variability of
individual i; it is assumed to be independent identically
normally distributed with a mean 0 and variance σ2. When
the original NLME model is describing the data adequately,
the expected mean of CWRES Θ1 is 0, the expected value
of ω2 is 0, and the expected value of σ2 is 1. This base model
(Eq. 6) was then extended with the different RUV models
(Supplementary material) as follow:

Autocorrelated Errors

The CWRES calculated from the original NLME
model were modeled using an autoregressive error model
AR1 as

Corr ɛ1ij; ɛ1ik
� � ¼ exp −ln 2ð Þ=t1=2

� � � Timej−Timek
� �� � ð7Þ

where ɛij is the residual error for individual i at time j, ɛik is
the residual error for individual i at time point k, and t1/2 is
half-life governing the duration of the correlation.
ΔOFVCWRES_AR1 was calculated as the difference between
base model objective function value OFVCWRES_Base and
AR1 error model objective function value OFVCWRES_AR1.

(4)
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Dynamic Transform both Sides

The individual predictions (IPREDs) calculated from
the original model were used for the dTBS implementation.
The dTBS model uses a Box-Cox transformation and as
such requires the underlying variable to be positive; this is
an issue as CWRES data includes negative observations.
Thus, two models were needed to apply dTBS on CWRES
data: (1) new base model instead of (Eq. 6) called CWRES
dTBS base model and (2) CWRES dTBS model.

In CWRES dTBS base model, CWRES data was first
exponentiated (Eq. 8) then a dTBS model (Eq. 9) with both
shape parameter λ and power term ζ fixed to zero (log-
normal transformation with homoscedastic variance) was
fitted to the exponentiated CWRES data to calculate
OFVCWRES_dTBS_base.

In CWRES dTBS model, a dTBS model (Eq. 10) was
fitted to the exponentiated CWRES data with estimating both
λ and ζ, to calculate OFVCWRES_dTBS:

y*i ¼ exp y*i

� �
ð8Þ
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where an estimate of λ = 0 means CWRES data was normally
distributed before being exponentiated, λ > 0 means
CWRES data was left skewed before being exponentiated,
and λ < 0 means CWRES data was right skewed before being
exponentiated.

ΔOFVCWRES_dTBS was calculated as the difference
between dTBS base model objective function value
OFVCWRES_dTBS_base and dTBS model objective function
value OFVCWRES_dTBS.

Inter-Individual Variability on RUV

The CWRES data outputted from the original model
execution was modeled as

y*i ¼ Θ1 þ η1i þ ɛ*1i � exp η2ið Þ ð11Þ

where η2i is random deviation of individual i from ε*1i, thus
allowing different individuals to have different RUVmagnitude.
ΔOFVCWRES_IIV was calculated as the difference between base
model objective function value OFVCWRES_Base and IIV on
RUV model objective function value OFVCWRES_IIV.

Power Model

The individual predictions IPRED calculated on nor-
mal scale from the original model execution were used to

scale individual residual error ɛ
*
i where CWRES was

modeled as

y*i ¼ Θ1 þ η1i þ ɛ*1i � ⇀IPRED
� �ζ

ð12Þ

where ζ is the power exponent determining the dependence
of ɛ

*
i on model prediction. IPRED should include only

positive values for successful implementation. If for instance
IPRED included negative predictions because of log trans-
formation, they were exponentiated back to normal scale.
ΔOFVCWRES_power was calculated as the difference between
OFVCWRES_Base and power error model objective function
value OFVCWRES_power.

t-Distribution Error Model

The Laplacian method with user-defined likelihood had
to be used to apply a t-distributed residual error. The
conditional likelihood L of CWRES data was defined in the
control file for a Laplace base model (Eq. 13) and a t-
distributed error model (Eq. 14):
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where σ2 is the variance of the data, IWRES is the individual
weighted residuals, Γ is the gamma function, and υ is the
degrees of freedom, which is the additionally estimated
parameter when extending the RUV model to a t-
distributed error. ΔOFVCWRES_t − dist was calculated as the
difference between Laplace base model objective function
value OFVCWRES_Laplace_base and t-distribution error model
objective function value OFVCWRES_t − dist.

Time-Varying Error

Time, or time after dose, could be used as predictor of
residual error magnitude (2), where cutoff time points for
the change in variance of ɛi are selected based on data
density to cut the data into N equal-size groups. CWRES
were modeled as

y*i ¼ Θ1 þ η1i þ ɛ*1i ð15Þ

If Time > Xð Þ y*i ¼ Θ1 þ η1i þ ɛ*2i ð16Þ

where ɛ2i is the residual error after the cutoff time point X.
The number of cutoff time points is subjective; here, we
used three cutoff time points to cut the data into four equal-
size groups, each with a separate error magnitude.
ΔOFVCWRES_time was calculated as the difference between
OFVCWRES_Base and the time-varying error model objective
function value OFVCWRES_time.

Page 3 of 9 81The AAPS Journal (2018) 20: 81



Evaluations

The agreement in improvement of fit (ΔOFV) between
implementing these extended RUV models on the original
NLME model (ΔOFVOriginal; conventional analysis) and
implementing them on CWRES data (ΔOFVCWRES) was
evaluated in both simulated (n = 7) and real (n = 16) data
examples as described below. For each data set and RUV
model considered, there were thus two models evaluated for
the original data (the original model and one with RUV
model extension) and two models for the CWRES obtained
from the original NLME model (the base CWRES model and
the extended RUV model). In addition to CWRES, real data
exercise was applied to three other diagnostics: conditional
weighted residuals with interaction (CWRESI), individual
weighted residuals (IWRES) and normalized prediction
distribution errors (NPDE). CWRESI considers the interac-
tion between intra- and inter-individual variability as in
proportional error model. IWRES are the differences be-
tween the observations and IPRED weighted by the expected
standard deviation of the residual variability (σ) only.

IWRES ¼
y*i− f θ

*
; η̂ i

� �
σ

ð17Þ

NPDEs are calculated by applying the inverse function
of the normal cumulative density function to the decorrelated
prediction discrepancies, and so it is normally distributed by
construction without any approximations (13).

Simulations

Stochastic simulations and estimation (SSEs) were per-
formed to investigate the ability of CWRES modeling to
identify correctly the true extended RUV model in different
scenarios, as well as investigating type I error rates of the
likelihood ratio test employed, with null hypothesis being the
absence of RUV misspecification The base simulation model
was a one-compartment disposition model with first-order
absorption, linear elimination, and proportional RUV model.
Parameters assigned with inter-individual variability were
absorption rate constant, clearance, and volume of distribu-
tion, with a correlation between the last two parameters. This
base model was extended with the investigated RUV models
to produce six additional models. The base model was used to
simulate 200 datasets, while each of the extended RUV
models was used to simulate 100 datasets; each dataset was
estimated with the seven models to calculate mean
ΔOFVOriginal for each extended RUV model. CWRES
calculated from the estimated base models and modeled as
described previously to calculate mean ΔOFVCWRES for each
extended RUV model (Fig. 1). The values of parameters
governing each of the extended RUV models when simulat-
ing were chosen to produce a ΔOFVOriginal of up to 100
between the base model and the true extended RUV model.

Real Data Examples

Models varied in complexity, amount of available data,
and residual error components (Table I). Four examples

modeled more than one dependent variable simultaneously.
Data was log-transformed in nine examples. Two examples
already included IIV on RUV model and this was then
considered the base RUV model. All examples were devel-
oped using the FOCE method, and the interaction option was
added in relevant RUV extended models.

Software

NONMEM version 7.3 (ICON Development Solutions,
Hanover, MD, USA) (29) was used for the analysis with help
of PsN (30), and graphs were generated in R (31).

RESULTS

Simulated Data Examples

CWRES modeling identified the same (correct) RUV
model as the conventional analysis as shown in Fig. 2. The
highest ΔOFVCWRES signaled the correct RUV extension
model used in the simulation for AR1, dTBS, IIV, t-
distribution, and time-varying RUV error models, e.-
g., ΔOFVCWRES_AR1was the highest drop between all
CWRES models (red bars) when simulating with AR1 error
model. Note that the Power and dTBS models are nested and
the results reflected this. Since when simulating with power
error model only correction for residual scedasticity was
needed, both ΔOFVCWRES_power and ΔOFVCWRES_dTBS were
of equal magnitude, − 20 and − 22, respectively, so it is clear
that dTBS model is not providing any additional advantages
over power error model which should be selected as the
correct RUV model extension. Type I error rates with
CWRES were 1.5, 1, 2, 5.5, 3, and 8.5% for AR1, dTBS,
IIV, power, t-distribution, and time-varying RUV models,
respectively, taking into account the number of estimated
parameters. When simulating with the base model, none of
the investigated extension showed an improvement either by
CWRES modeling or conventional analysis.

The improvement in goodness-of-fit ΔOFV when apply-
ing an extension was in general of similar magnitude whether
based on ΔOFVCWRES or ΔOFVOriginal. However, if the
method worked perfectly, ΔOFVCWRES would equal exactly
ΔOFVOriginal which is not the case especially for AR1
simulation scenario, where ΔOFVCWRES were − 34, while
ΔOFVOriginalwas − 100. The parameters governing these
extended RUV models showed a good concordance between
their estimates from CWRES and conventional analysis, with
a correlation coefficient of 0.93 across all RUV extensions
except for dTBS as they are on different scale.

Real Data Examples

At least one of the investigated RUVextensions resulted
into a significant ΔOFVOriginal in all examples except for
Daunorubicin and Digoxin PD models. When significant, the
improvement was substantial with ΔOFVOriginal ranging from
− 2019 for Gastric emptying with autocorrelated error to − 4
for r-hFSH PK with IIVon RUV, with a median ΔOFVOriginal

of − 71 across models with significant improvement. Similar to
the conventional analysis, a significant ΔOFVCWRES were
found in all examples except for Daunorubicin and Digoxin
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PD models. The real data examples further supported the
good agreement between the true misspecification in error
model and what was identified by modeling of CWRES as
CWRES modeling identified the most important RUV exten-
sion similar to the conventional analysis (Fig. 3). Exceptions
were the two models Ethambutol PK and Disufenton sodium,

where the order of the 1st (t-distribution) and 2nd most
important extensions (IIV on RUV) were reversed. CWRES
modeling identified the same RUV extensions to be significant
improvements as conventional analysis except for t-distributed
error model with Asenapine PD. The ΔOFVOriginal and
ΔOFVCWRES displayed a correlation coefficient of 0.88 across

Fig. 1. Schematic presentation of simulation setup. The base model was used to simulate 200 data sets, while each of the extended RUV
models was used to simulate 100 datasets, and each dataset was estimated with the seven models to calculate mean ΔOFVOriginal for each
extended RUV model. CWRES outputted from the base model fitting to the simulated data in each of the different scenarios were treated as
dependent variables and modeled with same RUV extensions to calculate mean ΔOFVCWRES for each extended RUV model. Note that
different base models were needed for dTBS and t-distribution error models

Table I. Summary of Real Data Examples Used for Investigation

Model Data
type

RUV model Transformation No. of
observations

No. of
subjects

No. of
THETAs

No. of OMEGAs
including covariances

No. of
SIGMAs

Asenapinea (14) PD Additive with IIV – 7728 1328 16 5 1
Clomethiazole (15) PK Additive Log 2177 772 10 5 1
Daunorubicina (16) PD Additive Log 112 41 7 3 1
Digoxina (17) PD Additive – 787 225 6 2 1
Digoxinab (18) PK/PD PD: proportional

PK: additive
– 941 225 6 3 1

Disufenton sodiuma (19) PK Additive Log 1196 175 7 3 1
Ethambutola (20) PK Combined Log 1869 189 8 3 1
Gastric emptyingb (21) PK/PD Additive Log 3385 16 37 17 4
HbA1Cab (22) PD Additive with IIV Log 8698 412 21 9 1
IGIab (23) PD Additive Log 6382 72 26 15 1
Lopinavira (24) PK Proportional – 315 30 9 6 1
Miltefosinea2 (25) PK Proportional – 350 31 7 4 1
Moxonodinea (9) PK Additive Log 1021 74 5 6 1
Paclitaxelac (26) PD Combined – 530 46 6 3 1
Pefloxacina (27) PK Additive Log 337 74 4 6 1
r-Hfsh (28) PK Additive – 314 60 7 2 1

a SIGMAs were fixed to 1 and modeled as THETAs (standard deviation)
bMore than one dependent variable
cAdditive component of RUV model was fixed
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all models and a median ratio ΔOFVCWRES
ΔOFVOriginal

of 0.77 among models

with significant improvement. It is not surprising that this ratio is
below one as when extending the original model, there is always
the potential for larger improvement in fit than CWRES as
many parameters are re-estimated under the new RUV model.

The evaluation of the other diagnostics CWRESI, IWRES,
and NPDE with real data examples is shown in Fig. 4, where
CWRES outperformed other diagnostics in predicting
ΔOFVOriginal. The root mean-squared errors (RMSE) of
ΔOFVCWRES were lower than RMSE of other ΔOFVdiagnostics

and so they are reported as relative to RMSE ofΔOFVCWRES as
shown in Table II, where RMSE measures the differences
between ΔOFVdiagnostics and the actually observed ΔOFVOriginal.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ΔOFVdiagnostics−ΔOFVOriginal

� �2� �r
ð18Þ

DISCUSSION

A new diagnostic tool for post-processing of CWRES was
successfully developed and evaluated. CWRES modeling evalu-
ate extended RUV models and assess in a robust and extremely
fast way whether extensions are needed to implement. The

method accurately identified the correct type of RUV model
misspecifications as well as the expected improvement in fit in
terms of ΔOFV and the expected parameters of the extended
RUV model, similar to conventional analysis. This method
typically does not suffer from local minima problems or other
estimation-related issues becauseCWRESmodels are simple and
quick to run with known expected distribution as shown by the
agreement between ΔOFVOriginal and ΔOFVCWRES. In no case
was modifications of initial estimates needed for the CWRES
models applied here.

Simulation results elucidated the ability of different
extensions to describe each other and to produce similar
improvement in fit. The t-distributed error model allows the
incorporation of outlier robustness into the model while IIV
on RUVallows individuals to have different RUV magnitude;
thus, both extensions can describe outliers and produce
similar model fits. This behavior was shown when simulating
with IIVon RUV; t-distributed error model was the 2nd most
important RUV extension. This behavior also might explain
the inflated ΔOFVCWRES_IIV when t-distributed error model
was the most important improvement in both simulated and
real data examples, and the reversed order of most important
RUV extensions for Ethambutol PK and Disfenton sodium.

Both dTBS and Power error model can account for
scedasticity; however, only dTBS can correct for both
scedasticity and skewness; thus, on simulating from power
error model, both extensions had similar ΔOFVCWRES but

Fig. 2. Plot of mean ΔOFV vs extended RUV models show the agreement between mean ΔOFVOriginal (gray) and mean ΔOFVCWRES (red)
among all seven scenarios of simulations. Abbreviations: AR1 autocorrelated errors, dTBS dynamic transform both sides, IIV inter-individual
variability on RUV, Power power error model, t-dist t-distribution error model, TV time-varying error model
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Fig. 3. Plot of absolute ΔOFVOriginalvs absolute ΔOFVCWRES among all real data examples for the six extended RUV models; all points
around the line of unity showing the agreement between conventional analysis and CWRES modeling

Fig. 4. Plot of absolute ΔOFVOriginalvs absolute ΔOFVDiagnostic for CWRES, CWRESI, IWRES, and NPDE among all real data examples for
the six extended RUV models
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not when simulating from dTBS; a profound real data example of
this was PefloxacinwhereΔOFVOriginal_power(ΔOFVCWRES_power)
was − 65 (− 50) and ΔOFVOriginal_dTBS (ΔOFVCWRES_dTBS)
was − 70 (− 50) as correction for scedasticity was only in
need. On the other hand, a correction for both scedasticity
and skewness was needed for Moxonodine PK where
ΔOFVOriginal_power(ΔOFVCWRES_power) was − 60 (− 48) and
ΔOFVOriginal_dTBS (ΔOFVCWRES_dTBS) was − 243 (− 87).

Asmentioned in our results,ΔOFVOriginal is expected to be
larger than ΔOFVCWRES, as it is more flexible with more
parameters to estimate; this difference between theΔOFVs was
most pronounced with the dTBS approach as shown by most
results being in the top left triangle in Fig. 3 when correction for
scedasticity and skewness resulted in different non-residual
error parameter estimates, for example in Disufenton sodium
PK:ΔOFVOriginal_dTBS (ΔOFVCWRES_dTBS) was − 116 (− 80) as
implementing dTBS led to a relative change of 126, 12, 30, 10, 6,
16, and 15% in estimates of THETAs’ from 1 to 7 respectively.

One interesting aspect is in case of multiple dependent
variables, using CWRES modeling identified accurately
which dependent variable needed further improvement
which decrease the risk of model over parameterization.
For example, the Gastric emptying PK model had four
dependent variables; by conventional analysis, only the total
ΔOFVOriginal_dTBS (− 433) is obtained but this does not
provide information about for which dependent variable an
extended RUV model is dominating the improvement in fit.
On the other hand, by CWRES modeling, four separate
ΔOFVCWRES_dTBS, one for each dependent variable, are
obtained and only the 2nd (ΔOFVCWRES_dTBS = − 207) and
4th (ΔOFVCWRES_dTBS = − 139) dependent variables could
be identified as important to transform in the original model.

Other common diagnostics CWRESI, IWRES, and NPDE
are available for evaluation of model goodness of fit. Similar to
CWRES, these diagnostics should be normally distributed when
the model adequately describe the data, except for CWRESI
because of the interaction between η*i and ε*i. It had been
concluded previously that IWRES perform poorly with increas-
ing model non-linearity, leading to biased parameter estimates
and misguided model development (12), and that CWRES and
NPDE give the best diagnostics in different situations even
when therewas interaction in themodel (32); our results support
these conclusions with a further favor of CWRES over NPDE as
shown in Fig. 4. Noting that NPDE are sensitive to the number
of samples and results shown here were with setting ESAMPLE
option to 10000, as lower samples resulted in poor predictions of
ΔOFVOriginal.

In conclusion, the principle of model-based diagnostics
post-processing for automated model building had been

demonstrated and successfully applied with CWRES model-
ing, which is a valuable diagnostic tool for RUV model
identification during model development/evaluation process,
as it provides guidance for the nature and magnitude of
potential RUV model misspecification/improvements.

How to Proceed in Practice

CWRES modeling can be easily implemented in analysis
software; it is already implemented in PsN (available as
Bresmod^ from version 4.7.0). The procedure requires the
original NLMEmodel file and a table with ID, TIME, CWRES,
and IPRED data items from the original NLME model
execution. CWRES data item can be replaced with other
residuals, and DVID data item is needed in case of multiple
dependent variables. TIME data item can be replaced by time
after dose TAD if available. IPREDdata item should be positive
on normal scale for successful testing of dTBS and power error
models. Options are available to account for multiple occasions
and to manually set the number of time cut off points. The
extended RUV models are automatically created and run; the
output contains ΔOFVCWRES for each extended RUV model
together with the parameters of interest for each RUV
extension. Since resmod is a fast and easy to perform procedure
with no limitations for continuous data, it is a good idea to
always consider applying resmod when selecting between-error
models for model development. Also, all parameters of the
original NLME model should be re-estimated after
implementing any of the extendedRUVmodels. As we showed,
these extended RUV models address different problems of the
residual variability. In our preliminary results, a combination of
these extended RUV models sometimes showed a better
description of data; however, that was not further investigated.
A previously discussed example of this was a combination of
dTBS approach with t-distributed error model to address
skewed residuals with outliers (7).
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Table II. The RMSE of ΔOFVCWRES for Different ΔOFVOriginal Ranges and the Relative RMSE of Other ΔOFVdiagnostics to RMSE of
ΔOFVCWRES

ΔOFVOriginal range Number of
models

RMSE of
ΔOFVCWRES

Relative RMSE
of ΔOFVCWRESI

Relative RMSE
of ΔOFVIWRES

Relative RMSE
of ΔOFVNPDE

0–10 26 4 8.5 3 3.7
10–100 33 22 6.8 1.7 1.3
100–1000 21 228 1.03 3 1
> 1000 4 621 1 2.8 1.3
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