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Abstract.  Quantitative evaluation of potential pharmacodynamic (PD) interactions is
important in tuberculosis drug development in order to optimize Phase 2b drug selection
and ultimately to define clinical combination regimens. In this work, we used simulations to
(1) evaluate different analysis methods for detecting PD interactions between two
hypothetical anti-tubercular drugs in in vitro time-kill experiments, and (2) provide design
recommendations for evaluation of PD interactions. The model used for all simulations was
the Multistate Tuberculosis Pharmacometric (MTP) model linked to the General Pharma-
codynamic Interaction (GPDI) model. Simulated data were re-estimated using the MTP-
GPDI model implemented in Bliss Independence or Loewe Additivity, or using a
conventional model such as an Empirical Bliss Independence-based model or the Greco
model based on Loewe Additivity. The GPDI model correctly characterized different PD
interactions (antagonism, synergism, or asymmetric interaction), regardless of the underlying
additivity criterion. The commonly used conventional models were not able to characterize
asymmetric PD interactions, i.e., concentration-dependent synergism and antagonism. An
optimized experimental design was developed that correctly identified interactions in > 94%
of the evaluated scenarios using the MTP-GPDI model approach. The MTP-GPDI model
approach was proved to provide advantages to other conventional models for assessing PD
interactions of anti-tubercular drugs and provides key information for selection of drug
combinations for Phase 2b evaluation.

KEY WORDS: general pharmacodynamic interaction model; in vitro; multistate tuberculosis

pharmacometric model; optimized design; pharmacodynamic interactions.

INTRODUCTION

Combination therapies are standard in treating tubercu-
losis (TB). Current drug development paradigms focus
substantially on pharmacokinetic (PK) interactions between
drugs in combinations, but focus less on pharmacodynamic
(PD) interactions, although these may also contribute to
therapeutic failure or success and are thus at least as
important. Three classes of PD drug-drug interactions are
currently defined as additive, synergistic, and antagonistic
interaction, where the latter two are defined as having an
increased or decreased effect compared to expected additivity
(1). However, the definition of additivity is not trivial, and
several competing criteria to define additivity have been used:
pure effect summation (2), Bliss Independence (3), and
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Loewe Additivity (4). In order to explore PD interactions, a
commonly used experiment is the conventional microdilution
checkerboard design in in vitro drug screening to evaluate PD
interactions. However, a full eight-by-eight or even ten-by-ten
checkerboard design that explores the entire combined
concentration space is quite labor-intensive. Hence, screening
studies frequently use only three-by-three designs, which are
less labor-intensive, but may also provide significantly less
information on the (joint) exposure-response relationships of
the drugs.

The Multistate Tuberculosis Pharmacometric (MTP)
model, which predicts the change in bacterial number for
fast- (F), slow- (S), and non-multiplying (N) bacteria, with
and without drug effects, is a semi-mechanistic PK-PD
model for studying exposure-response relationships for
anti-tubercular drugs and was first developed using
in vitro data (5). The MTP model has successfully been
implemented by Chen et al. to estimate drug efficacy in a
murine model (6,7), to quantify human early bacterial
activity with clinical trial simulations (8) and for
predicting early bacterial activity in humans using only
in vitro information (9).
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The General Pharmacodynamic Interaction (GPDI) model is
a model-based evaluation of PD interactions by Wicha et al. (10)
that provides model-based estimates of PD interactions given as
multi-directional shifts of drug potency and/or efficacy. A key
advantage is its compatibility with different additivity criteria,
making the GPDI model an appealing approach for studying and
comparing various underlying additivity criteria. Moreover, the
GPDI model allows for characterization and quantification of a
novel class of PD interactions called asymmetric interactions (10).
Asymmetric synergistic or antagonistic interactions are concentra-
tion-dependent, i.e., the interaction changes in magnitude depend-
ing on the concentration of the perpetrator and victim drug.
Theoretically, two drugs with an asymmetric interaction could
display a situation in which the two drugs change from perpetrator
to victim and/or the interaction changes from synergistic to
antagonistic, depending on the drug concentrations. The GPDI
model has been successfully applied to data from high-throughput
screening experiments (10), linked to the MTP model for
estimating PD interactions in TB using in vitro data by Clewe
et al. (11) and using murine data by Chen et al. (6).

The objectives of this work were (1) to evaluate different
analysis methods, including the GPDI model, an Empirical Bliss
Independence-based model, and the Greco model based on Loewe
Additivity, for detecting PD interactions between two hypothetical
anti-tubercular drugs in time-kill experiments of colony-forming
unit (CFU) versus time data, and (2) to identify an optimized
experimental study design in order to more efficiently assess PD
interactions, including asymmetric interactions.

MATERIALS AND METHODS

The MTP-GPDI Simulation Model
The MTP model (5), displayed in Fig. 1, was used as the

underlying model for all simulations. It consists of three
bacterial states, Le., fast- (F), slow- (S), and non-multiplying
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Fig. 1. The multistate tuberculosis pharmacometric (MTP) model. F,
fast-multiplying state; S, slow-multiplying state; N, non-multiplying
state; kg, growth rate of the fast-multiplying state bacteria; kgs, time-
dependent linear rate parameter describing transfer from fast- to
slow-multiplying state; ks, first-order transfer rate between slow- and
fast-multiplying states; kgn;, first-order transfer rate between fast- and
non-multiplying states; kg, first-order transfer rate between slow-
and non-multiplying states; ks, first-order transfer rate between non-
multiplying and slow-multiplying states

The AAPS Journal (2018) 20: 77

(N) bacteria, and was used for predicting CFU data from each
hypothetical drug. The differential equation systems for F (Eq.
1), S (Eq. 2), and N (Eq. 3) bacterial states were as follows:

dF

a: kG*F + kgp:S—Kkgs- F—kpnF (1)
ds
= s F ks Noksr-Skon S 2)
dN
E:kSN'S_kNS'N'i'kFN'F (3)

where kg is the growth rate of F; kgs, ksg, ke, ksn, kns are transfer
rates between each bacterial state; and F, S, and N represent fast-,
slow- and non-multiplying bacteria. The parameters in the MTP
model used for simulation are shown in Table L

The MTP model (5) was linked to the GPDI model (10)
to describe joint drug effects and drug interactions in the
hypothetical two-drug combination. Killing of the bacterial
sub-state F was assumed (E; Eq. 4). No drug effect was
assumed on other bacterial states (killing of S or N bacterial
sub-state or inhibition of growth of F bacterial sub-state) in
the MTP model. The GPDI model was implemented on both
Bliss Independence (Egs. 5-7) and Loewe Additivity (Eq. 8)
to allow for shifts of each EC50 in presence of the
combination partner.
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Table I. Parameter Estimates of the Multistate Tuberculosis Pharmacometric (MTP) Model Used in All Simulations

Parameter Description Typical value®
Fo (mL™1) Initial fast-multiplying state bacterial number 4.11

So (mL™h) Initial slow-multiplying state bacterial number 9770

Bunax (mL ") System carrying capacity 1.41-10°

kg (days ™) Growth rate of the fast-multiplying state bacteria 0.208

Krs,, (days™) Time-dependent linear rate parameter describing transfer from fast- to slow-multiplying state 1.663-107°
ksr (days ") First-order transfer rate from slow to fast-multiplying state 1.45:1072
ken (days™) First-order transfer rate from fast to non-multiplying state 8.97-1077

ks (days ™) First-order transfer rate from slow to non-multiplying state 0.186

kns (days ™) First-order transfer rate from non to slow-multiplying state 1.22:1073

“Values from Clewe et al. (5)

where Emax, and Emaxg are the maximal achievable drug
effects for drug A and drug B, respectively. For Loewe
Additivity (Eq. 8), solely a mutual Emax can be modeled.
EC505 and EC50g are the drug concentrations at 50% of
Emax, and Emaxg. Ha and Hg are sigmoidicity parameters
for each drug. INTAp and INTg 4 characterized the maximum
fractional change of the respective PD parameters of single
drug EC50, and EC50g. A value of zero of INTop or INTgA
defined no interaction; a positive value of one INT parameter
defined mono-directional antagonism; positive values of both
INT parameters bidirectional antagonism, while a value of
one INT parameter between —1 and 0 defined mono-
directional synergy; values between —1 and 0 for both INT
parameters defined bidirectional synergy. INT values of
opposite polarity indicate asymmetric type interactions with
concentration-dependent antagonism and/or synergy.
EC50inT A and EC50int A represent the interaction poten-
cies and Hintap and Hinrpa the interaction sigmoidicities.
Note that Loewe Additivity cannot be solved explicitly for E
when EC50,4 #EC50g and/or Ha # Hg, but implicitly by root
finding methods. The technical aspects of solving the Loewe
Additivity models are provided in the supplementary
material.

Conventional Rich and Reduced Time-Kill Curve Designs
for PD Interaction Studies

Two different designs based on the conventional
microdilution checkerboard technique of two hypothetical
anti-tubercular drugs, drug A and drug B, were used. A
conventional rich study design with a ten-by-ten checker-
board, including 1 scenario of natural growth (no treatment),
9 scenarios of monotherapy with each single drug, and 81
scenarios of combinations, was employed based on 2-fold
increasing static in vitro concentrations, ranging from 0.25 to
64 mg/L for drug A and drug B with a daily sample to 14 days
after first administration (Fig. 2). A conventional reduced
study design with a four-by-four checkerboard, including one
scenario of natural growth (no treatment), three scenarios of
monotherapy with each single drug and nine scenarios of
combinations was employed with 8-fold increasing concentra-
tion, including 0, 8, 16, and 64 mg/L for drug A and drug B
and with daily sampling to 14 days. All treatments started
4 days after infection and lasted for 14 days with daily
treatment.

Optimized Time-Kill Curve Design for PD Interaction
Studies

An optimized design for the evaluation of PD interac-
tions of drug combinations based on exposure levels at 0,
EC20, EC50, and ECS80 of each single drug is proposed in this
study. The rationale behind this optimized design was to
better capture changes in the potencies (EC50) of each drug,
using information from the exposure-response relationships
of each drug in monotherapy. The optimized design included
one scenario of natural growth (no treatment), three scenar-
ios of monotherapy with each single drug, and nine scenarios
of combinations. Sampling time points for the optimized
design are the same as the conventional rich and reduced
study design (Fig. 2). All treatments started 4 days after
infection and lasted for 14 days with daily treatment.

Explorative Studies with Conventional Models
for Quantifying PD Interactions

In order to evaluate different analysis methods, including
the GPDI model, an Empirical Bliss Independence-based
model and the Greco model based on Loewe Additivity, the
estimated interaction on a parameter level (EC50) obtained
from estimating PD interactions using these models linked to
the MTP model was evaluated. Only the conventional rich
and reduced designs were used. Four different scenarios were
simulated using the MTP-GPDI model with the same
exposure-response relationship for hypothetical drug A
(Emaxs =1 day ' and EC50, =10 mg/L) in all evaluated
scenarios, but a varied exposure-response relationship was
used for hypothetical drug B, compared with drug A,
including both different Emaxg and EC50g (Emaxg=
3 day ! and EC505 =16 mg/L), different Emaxp (Emaxp =
3 day’l) and same EC50g, same Emaxg and different EC50g
(EC505 =16 mg/L), and both same Emaxg and ECS50g.
Sigmoidicity constants Hy and Hp were set to 1 in each
scenario. Details of each scenario are shown in Table II. For
Loewe Additivity, only scenarios 3 and 4 were included, as
Loewe Additivity is not defined for drugs exhibiting different
maximum effects.

To explore the behavior of conventional models to assess
different types of PD interactions (antagonism, synergism, or
asymmetric interaction) or additivity within each scenario, the
two interaction parameters INT5op and INTgA in the GPDI
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Fig. 2. Illustration of the combinations of concentrations of drugs A and B in the a conventional rich design, b conventional reduced design,
and ¢ newly proposed optimized design. The sampling time points for each design are shown in (d). The conventional rich and reduced designs
were evaluated for the analysis of pharmacodynamic interaction between drugs A and B using conventional models linked to the Multistate
Tuberculosis Pharmacodynamic (MTP) model and the General Pharmacodynamic interaction (GPDI) model

model were varied in the simulations and set to —0.9, —
0.75, = 0.5, —0.25, 0, 1.5, 4, 6.5, or 9 equivalent to —90%,
=75%, —50%, —25%, 0%, 250%, 500%, 750%, or 1000%
shift in EC50 of each single drug, respectively (Table II
and Fig. 3). The simulated data were re-estimated using
the MTP model linked only to conventional models such
as an Empiric Bliss Independence-based model (Eq. 9)
and the Greco model (Eq. 10) based upon Loewe
Additivity:

Eag = EaA + Eg—PB X EA x Eg (9)
CA CB
1:EC E 1/Ha +EC E 1/Hp
50,4 X (EmaX*E) 508 X (EmaX*E)

OLXCAXCB

i 1/(2xHa)+1/(2xH
ECSO‘A X ECS()’B X (Emfx—E)( . e »)

(10)

where o and B are the PD interaction parameters to be
estimated in Egs. 9 and 10 for the conventional models. In
Eq. 9, =1 indicated Bliss Independence; < 1 indicated Bliss
antagonism; 3> 1 indicated Bliss synergy. E5 and Eg repre-
sent the effect generated from drug A or drug B in
monotherapy using sigmoidal maximum effect models,

which were then linked to stimulation of death of F
bacterial state in the MTP model. In Eq. 10, a=0
indicated Loewe Additivity, o <0 indicated Loewe antag-
onism, or o >0 indicated Loewe synergy. Co and Cg are
the drug A and B concentrations. EC50, and EC50g are
drug concentrations of drug A and B that trigger the half-
maximum effect, and Emax is the maximum effect in the
Greco model. Hy and Hg are sigmoidicity parameters for
each drug.

The MTP model and exposure-response parameters for
monotherapy (Emaxa, EC504, Ha, Emaxg, EC50g, and Hg)
were fixed in the re-estimations. The likelihood ratio test,
based on the objective function value, was used to judge
whether an interaction was significantly different from
additivity. If estimation of the interaction parameters o or f3
resulted in a decrease of 3.84 (a <0.05, df=1, * distribution)
compared to a reduced model assuming additivity (8 fixed to
1 for the Empiric Bliss Independence model and o fixed to 0
for the Greco model), the interaction was deemed statistically
significant.

The stochastic simulation and estimation method
(SSE) in NONMEM 7.3 (ICON Development Solution,
Ellicott City, MD, USA) (12) and Perl-speaks-NONMEM
(PsN, version 4.6.12; Department of Pharmaceutical
Biosciences, Uppsala University, Sweden) (13) were
used.
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Parameter Description Scenario 1 Scenario 2 Scenario 3 Scenario 4
Emax, # Emax, # Emax, = Emax, =
Emaxg Emaxg Emaxg Emaxg
EC504 # EC504 = EC504 # EC504 =
EC50g EC50g EC50g EC50g
Emax, (day ) Maximum achievable fractional drug A-induced 1 1 1 1
stimulation of fast-multiplying bacterial death rate
EC50, (mg'L™") Drug A concentration at 50% of Emaxa 10 10 10 10
Ha Sigmoidicity parameter of drug A 1 1 1
Emaxg (day ') Maximum achievable fractional drug B-induced 3 3 1 1
stimulation of fast-multiplying bacterial death rate
EC50g (mg-L ™) Drug B concentration at 50% of Emaxg 16 10 16 10
Hp Sigmoidicity parameter of drug B 1 1 1 1
INTAp Maximum fractional change of EC504 by drug B -0.9,-0.75,-0.5,-0.25,0,1.5,4,6.5,9
INTgA Maximum fractional change of EC50g by drug A -0.9,-0.75,-0.5,-0.25,0,1.5,4,6.5,9
EC50inT, Interaction potency of the perpetrator drug B 16 10 1 10
AB (mg‘Lil)
EC50inT, Interaction potency of the perpetrator drug A 10 10 10 10
BA (mg'Lil)

Parameter estimates of the General Pharmacodynamic Interaction (GPDI) model which was linked to the Multistate Tuberculosis
Pharmacometric (MTP) model and used in simulations of time-kill experiments of CFU versus time for combination of two drugs (A and
B) using conventional rich and reduced design (Fig. 2). Four different scenarios were simulated where the exposure-response relationship for
drug A was the same, but the exposure-response relationship for drug B was varied. In order to explore different types of pharmacodynamic
interactions (antagonism, synergism, or asymmetric interaction) within each scenario, the two interaction parameters, INT5p and INTg 4, in the
GPDI model were varied (9 x 9 =81 combinations) in the simulations. The simulated data were re-estimated using the MTP model linked to
the Greco model (Loewe Additivity) or the Empirical Bliss model (Bliss Independence) in order to compare the estimated pharmacodynamic
interaction to the true (simulated) interaction. The MTP model and exposure-response parameters for monotherapy (Emax,, EC504, Ha,

Emaxg, EC50g, and Hg) were fixed in the re-estimations

As the Loewe Additivity-based models in this study, ie.,
the MTP-GPDI model in Loewe Additivity (Eq. 7) and the
Greco model based on Loewe Additivity (Eq. 10), do not
have an explicit solution, but require numeric techniques to
be solved, a root finder function was written in C using the
GNU scientific library (14). The C function was called from
NONMEM® via NM-TRAN abbreviated functions and a
Fortran interface using the Fortran 2003 iso_c_binding
intrinsic module. Everything was compiled and linked to the
NONMEM executable using version 5.1.1 of gcc and gfortran.
The C code as well as the wrapper functions and instructions
on how to link C code to NONMEM® are available in the
supplementary material.

Evaluation of Conventional and Optimized Designs for PD
Interaction Assessment

After the explorative evaluation of different analysis
methods, including the GPDI model, an Empirical Bliss
Independence-based model, and the Greco model, the
performance of the GPDI model and conventional PD
interaction models in a broader context with conventional
(rich and reduced designs) and optimized designs were
evaluated. The simulated data using the Loewe Additivity-
based or Bliss Independence-based GPDI model were re-
estimated using the MTP model linked to the GPDI model
(based on Bliss Independence or Loewe Additivity), the
Empiric Bliss Independence-based model, or the Greco

model based on Loewe Additivity, in order to compare the
estimated PD interactions to the true (simulated) interactions.

The MTP model and exposure-response parameters for
monotherapy (Emaxa, EC504, Ha, Emaxg, EC50g, and Hg)
were fixed in the re-estimation. The PD interaction parameters
(INTAp and INTg 4) were estimated using the GPDI model. In
order to provide more general conclusions for a variety of
hypothetical drugs, Emax, and Emaxg were randomly sampled
from 1 to 5, EC50,4 and EC50g were randomly sampled from 0.1
to 64 mg/L, and H4 and Hg were randomly sampled from 1 to 2.
As before, Emax, and Emaxg were set to the same value in the
case of Loewe Additivity-based models. The PD interaction
parameters, EC50, and EC50p, were fixed to the true
monotherapy EC50, and EC50p values. The parameters
INTAp and INTg 4 were randomly sampled from —0.9 to — 0.5
(synergistic interaction), from 0.5 to 25 (antagonistic interac-
tion), and 0 (additivity, no interaction). Details of the parameter
values in the simulations are shown in Table III.

In order to handle datasets that are dependent on the
model parameters (optimized design), the SSE was per-
formed in R software (version 3.2.4; R Foundation for
Statistical Computing, Vienna, Austria). Differential equa-
tions were solved using the ‘deSolve’ package (15,16) (version
1.13). To improve performance, differential equations were
encoded in C, compiled as a dynamically linked library (.dll)
and linked to the ‘deSolve’ interface. Model parameters were
estimated with ‘optim’ from ‘stats’ (version 3.2.4) using
maximum-likelihood estimation. The GNU scientific library
for C (14) was used to provide root finding functionality
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Fig. 3. Classification on the parameter level by the Empirical Bliss model based on Bliss Independence using the conventional rich design (left) or the
conventional reduced design (right). The color of each dot indicates the classification of the pharmacodynamic interaction by the Empirical Bliss
Independence model: Bliss Independence (ADD in blue), antagonism (ANT in red), and synergy (SYN in green). The true classification is given by
the four different sectors in each plot: the upper right sector shows ANT, the lower left sector shows SYN, and the upper left and lower right sectors
show asymmetric interaction (ANT+SYN) Time-kill experiments of CFU versus time of two hypothetical drugs A and B with four different scenarios
of different exposure-response relationships (1-4) were simulated using the conventional rich or reduced design (Fig. 2) and the Multistate
Tuberculosis Pharmacometric (MTP) model linked to the General Pharmacodynamic Interaction (GPDI) model. In each scenario (1-4) of different
exposure-response parameters of drugs A and B, the type of pharmacodynamic interaction (ANT, SYN, asymmetric interaction (ANT+SYN)) and
no interaction were varied, resulting in 81 (9 x 9) different pharmacodynamic interactions where each simulated pharmacodynamic interaction is one
dot in each plot. The x-axis shows the value (nine different values) of the interaction parameter INTp of the GPDI model, presented as percent shift
of the EC50 of drug A caused by drug B. The y-axis shows the distribution (nine different values) of the interaction parameter INTg 5 of the GPDI
model, presented as percent shift of the EC50 of drug B caused by drug A.

within the Ordinary Differential Equation system for the Correct classification rate

Loewe Additivity models. The R code and the C code can be

obtained from the authors upon request. = 100% -
Relative bias (rBias), relative imprecision (rRMSE), and

correct classification rate of interaction parameters in the GPDI

model using conventional rich design, reduced design, or

optimized design were calculated with the true and estimated true; is the true parameter i value used in the initial

parameter V.alues.. The rBias (Eq. 11), rRMSE (Eq. 12), and simulations, and N is the number of simulations for each set
correct classification rate (Eq. 13) were derived as: of true; (N =1000).

number of correctly identified interactions
N

(13)

where estimation; denotes the estimated parameter i value,

estimation,;—true;

(11) RESULTS
true;

1
rBias = 100%- N Y

Explorative Studies with Conventional Models for PD
Interaction Studies

(estimation;—true;)’
true?

(12) Figure 3 displays the results obtained from estimating the

rRMSE = 100%-\/11, >
Empirical Bliss Independence model in a conventional rich
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Fig. 3. (continued)

and reduced design for four different scenarios of Emax and
EC50 of the two hypothetical drugs using the MTP-GPDI
model as the underlying “true” model. The true interactions
on a parameter level (EC50) of the simulated combinations
are displayed in Fig. 3 as percent shift of EC50, or EC50g. In
each plot, four sectors are shown as true antagonistic

EC504 % shift

interactions on a parameter level (i.e., both EC50 values
shifted <0%), true synergistic interaction (i.e., both EC50
values shifted >0%), true asymmetric interaction (i.e., one
EC50 value shifted to <0% and the other EC50 value shifted
to > 0%, leading to concentration-dependent antagonism and/
or synergy on the effect level), and additivity (i.e., both EC50

Table III. Analysis of Pharmacodynamic Interactions Using the General Pharmacodynamic Interaction (GPDI) Model

Parameter Description

Parameter distribution

Emax, (day )
EC50, (mg'L")
Ha

Emaxg (day ')
EC505 (mg-L™)

Maximal achievable drug effect for drug A
Drug concentration at 50% of Emaxa
Sigmoidicity parameter of drug A
Maximal achievable drug effect for drug B
Drug concentration at 50% of Emaxg

Hp Sigmoidicity parameter of drug B
INTAp Maximum fractional change of the respective PD parameters
INTgA Maximum fractional change of the respective PD parameters

ECSOINT,AB (mgLfl)
EC50inrpa (mgL™")

Interaction potencies
Interaction potencies

Random samples from 1 to 5

Random samples from 0.1 to 64

Random samples from 1 to 2

Random samples from 1 to 5

Random samples from 0.1 to 64

Random samples from 1 to 2

Random samples from — 0.9 to —0.5, 0 and 0.5 to 20
Random samples from —0.9 to —0.5, 0, and 0.5 to 20
Fixed to values from sampled EC50g

Fixed to values from sampled EC50,

Parameter estimates of the GPDI model which was linked to the Multistate Tuberculosis Pharmacometric (MTP) model and used in
simulations (n=1000) of time-kill experiments of CFU versus time for combination of two drugs (A and B) using conventional rich and
reduced design (Fig. 2). The parameters were randomly sampled from distributions. The simulated data were re-estimated using the MTP
model linked to the GPDI model (based on Bliss Independence or Loewe Additivity) in order to compare the estimated pharmacodynamic
interaction to the true (simulated) interaction. The MTP model and exposure-response parameters for monotherapy (Emaxa, EC504, Ha,

Emaxg, EC50g, and Hg) were fixed in the re-estimation
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values shift at 0%). The estimated interactions on a
parameter level from the Empiric Bliss Independence
model are color-coded, ie., antagonism (ANT in red),
synergy (SYN in green), and no interaction (ADD in
blue) as quantified by the interaction parameter o.
Figure 4 displays the result from estimating the Greco
model using the Loewe Additivity-based MTP-GPDI
model while the same visualization modalities were
applied as in Fig. 3, presenting the result of the estimated
interaction parameter f.

In the conventional rich design, the Empirical Bliss
model (Fig. 3) and the Greco model (Fig. 4) correctly
captured antagonism and synergy. However, in situations
with asymmetric interactions, the conventional models only
estimated symmetric antagonism (ANT in red), synergy (SYN

Conventional rich design

The AAPS Journal (2018) 20: 77

in green), and defined additivity (ADD in blue) and were
intrinsically unable to estimate asymmetric interactions. We
have arbitrarily selected three points from Fig. 4 representing
synergy, asymmetric interaction, and antagonism simulated
from the GPDI model (Fig. 5), but estimated as synergy,
additivity, and antagonism by the Greco model. It is apparent
that the asymmetric case (scenario 2) displays regions of
antagonism and synergy, which cannot be captured by the
Greco model that wrongly classified this scenario as additive.
Moreover, the obtained classification in the asymmetric
region of the interaction space was apparently dependent on
the maximum effect as well as the potency of the interacting
drug A and B, and it was difficult to foresee if an interaction
would result in synergy, antagonism, or no interaction in the
asymmetric sectors.

Conventional reduced design

ANT +SYN ANT ANT +SYN ANT
1000 L L L @ L L ] * L ] L ] 3 1000 L] * L] * L L ] L L *
C Greco model
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Fig. 4. Classification by the Greco model based on Loewe Additivity using the conventional rich design (left) or the conventional reduced
design (right). The color of each dot indicates the classification of the pharmacodynamic interaction by the Greco model using the GPDI model
as underlying true model: Loewe Additivity (ADD in blue), antagonism (ANT in red), and synergy (SYN in green). The true classification is
given by the four different sectors in each plot: the upper right sector shows ANT, the lower left sector shows SYN, and the upper left and
lower right sectors show asymmetric interaction (ANT+SYN). Numbers 1, 2, and 3 on the right side of dots are arbitrary chosen for Fig. 5 to
illustrate the interaction surface for symmetric (1 and 3) and an asymmetric (2) interaction scenario. Time-kill experiments of CFU versus time
of two hypothetical drugs A and B with two different scenarios of different exposure-response relationships (3 and 4) were simulated using the
conventional rich or reduced design (Fig. 2) and the Multistate Tuberculosis Pharmacometric (MTP) model linked to the General
Pharmacodynamic Interaction (GPDI) model. In each scenario (3 and 4) of different exposure-response parameters of drugs A and B, the type
of pharmacodynamic interaction (ANT, SYN, asymmetric interaction (ANT+SYN)) and no interaction were varied, resulting in 81 (9 x9)
different pharmacodynamic interactions where each simulated pharmacodynamic interaction is one dot in each plot. The x-axis shows the
distribution (nine different values) of the interaction parameter INTop of the GPDI model, presented as percent shift of the EC50 of drug A
caused by drug B. The y-axis shows the distribution (nine different values) of the interaction parameter INTg 4 of the GPDI model, presented
as percent shift of the EC50 of drug B caused by drug A
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Fig. 5. Predicted log;o CFU/mL in numbers and log;, CFU/mL deviation from Loewe Additivity (in shaded areas) for hypothetical drug A and
drug B in different combinations at 7 days after treatment. Plots 1, 2, and 3 represent corresponding selected point 1—estimated synergy,
2—estimated additivity, and 3—estimated antagonism by the Greco Model in Fig. 4. In each plot, concentrations of drug A and drug B are
shown on x-axis and y-axis, respectively. White areas in the figure show Loewe Additivity, whereas red shaded areas show higher log;y CFU/
mL (antagonism) than additivity and green shaded areas show lower log;o CFU/mL (synergism) than additivity

Similar patterns of interaction classification were also
observed in the conventional reduced design in the scenario
with differing Emax between drug A and B. In the scenarios
with the same Emax for drug A and B, most of the
estimations from conventional models were not significant
to estimate and therefore defined additivity as indicated by
the blue color coding, regardless which PD interactions were
simulated from the MTP-GPDI model.

Evaluation of Conventional and Optimized Designs for PD
Interaction Assessment

After the explorative studies, we assessed whether
conventional rich and reduced designs were suitable to
support estimation of parameters from the GPDI model
using SSE for 1000 combinations of the two hypothetical
drugs A and B. In addition, the correct interaction classifica-
tion rate was calculated for the GPDI models, as well as for
the Empiric Bliss Independence and the Greco model for
comparison.

Regardless of the underling additivity criterion, the rBias
and rTRMSE of the conventional rich design were lowest
overall, as shown in Table IV. The conventional reduced
design was the least informative design for estimating GPDI
parameters, as seen from the highest rBias up to 7.56% and
highest rRMSE up to 78.9%. The optimized design based on
EC20, EC50, and ECS80 of the respective single drugs resulted
in lower rBias and lower rRMSE than the reduced design at

the same sample size. The rRMSE of the optimized designs
was up to 1.6-fold lower than those in the reduced design.

In Table V, the correct classification rate (%) is
presented for the conventional rich, reduced, and optimized
design. The rich and optimal designs provided similarly high
correct classification rates of >93.5%, including the asym-
metric type of interaction. In contrast, the conventional
models could not classify the asymmetric interactions at all,
shown as a 0% correct classification rate. However, “pure”
antagonism or synergy were also correctly classified by the
Empiric Bliss Independence and the Greco model in >97.5%
of the scenarios.

DISCUSSION

Combination therapies represent a major challenge in
drug development. In particular, when drugs are added to
existing clinical combination regimens, as done in anti-
tubercular drug development, clinical evaluation of PD drug
interactions is barely possible. Consequently, pre-clinical
information has to be exploited and integrated along the
drug development process to inform clinical drug develop-
ment and selection for Phase 2a/b regimens.

The present study provides a systematic investigation of
the novel MTP-GPDI model approach, its performance in
comparison to conventional models for PD interactions, and
experimental design recommendations. In this study, we
demonstrated that the GPDI model is an advantageous
model-based method for evaluating PD interactions for TB
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Table IV. Relative Bias (%) and Relative Imprecision (%) of Interaction Parameters of the General Pharmacodynamic Interaction (GPDI)
Model Based on Bliss Independence and Loewe Additivity Linked to the Multistate Tuberculosis Pharmacometric (MTP) Model Using the
Conventional Rich, Reduced, and Newly Proposed Optimized Design

Relative bias (%)

Relative imprecision (%)

Conventional rich Conventional Newly proposed Conventional rich Conventional Newly proposed

design reduced design optimized design design reduced design optimized design
GPDI model based on Bliss Independence
INTAB* 0.91 4.98 -0.73 13.72 41.64 28.79
INTgA” 051 7.56 1.97 13.42 78.90 30.14
GPDI model based on Loewe Additivity
INTAB? -0.62 3.02 0.57 16.22 36.98 26.00
INTgA” 095 4.67 0.57 19.22 45.50 25.80

“INTap represents the maximum fractional change of EC504
b INTgA represents the maximum fractional change of EC50g

drugs compared to conventional models, as it also allows for
quantification of asymmetric interactions, which were not
quantifiable by the conventional methods. Although the
present study focused on TB as the therapeutic area, the
concepts behind the GPDI model are applicable to other
therapeutic areas where combination therapies are prevalent,
such as oncology, neurology, or anesthesia.

The MTP model allows for quantification of anti-
tubercular drug effects on different distinct subpopulations,
i.e., fast-, slow-, and non-multiplying bacteria. To be able to
directly relate the estimates of the GPDI model to the
estimates of the conventional models, we only evaluated a
single effect site—stimulation of the death of fast-multiplying
bacteria—in the present simulation study. However, in the
case of multiple effect sites, conclusions on synergy or
antagonism may not directly relate to parameter estimates
pointing to synergy or antagonism in the GPDI model as
interactions can occur at several different mechanistic levels
in the MTP model, i.e., inhibition of the growth of F bacterial
state and/or stimulation of the death of F, S, or N bacterial
states. Therefore, conclusions on drug interactions should be

drawn on the biomarker level in such situations, i.e., predicted
change in CFU based on the interaction model compared to a
model with only expected additivity of the monotherapy
effects of the drugs. Moreover, future studies should evaluate
optimized designs for situations with multiple effect sites,
which may require the addition of further concentrations to
the design if drug potencies at the effect sites differ.

The term “asymmetric interaction” was introduced
earlier (10) and summarizes concentration-dependent
synergistic and antagonistic behavior of interacting drugs,
which can only be quantified with the GPDI model approach.
The GPDI concept (10) was developed using 200 drug
combination experiments emanating from a high-throughput
screening investigation and up to 38% of the observed
interactions were asymmetric. Hence, the asymmetric inter-
action type might represent an important and relevant class of
PD interactions that conventional model-based approaches,
including the evaluated Empirical Bliss model and the Greco
model based on Loewe Additivity, cannot intrinsically
evaluate. In the first part of the present work, we explored
how conventional models compare to the GPDI model in

Table V. Correct Classification Rate (%) by the General Pharmacodynamic Interaction (GPDI) Model Using the Conventional Rich,
Reduced, and Newly Proposed Optimized Design Based on Bliss Independence or Loewe Additivity and the Empirical Bliss Independence-
Based Model and the Greco Model Based on Loewe Additivity Using the Conventional Rich and Reduced Design

GPDI + Bliss GPDI + Loewe Empirical Bliss Greco model +
Independence Additivity Independence Loewe Additivity
Conventional rich Antagonism 100 100 100 99.3
design Synergy 98.3 97.8 100 100
Asymmetric” 100 100 0 0
Additivity 94.0 95.1 95.4 94.0
Conventional Antagonism 100 99.6 100 97.5
reduced design Synergy 81.4 84.0 99.2 100
Asymmetric* 97.5 99.0 0 0
Additivity 94.4 93.6 95.8 94.7
Newly proposed Antagonism 100 100 100 99.6
optimized design Synergy 98.3 99.4 100 100
Asymmetric* 98.8 93.5 0 0
Additivity 93.9 93.6 95.6 95.4

“Indicates concentration-dependent antagonism or synergy in combinations
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assessment of anti-tubercular drug PD interactions on a
parameter level. Thereafter, different scenarios based on
Emax and EC50 for hypothetical drugs A and B were created
and mimicked realistic situations. While there was good
agreement overall between the conventional models and the
GPDI models for “pure” synergy and antagonism, the
conventional models were not able to classify the asymmetric
interactions correctly and there was no clear pattern of what
conventional models would classify in the asymmetric region
of the PD interaction space (Figs. 3 and 4). Hence,
conventional models may provide erratic classification results
in these scenarios and may likely lead to wrong decisions on
the nature of a PD interaction, which may harm decision-
making in a drug development program. Moreover, the
conventional models are tied to a single additivity criterion.
For instance, the Empirical Bliss model is based on Bliss
Independence and the Greco model is based on Loewe
Additivity, whereas the GPDI model is compatible with
various additivity criteria, including both of the latter criteria.
The advantage of compatibility with different additivity
criteria is that no assumption about additivity has to be made
and several criteria can be evaluated. In addition, INT,p and
INTgA characterized the maximum fractional change of the
respective PD parameters from a single drug, here EC50.
Hence, the interaction parameters of the GPDI model are
interpretable, which is not possible when conventional models
are applied.

The second part of this study focused on the perfor-
mance of the MTP-GPDI model under different experimen-
tal designs. In addition to conventionally used checkerboard
designs, termed rich and reduced design in the present work,
an optimized design was proposed, which was based on
EC20, EC50, and EC80 of each single drug defined in the
monotherapy. The rich design was based on the ten-by-ten
microdilution checkerboard design, resulting in a labor-
intensive set of 81 scenarios of two-drug combination
experiments. The reduced design was as a small version of
the rich design and spanned the same concentration range as
the rich design, but with a four-by-four checkerboard at
lower granularity than the rich design yielding nine scenarios
of two-drug combination experiments. The proposed opti-
mized design, based on 0, EC20, EC50, and EC80 of each
drug, also resulted in nine scenarios of two-drug combination
experiments. However, our analysis demonstrated that the
optimized design was much more informative than the
reduced design and enabled estimates of both the GPDI
interaction parameters INTap and INTg at lower rBias and
lower rRMSE compared to the conventional reduced design.
Notably, rBias was even 0.25-fold lower in the optimized
design than that in the conventional rich design. Thus, our
study reflected a very wide range of potential interacting
drugs with varied Emax from 1 to 5 day ', EC50 from 0.1 to
64 mg/L, and H from 1 to 2 for each single drug (17). In
addition to the superior rBias and rRMSE estimates for the
optimized design, the classification rate was also very
close to the rich design and even >93.5% for the
asymmetric interaction type that was not possible to
identify with the conventional PD interaction models at
all. The optimized design proposed in this study thus
provides more information on PD interactions than the
conventional reduced design.
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CONCLUSION

The GPDI model, which provides model-based estimates
of PD interactions given as symmetric and asymmetric
percent shift of PD parameters of single drug effects and is
compatible with different additivity criteria, was shown to be
advantageous to other conventional models, as it correctly
quantifies asymmetric interactions. The optimized design,
which was based on EC20, EC50, and EC80 of each single
drug, provided lower rBias and lower rRMSE than a
conventional reduced four-by-four checkerboard study design
at the same total number of samples required. The MTP-
GPDI model is an advantageous approach to other conven-
tional models for assessing PD interactions of anti-tubercular
drugs and provides key information for selection of drug
combinations for Phase 2b evaluation.
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