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Abstract. Nonlinear mixed effects (NLME) modeling based on stochastic differential
equations (SDEs) have evolved into a promising approach for analysis of PK/PD data. SDE-
NLME models go beyond the realm of standard population modeling as they consider
stochastic dynamics, thereby introducing a probabilistic perspective on the state variables.
This article presents a summary of the main contributions to SDE-NLME models found in
the literature. The aims of this work were to develop an exact gradient version of the first-
order conditional estimation (FOCE) method for SDE-NLME models and to investigate
whether it enabled faster estimation and better gradient precision/accuracy compared to the
use of gradients approximated by finite differences. A simulation-estimation study was set up
whereby finite difference approximations of the gradients of each level were interchanged
with the exact gradients. Following previous work, the uncertainty of the state variables was
accounted for using the extended Kalman filter (EKF). The exact gradient FOCE method
was implemented in Mathematica 11 and evaluated on SDE versions of three common PK/
PD models. When finite difference gradients were replaced by exact gradients at both FOCE
levels, relative runtimes improved between 6- and 32-fold, depending on model complexity.
Additionally, gradient precision/accuracy was significantly better in the exact gradient case.
We conclude that parameter estimation using FOCE with exact gradients can successfully be
applied to SDE-NLME models.

KEY WORDS: extended Kalman filter; first-order conditional estimation (FOCE); nonlinear mixed
effects modeling; sensitivity equations; stochastic differential equations.

INTRODUCTION

Nonlinear mixed effects (NLME) models are used to
describe populations of individuals that behave qualitatively
similar, but where every individual has its own quantitative
characteristics. These models have been highly applicable in
pharmacokinetics (PK) and pharmacodynamics (PD) (1–4).
Physiological systems are often modeled with a continuous-
time deterministic model and noisy observations that are
discrete in time. However, since the mechanisms of the
physiological systems of interest are often not completely

understood, a natural extension is to account for the
uncertainty in the dynamics. This is the motivation behind
extending the NLME models with yet a stochastic part (5).

Stochastic differential equations (SDEs) greatly extend
the descriptive power of ordinary differential equations
(ODEs) that are usually used to encode dynamical system
models in pharmacometrics. An ODE model can be turned
into an SDE model by the addition of possibly non-linearly
scaled noise terms. These additional terms can be thought of
as a type of slack-variable introduced to pick-up potential
discrepancies between the mechanistically modeled dynamics
and unknown but indirectly observed dynamical effects. In
other words, these noise terms in the dynamical system
equations represent the lumped effect of all not explicitly
mechanistically modeled effects in the system. This includes
turning model parameters into state variables with random
dynamics, which for instance could be used to model inter
occasion variability (6) or time-dependent changes in param-
eters where the trend is unknown a priori, and for the
estimation of an unknown input signal (7).

The application of SDEs to model uncertainty in
dynamics has long been used in other fields, such as finance
and control theory, and various parameter estimation
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methods have been developed (8). However, the sparsity and
irregular sampling of PK/PD data has made it difficult to
directly apply these parameter estimation methods. Never-
theless, some attempts to develop methods for parameter
estimation in NLME models with stochastic dynamics have
been successful, using for example (i) Bayesian inference
(9,10), (ii) expectation maximization (EM) methods (11–13),
and (iii) by expanding the traditional gradient-based estima-
tion methods using Kalman filters (14,15). These methods
have been used for several PK/PD applications (16–19). This
paper focuses on gradient-based methods. A general over-
view of some of the related method and application papers is
shown in Table I.

ODE models are a subset of SDE models because
SDEs reduce to ODEs when the system noise (the Gaussian
process covariance) is decreased towards zero. Ideally, the
dynamical system under study is well characterized and the
mechanistic terms present in the dynamical system model
equations give an accurate description of the model’s
dynamical behavior. Then ODEs are a suitable model
description. To account for incorrect model definitions,
Kristensen et al. (20) introduced a method for evaluating
the choice of a deterministic population model described

with ODEs and iteratively improving it by using an SDE
model to pinpoint where in the dynamical model equations
misspecification may be present. A similar idea had previ-
ously been used for gray box models (21).

Instead of opting to find a deterministic model, Tornøe
et al. (14) and Overgaard et al. (15) captured the additional
uncertainty due to model misspecification, oversimplifica-
tions, and approximations by using SDEs in NLME models.
The well-known parameter estimation method first-order
conditional estimation (FOCE) (22) was expanded to
account for the new mathematical framework. This involved
state variable estimation using extended Kalman filters
(EKFs) (23). The algorithm was initially implemented in
NONMEM (14) and later implemented in both MATLAB
(24) and R (25).

Optimizing the FOCE approximation of the log likeli-
hood using gradient-based methods, such as the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (26), requires
sensitivities of the state variables of the underlying model.
However, NLME models defined by differential equations
often lack an analytic solution. Hence, the traditional way to
compute the gradient is to use a finite difference approxima-
tion. An alternative approach is to obtain the gradients

Table I. Timeline showing the main contributions to nonlinear mixed effects models with stochastic differential equations and to the S-FOCE
method
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utilizing the sensitivity equations for the original set of
differential equations. The algorithm originally proposed by
Almquist et al. (27) is an extension of the FOCE algorithm
that uses these sensitivity-based gradients for population
NLME models based on ODEs. This algorithm is here
referred to as S-FOCE. The sensitivity approach was also
applied by Leander et al. (28) for single individual models
using SDEs. For the single individual, the likelihood was
approximated using the EKF, which in turn requires a first-
order differentiation of the EKF. These ideas have been
combined for parameter estimation of NLME models using
SDEs (29). In that study, the exact gradient approach was
used instead of the traditional finite difference approach
when using the FOCE-EKF approach by using the mixed
symbolic and numeric algebra capabilities in Mathematica
(30). However, the details of the algorithm have until now not
been presented.

This paper extends the S-FOCE algorithm to a general
NLME model based on SDEs using the EKF approach. This
involves both the first- and the second-order sensitivities of
the EKF. Earlier stage of this work has been presented by
(31). The method is evaluated on synthetically generated
datasets from common PK/PD models with uncertainty in the
dynamics, in addition to the traditional observation uncer-
tainty and interindividual variability. Relative computational
time of the sensitivity-based gradients is compared to the
finite difference approach. Moreover, the precision and the
accuracy of both gradient approaches are analyzed.

The paper is structured as follows. First, the necessary
theory for the proposed extension is introduced, including
the approximate population likelihood and the EKF,
followed by the proposed algorithm. Second, the methods
for evaluating and comparing of the algorithm are described.
Third, the results of the comparison are presented, showing
speedup in estimation time as well as increased precision and
accuracy of gradients for the proposed algorithm. Finally, the
results are discussed along with an outlook towards imple-
mentation of the algorithm in an existing parameter estima-
tion framework.

THEORETICAL BACKGROUND

This section introduces the theory needed for extending
the S-FOCE method to NLME models with stochastic
dynamics (SDE-NLME).

Nonlinear Mixed Effects Models Based on Stochastic
Differential Equations

NLME models can be defined using SDEs to describe
the dynamics of the continuous-time state variables x. The
continuous-time, stochastic dynamics are modeled as

dxi ¼ f xi; ui; t;θ;ηið Þdt þG xi; ui; t;θ;ηið ÞdW i

xi 0ð Þ ¼ x0 θ;ηið Þ ð1Þ

with discrete observations modeled using an observation
function h and Gaussian noise ei j∼N 0;Σ xi j; ui; ti j ;θ;ηi

� �� �
,

yi j ¼ h xi j; ui; ti j ;θ;ηi

� �þ ei j: ð2Þ

The function f(xi, ui, t, θ,ηi), describing the deterministic
part of the dynamics, is called the drift function and the part
introducing randomness to the state variables, G(xi, ui, t, θ,
ηi)dWi, is called the system noise. Here, Wi is defined as a
Wiener process, with dWi∼N(0, dtI). The indices i and j
correspond to individual i and its j-th observation at time ti j for
each individual. Here, θ, ηi, and ui are, respectively, the fixed
effects, random effects, and known inputs, such as covariates
including dosage. The random effects ηi are chosen to be
normally distributed with mean zero and covariance Ω(θ). This
way of formulating the NLME model gives three sources of
variability in the response (29), namely (i) observation noise, eij;
(ii) system noise, G(xi, ui, t,θ,ηi)dWi; and (iii) parameter vari-
ability, ηi.

The Approximate Population Likelihood

Since xi are stochastic processes, the distribution of yij changes
if conditioned on previous observations. Let Υi(j− 1) = {υi1,υi2,
…,υi(j− 1)} denote those observations. The residuals εij are defined
as

εi j ¼ υi j−ŷi j ð3Þ

with the expected observation value yb i j and covariance Rij

conditioned on Υi(j − 1) and θ defined as

yb i j ¼ E yi jjY i j−1ð Þ;θ
h i

Ri j ¼ Cov yi jjY i j−1ð Þ;θ
h i

:
ð4Þ

As shown in, e.g., (14,29), the combined likelihood L for
all individuals simplifies to

L θð Þ ¼ ∏
N

i¼1
∫exp li θ;ηið Þð Þdηi; ð5Þ

where

−2li ¼
Xni
j¼1

εT
i jR

−1
i j εi j þ logdet 2πRi j

� �� �
þηiΩ

−1ηi þ logdet 2πΩð Þ;
ð6Þ

and where the indirect dependence of θ and η are suppressed
for simplicity.

The FOCE approximation of the population likelihood
becomes

logLF θð Þ ¼ ∑
N

i¼1
li θ;η�

i

� �
−
1
2
logdet

−H i θ;η�
i

� �
2π

� �� �
: ð7Þ

Here, η�
i maximizes the individual likelihood li for a

given θ, and Hi is a first-order approximation of the
Hessian Δli. Further details on this approximation can be
found in, e.g., (27).
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The Extended Kalman Filter

The SDEs introduce uncertainty to the time evolution
of the state variables of the system. The EKF can be used
to estimate the state variables, as suggested in (14,15,29).
The continuous-discrete EKF is a state-space estimator for
the continuous-discrete state-space models of the form
introduced in Eq. (1), with the exception that the state
variables should be independent from both the observation
noise and the system noise (32). The EKF estimates the
conditional expectation of the state xbi jj jð Þ ¼ E xit j jY j;ϕi

� 	
and its covariance Pi jj jð Þ ¼ Cov xit j jY j;ϕi

� 	
. Here, ϕi = (θ,

ηi, ui) is a vector containing all parameters corresponding
to individual i.

In the rest of this section, the notation is simplified by omitting
the individual index i. The drift function f and the observation
function h from Eqs. (2) and (1) are linearized by introducing

At¼ ∂ f
∂x






x ¼ xb tj j−1

; t∈ t j−1; t j
� 	

C j ¼ ∂h
∂x






x¼ xb jj j−1

:

ð8Þ

The EKF has two main steps, a time-update step and a
measurement-update step (33). In the time-update step, the state
variables and covariance are predicted using all previous observa-
tions. This is done by solving the differential equations

dxbtj j−1
dt

¼ f xbtj j−1; ut; t;ϕ� �
; t∈ t j−1; t j

� 	
dPtj j−1
dt

¼ AtPtj j−1 þ Ptj j−1A
T
t þGtGT

t ; t∈ t j−1; t j
� 	

:

ð9Þ

The above prediction gives

ybj ¼ h xbjj j−1; u j; t j;ϕ
� �

R j ¼ C jP jj j−1CT
j þΣ j:

ð10Þ

In the measurement-update step, the prediction is used
to compute the Kalman gain

K j ¼ P jj j−1CT
j R

−1
j ð11Þ

which is used to update the state and its covariance from the
current observation

xbjj j ¼ xbjj j−1 þK jε j

P jj j ¼ P jj j−1−K jR jKT
j :

ð12Þ

The filter is initialized with

xb1j0 ¼ x0
P1j0 ¼ P0:

ð13Þ

PROPOSED ALGORITHM

This section presents the extension of the S-FOCE
method, originally proposed by Almquist et al. (27) for
parameter estimation of general NLME models based on
ODEs, to the use of SDEs. The method utilizes sensitivity
equations to calculate exact gradients for a gradient-based
optimization of the model parameters. The sensitivities are
the derivatives of a function with regard to its parameters.
The sensitivities needed for the gradient-based optimization
in addition to the sensitivities in the existing S-FOCE
algorithm are presented. A detailed derivation of terms
needed for the sensitivity equations can be found in the
Appendix.

The fixed effects parameters θ can be estimated by
maximizing the approximate population likelihood (APL) in
Eq. (7) using gradient-based methods. This means a need for
computing (27)

dlogLf θð Þ
dθm

¼ ∑
N

i¼1

dli θ;η�
i

� �
dθm

−
1
2
tr H−1

i θ;η�
i

� � dH i θ;η�
i

� �
dθm

� �� �
:

ð14Þ

Unlike the ODE case, the APL is formulated in terms of
conditional expected values of state variables and their
covariances given by the EKF. Hence, sensitivities of entities
computed by the EKF equations should be computed. These
are the first-order sensitivities

dε j

dηik
;

dε j

dθn
;

dRij

dηik
;

dRij

dθn
dxbi jj j−1ð Þ
dηik

;
dxbi jj j−1ð Þ
dθn

ð15Þ

and the second-order sensitivities

d2ε j

dηikdθn
;

d2ε j

dηikdηil
;

d2Rij

dηikdθn
;

d2Rij

dηikdηil
d2xbi jj j−1ð Þ
dηikdθn

;
d2xbi jj j−1ð Þ
dηikdηil

:

ð16Þ

In addition, the sensitivities of the state variable covari-
ance P are needed. The derivations of the results can be
found in the Appendix. The resulting SDE-EKF extension of
S-FOCE is outlined in Algorithm 1.

METHODS

Initializing the EKF

The use of the EKF requires initial values of the state
variable x0 and state variable covariance P0. The state
variable is set to the initial value of the system equations.
To estimate the covariance of the state, different methods can
be used. Setting P0 = I is a common but arbitrary way of
initializing the EKF. Tornøe et al. (14) set P0 to the integral of
the Wiener processes and system dynamics between the first
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two observations to get a representative value. However, in
the case of PK/PD models, one often starts in a steady state
and can solve the initial covariance analytically from Eq. (9).

Models and Data

To evaluate the proposed method, a simulation-
estimation study was set up. Data was simulated from three
common PK and PK/PD models: a two-compartmental PK
model (M1), a PK/PD model consisting of a two-
compartmental PK together with a direct PD response model
(M2), and a PK/PD model consisting of a two-compartmental
PK with an indirect PD response model (M3). All model
dynamics are described using SDEs, with a one-dimensional
Wiener process describing uncertainty of the absorption
reaction. The number of state variables and parameters is
shown in Table II. Each experimental setup included 50
individuals divided into five dose groups. Representative
values were chosen for the simulation in compatible units.
The sampling times are chosen to take the characteristics of
the PK and PD responses into account. A full description of

the model and experimental design can be found in the
Appendix.

Comparison

Algorithm 1 consists of two levels of optimization, an
inner level to find the empirical Bayes estimates η�

i given θ,

Algorithm 1 Extended S-FOCE parameter estimation algorithm for NLME models based on SDEs

Table II. Overview of the benchmark models

Model M1 M2 M3

Fixed effects parameters (θ) 10 14 16
Random effects parameters (η) 2 3 3
State variables (x) 3 3 4
Outputs (y) 1 2 2
Wiener processes 1 1 1
ODEs per individual, inner problem 27 36 56
ODEs per individual, outer problem 333 621 1078
Individuals 50 50 50
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and an outer level to find the optimal fixed effects θ∗. Both
levels of optimization use gradient-based methods. Three
different ways of computing gradients are considered. One
uses sensitivities in both levels of optimization (S − S),
another uses sensitivities in the inner level and finite
differences in the outer level (S − F), and the last uses finite
differences in both levels of optimization (F − F). Further-
more, the finite differences are either computed according to
forward differences

f θk 1þ 10−qð Þð Þ− f θkð Þ
θk10

−q ; ð17Þ

or central differences

f θk 1þ 10−qð Þð Þ− f θk 1−10−qð Þð Þ
2θk10

−q ; ð18Þ

where q controls the relative step length and f denotes the
function to be differentiated. The proposed algorithm is
evaluated in terms of runtime and in terms of precision and
accuracy of the gradient. The initial values of the optimization
are chosen within 15% from the true value, drawn from a
uniform distribution. The algorithm is implemented and run
using Mathematica 11.0 (30). Calculations are performed on a
workstation with a 4.00-GHz Intel Core i7-6700K CPU and
32.0 GB of RAM. A running version is available upon
request.

Timing Comparison

The timing comparison is done in a similar way as the
previously performed time comparison for S-FOCE with
ODEs (27). For a given model and a relevant simulated
dataset, the total evaluation time is calculated using each of
the above approaches to obtain the gradient. To isolate the
effect of computing the different gradients, they were
calculated for the same set of points. The points were chosen
as the points from the gradient-based optimization using the
S − S gradient approach. This ensures that equally many
evaluations were performed for each gradient. For the finite
differences, the step length is kept constant, by letting q = 4,
corresponding to relative step length of 0.0001.

Precision Comparison

Precision is compared only for finite differences in the
outer level of optimization. For the inner level, both methods
use sensitivity-based gradients. The gradients are computed
at the found optimum, θ∗, using the S − F and S − S gradients.
The step length varies, with q ranging from 3.2 to 6.4. To
capture the effect of new realizations on the numerical
precision in log LF(θ), the gradient is computed 300 times
for each q using different randomized starting values of η for
the inner level of optimization. The starting values were
drawn from a uniform distribution between −0.3 and 0.3.

RESULTS

Faster Estimation

The proposed algorithm was used to estimate the
parameter values for models M1–M3. The resulting
parameter estimates using the S1–S gradients along with
the relative standard errors can be found in Table III. For
each of the finite difference methods and models (M1–
M3), the runtime of the parameter estimation was
measured for all three previously mentioned optimization
schemes. The speedup in each case is the relative gain
when going from an F − F scheme to either of the S − F or
S − S schemes. This is shown in Fig. 1. As the models
become more complex in terms of number of fixed effects
and number of state variables, the relative benefit of using
sensitivities instead of finite differences increases. This
holds both for forward differences and central differences.
However, for the central differences, the advantage is
more significant, since the central difference gradient
requires approximately double the amount of calls to the
likelihood function, compared to forward differences.

Improved Precision and Accuracy

The gradient error was computed as the difference
between the obtained value and the average value of the
values obtained using the sensitivity-based gradient method.
The exact method does not utilize a finite difference and is
independent of q.

As shown in Fig. 2, the sensitivity-based gradient is more
precise than either of the other two methods. For large step
size (small q), the gradients computed using either forward or
central differences are biased but relatively precise. However,
as shown in Fig. 3, the precision of the finite difference
methods is not better than the precision of the sensitivity-
based method. For small step size (large q), the accuracy
increases but both methods suffer from a significant loss of
precision on a relative scale compared to the sensitivity-based
method.

Figure 3 shows the standard deviation of the gradient
error as a function of the step size. The linear dependency of
the standard deviation on q can be reasoned directly from
Eqs. (17) and (18), by assuming a numerical error term in
relation to each calculation of the function value that is
independent of the step size. The forward finite difference
gradient Δf/Δθk can be written as

Δ f
Δθk

¼ f θk 1þ 10−qð Þð Þ þ ϵ1ð Þ− f θkð Þ þ ϵ2ð Þ
θk10

−q ; ð19Þ

where ϵ1, ϵ2 are independent, identically distributed, numer-
ical error terms with mean zero and variance σ2. The total
variance of the forward finite difference gradient due to
measurement error is therefore

Var
Δ f
Δθk

� �
¼ 2σ2

θ2
k10

−2q : ð20Þ
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Taking the logarithm of this gradient’s standard devia-
tion yields

log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Δ f
Δθk

� �s !
¼ qþ log10 σ½ � þ 1

2
log10 2½ �−log10 θk½ �; ð21Þ

which is linear in q with unit slope. Similar results can be
derived for central difference gradients.

DISCUSSION

Misspecification of the dynamics in population modeling
can be identified and quantified through an SDE-NLME
approach. This is accomplished by estimating the magnitude
of the system noise terms of the SDEs. These terms serve as a
source of uncertainty that affects the time evolution of the
model state variables, and they are used in parallel with the
classical stochastic model components for the residual error
and the between-subject variability.

In this work, a novel method for parameter estimation in
SDE-NLME models based on exact gradients is presented. It
is evaluated by performing parameter estimation for PK/PD
models of different complexity, and comparing the computa-
tional time, precision, and accuracy to a standard approach
based on a finite difference gradient. The method performs

Table III. Parameter values used for simulating data and parameter estimates for the benchmark models. relative standard errors in percent
are shown in parenthesis. the parameters that are not a part of the model are denoted with a dash (-)

Parameter Description True value M1 M2 M3

ka First-order absorption 1.5 1.6 (2.5) 1.5 (2.2) 1.5 (2.3)
CL Clearance from central compartment 10 8.6 (4.4) 9.6 (2.8) 9.6 (2.8)
Q Inter-compartmental clearance 5 5.3 (2.7) 5.0 (1.5) 5.0 (1.5)
V2 Volume of central compartment 50 51 (1.2) 50 (1.1) 50 (1.1)
V3 Volume of peripheral compartment 80 99 (11) 83 (2.6) 85 (2.9)
Imax Maximum inhibition 0.8 - 0.8 (0.56) 0.83 (1.2)
IC50 Concentration at half maximal inhibition 50 - 50 (3.5) 55 (4.4)
kin Zero-order production rate constant 50 - - 48 (2.3)
kout First-order elimination rate constant 0.5 - - 0.48 (2.3)
g1 Relative system noise standard deviation 0.1 0.1 (24) 0.1 (15) 0.1 (2.6)
σ1 Additive error model parameter PK 1 1.0 (12) 1.0 (11) 1.0 (11)
σ2 Proportional error model parameter PK 0.1 0.1 (2.7) 0.1 (2.6) 0.075 (4.1)
σ3 Additive error model parameter PD 5 - 5.2 (2.0) 5.16 (2.0)
ω2
11 Interindividual variance ka 0.01 0.008 (49) 0.007 (47) 0.0056 (55)

ω2
22 Interindividual variance CL 0.09 0.13 (15) 0.08 (14) 0.077 (14)

ω2
33 Interindividual variance IC50 0.04 - 0.06 (21) 0.056 (23)

Fig. 1. Comparison of speedup from one estimation scheme (F–F) to
another (S–F and S–S). The dotted line represents the speedup baseline.
The gain increases with the increased complexity of the model

Fig. 2. The 10th and 90th percentiles of the sample-based gradient
errors of the exact method (blue), or using forward (red) or central
(yellow) finite differences plotted as a function of the finite difference
step size, quantified as 10−q. Errors of both signs are displayed using a
double logarithmic y-axis originating from ±10−7
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well and shows potential for fast and robust analysis of PK/
PD data.

Parameter estimation for NLME PK/PD models can be a
time-consuming task, especially when the model of the
physiological system is defined by ODEs. The computational
burden increases even more if the mathematical framework is
expanded to an SDE-NLME setting. By computing the exact
gradient of the FOCE likelihood, the need for repeatedly
having to solve the inner optimization problem for each
perturbation of the fixed effect parameters is avoided,
significantly decreasing computational time complexity. As
seen in Fig. 1, larger and more complex models of this study
benefit more from exact gradients. This suggests that the
speedup provided by the exact gradient computations in
general will be largest for complex models where this time-
saving matters the most. Similar to the S-FOCE method
proposed by Almquist et al. (27), the algorithm presented in
this paper can easily be parallelized over individuals, further
increasing its feasibility.

The exact gradients are computed from numerical
solutions of ODEs and may therefore contain numerical
errors. However, they are still considered exact since the
numerical integration does not introduce any bias, and since
the numerical error can be made arbitrarily small by
controlling the tolerance of the integrator. The quality of
the gradients computed with finite differences was evaluated
by comparison to the mean of the exactly computed gradient
(Fig. 2). For large finite difference step sizes, the relative
precision is high but the gradient is biased. Although the
accuracy of the finite difference gradient increased with
smaller step size, the sample standard deviation clearly shows
a simultaneous loss of precision. This demonstrates a
fundamental problem with the finite difference method: it is
hard to obtain both good precision and accuracy at the same
time. Central differences may improve issues with bias, but
still suffer from precision issues to a similar extent as forward
differences. Exact gradients, on the other hand, elegantly
circumvent the step length conundrum inherent to the finite
difference approximation. They are unbiased per construction
and the absolute precision is always comparatively high.
Although exact gradients outperform the finite difference
gradients when compared as such, it is unknown whether

exact gradients improve robustness in the parameter estima-
tion step, or in the covariance step, which ultimately is what
matters. It may appear plausible that this indeed is the case,
but future research is required to prove it.

The EKF has been the standard way of handing
stochastic dynamics in NLME models. To fulfill the prereq-
uisites of the EKF, the model state variables must be
independent of both the observation noise and the system
noise (32). However, in PK/PD models, it is often more
realistic to assume proportional noise (1,34). A pragmatic
way around this issue is to replace the state variables with
their conditional expectation in the model definition. For
some models, one could also consider the Lamperti transfor-
mation (35) for eliminating the state variable dependency of
the system noise. Another filter that might also be applicable
is the unscented Kalman filter (UKF), introduced by (36),
which instead of linearization of the nonlinear system, uses a
so-called unscented transformation. The UKF has been
shown to perform very well for a variety of nonlinear models
(37), and should be considered as an alternative for state
variable estimation in SDE-NLME models.

The EKF was initialized by assuming steady state and
solving Eq. (9). In the models chosen for the simulation-
estimation study, the steady-state approach is trivial, with
P0 = 0. This way of initializing the EKF uses information
about the particular model and is superior to using
simulations of the initial behavior (14) or simply choosing
an arbitrary initialization.

To gain impact in the pharmacometric community, two
important steps remain. First, additional applications of SDE-
NLMEmodels are needed to further demonstrate the benefits of
PK/PD models with uncertain dynamics. Some applications have
already been mentioned in this work (6,16,17,19). Second, for
novel methods to be widely used, they must be implemented in
software with large user-bases, such as NONMEM, Phoenix, and
Monolix (22,38,39), or open-source initiatives such as nlmixr (40).
Tornøe et al. (14) have previously reported on the implementa-
tion of SDE-NLME in the industry-standard software
NONMEM. The prediction differential equations Eq. (9) were
then introduced as a system of ODEs and event tags were
introduced to account for the time-update and measurement-
update steps. In version 7.4, NONMEM introduced a FAST
option to perform the optimization using the exact gradient
approach introduced for ODEmodels by Almquist et al. (27). To
our understanding, the combination of the recent implementation
of the FASTmethod in NONMEMand the filter implementation
of Tornøe et al. (14) should be enough for provide this
functionality in NONMEM. However, it requires the user to
explicitly state the update equations of the Kalman equations. It
is only through such wide availability that SDE-NLME methods
will get acceptance and popularity among PK/PD modelers.

CONCLUSION

A feasible method for parameter estimation of SDE-
NLME models that extends S-FOCE has been proposed. It
provides shorter computational time compared to previously
used finite difference gradient-based methods. The gradients
computed during optimization of the APL are both more
precise and more accurate than those computed using finite
differences.

Fig. 3. Sample standard deviation of the gradient using the exact
method (blue), forward differences (red), or central differences
(yellow), plotted as a function of the finite difference step size,
quantified as 10−q
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APPENDIX

Derivation of EKF Sensitivities

This section derives the equations needed for performing
both the first- and second-order sensitivities calculation and
thereby obtaining the gradients needed for extension of the S-
FOCE method to the case of SDEs.

First-Order Sensitivities

The sensitivities dεij/dηik and dRij/dηik need to be
determined. Using the chain rule gives

dεi j

dηik
¼

d υi j−ybi j� �
dηik

¼ −
dybi j
dηik

¼ −
∂h
∂ηik

þ ∂h
∂xbi jj j−1ð Þ

dxbi jj j−1ð Þ
dηik

� � ð22Þ

and

dRi j

dηik
¼ ∂Ri j

∂ηik
þ ∂Ri j

∂xbi jj j−1ð Þ

dxbi jj j−1ð Þ
dηik

: ð23Þ

The derivatives

∂h
∂ηik

; and
∂h

∂xbi jj j−1ð Þ
ð24Þ

can be found directly from the definition of h. However, the
derivatives

dxbi jj j−1ð Þ
dηik

;
∂Rij

∂ηik
; and

∂Rij

∂xbi jj j−1ð Þ
: ð25Þ

remain to be found. In further calculations, the individual
index i will be suppressed.

Differentiating Predicted Expected State Variables. Start by

considering dxbi jj j−1ð Þ
dηk

. This derivative can be obtained by solving

the sensitivity equation

d
dt

dxbtj j
dηk

� �
¼ ∂ f

∂ηk
þ ∂ f

∂xbtj j
dxbtj j
dηk

; t∈ t j; t jþ1
� 	

dxbtj j
dηk

t j
� � ¼ dxbjj j

dηk

ð26Þ

where

xbjj j ¼ xbjj j−1 þK jε j ð27Þ

and thus,

dxbjj j
dηk

¼ dxbjj j−1
dηk

þ dK j

dηk
ε j þK j

dε j

dηk
ð28Þ

Differentiating Predicted State Variable Covariance. Now

consider the other two remaining derivatives, ∂R j

∂ηk
and ∂R j

∂xbjj j−1.
The equation

R j ¼ C jP jj j−1C
T
j þΣ j ð29Þ

gives

∂R j

∂ηk
¼ ∂C j

∂ηk
P jj j−1C

T
j þ C j

∂P jj j−1
∂ηk

CT
j þ C jP jj j−1

∂CT
j

∂ηk
þ ∂Σ j

∂ηk
:

ð30Þ

From the definition of Σj and h, ∂Σj/∂ηk and ∂Cj/∂ηk can
be directly obtained. The remaining derivative is ∂Pj ∣ j − 1/∂ηk.
By definition,

P1j0 ¼ P0 ð31Þ

so

∂P1j0
∂ηk

¼ ∂P0

∂ηk
ð32Þ

directly follows. For positive integers j, the following sensi-
tivity equation for Pj + 1 ∣ j

d
dt

∂Ptj j
∂ηk

� �
¼ ∂At

∂ηk
Ptj j þAt

∂Ptj j
∂ηk

þ Ptj j
∂AT

t

∂ηk
þ ∂Ptj j

∂ηk
AT

t

þ ∂Gt

∂ηk
GT

t þGt
∂GT

t

∂ηk
; t∈ t j; t jþ1

� 	
∂Ptj j
∂ηk

t j
� � ¼ ∂P jj j

∂ηk

ð33Þ

where

∂P jj j
∂ηk

¼ ∂P jj j−1
∂ηk

−
∂K j

∂ηk
R jKT

j þK j
∂R j

∂ηk
KT

j þK jR j
∂KT

j

∂ηk

 !

ð34Þ

In the same way as for ∂R j

∂ηk
, the equations for ∂R j

∂xbjj j−1 are

obtained by replacing ηk with xbjj j−1.
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Differentiating the Kalman Gain. In the above cases, the
derivative and partial derivative of the Kalman gain Kj are
required. This can be done by first noting that

dK j

dηk
¼ ∂K j

∂ηk
þ ∂K j

∂xbjj j−1
dxbjj j−1
dηk

ð35Þ

and then calculating the partial derivative of Kj with respect
to ηk as follows:

∂K j

∂ηk
¼ ∂

∂ηk
P jj j−1C

T
j R

−1
j

� �

¼ ∂P jj j−1
∂ηk

CT
j R

−1
j þ P jj j−1

∂CT
j

∂ηk
R−1

j þ P jj j−1C
T
j

∂R−1
j

∂ηk

¼ ∂P jj j−1
∂ηk

CT
j R

−1
j þ P jj j−1

∂CT
j

∂ηk
R−1

j

−P jj j−1C
T
j R

−1
j
∂R j

∂ηk
R−1

j

¼ ∂P jj j−1
∂ηk

CT
j R

−1
j þ P jj j−1

∂CT
j

∂ηk
R−1

j −K j
∂R j

∂ηk
R−1

j

¼ ∂P jj j−1
∂ηk

CT
j þ P jj j−1

∂CT
j

∂ηk
−K j

∂R j

∂ηk

 !
R−1

j

ð36Þ

In the same way, it follows that

∂K j

∂xbjj j−1 ¼ ∂P jj j−1
∂xbjj j−1 CT

j þ P jj j−1
∂CT

j

∂xbjj j−1 −K j
∂R j

∂xbjj j−1
 !

R−1
j ð37Þ

Moreover, the derivative of Kj with respect to θ is
calculated in the same way as the derivative with respect to η.

Second-Order Sensitivities

This section derives the equations needed to compute
the derivatives

d2ε j

dηkdθn
and

d2R j

dηkdθn
: ð38Þ

The chain rule yields

d2ε j

dηkdθn
¼ −

d
dθn

∂h
∂ηk

þ ∂h
∂xbjj j−1

dxbjj j−1
dηk

� �

¼ −
�

∂2h
∂ηk∂θn

þ ∂2h
∂ηk∂xbjj j−1

dxbjj j−1
dθn

þ ∂2h
∂xbjj j−1∂θn

þ ∂2h
∂xb2jj j−1

dxbjj j−1
θn

 !
dxbjj j−1
dηk

þ ∂h
∂xbjj j−1

d2xbjj j−1
dηkdθn

�
ð39Þ

and

d2R j

dηkdθn
¼ d

dθn

∂R j

∂ηk
þ ∂R j

∂xbjj j−1
dxbjj j−1
dηk

� �

¼ ∂2R j

∂ηk∂θn
þ ∂2R j

∂ηk∂xbjj j−1
∂xbjj j−1
∂θn

þ ∂2R j

∂xbjj j−1∂θn
þ ∂2R j

∂xb2jj j−1
dxbjj j−1
dθn

 !
dxbjj j−1
dηk

þ ∂R j

∂xbjj j−1
d2xbjj j−1
dηkθn

ð40Þ

Note that in the above calculations, θn can be replaced
by ηl in order to obtain the derivatives

d2ε j

dηkdηl
and

d2R j

dηkdηl
: ð41Þ

Second Derivative of Predicted Expected State.

d
dt

d2xbtj j
dηkdθn

 !
¼ ∂2 f

∂ηk∂θn
þ ∂2 f

∂η j∂xbtj j
dxbtj j−1
dθn

þ ∂2 f
∂xbtj j∂θn

þ ∂2 f

∂xb2tj j
dxbtj j
dθn

 !
dxbtj j
dηk

þ ∂ f
∂xbtj j

d2xbtj j
dηk∂θn

; t∈ t j; t jþ1
� 	

d2xbtj j
dηk∂θn

t j
� � ¼ d2xbjj j

dηk∂θn

ð42Þ

where

d2xbjj j
dηk∂θn

¼ d2xbjj j−1
dηk∂θn

þ d2K j

dηkdθn
ε j þ dK j

dηk

ε j

dθn
þ dK j

dθn

ε j

dηk
þK j

dε j

dηkdθn
ð43Þ

Second Derivative of Predicted State Covariance.

∂2R j

∂ηk∂θn
¼ ∂

∂θn

∂C j

∂ηk
P jj j−1C

T
j þ C j

∂P jj j−1
∂ηk

CT
j þ C jP jj j−1

∂CT
j

∂ηk
þ ∂Σ j

∂ηk

 !

¼ ∂2C j

∂ηk∂θn
P jj j−1CT

j þ
∂C j

∂ηk

∂P jj j−1
∂θn

CT
j þ

∂C j

∂ηk
P jj j−1

CT
j

∂θn

þ ∂C j

∂θn

∂P jj j−1
∂ηk

CT
j þ C j

∂2P jj j−1
∂ηk∂θn

CT
j þ C j

∂P jj j−1
∂ηk

CT
j

∂θn

þ ∂C j

∂θn
P jj j−1

∂CT
j

∂ηk
þ C j

∂P jj j−1
∂θn

∂CT
j

∂ηk
þ C jP jj j−1

∂2CT
j

∂ηk∂θn

þ ∂2Σ j

∂ηk∂θn

ð44Þ

88 Page 10 of 13 The AAPS Journal (2018) 20: 88



with

d
dt

∂2Ptj j
∂ηk∂θn

 !
¼ ∂2At

∂ηk∂θn
Ptj j þ ∂At

∂ηk

∂Ptj j
∂θn

þ ∂At

∂θn

∂Ptj j
∂ηk

þAt
∂2Ptj j
∂ηk∂θn

þ ∂Ptj j
∂θn

∂AT
t

∂ηk
þ Ptj j

∂2AT
t

∂ηk∂θn
þ ∂2Ptj j

∂ηk∂θn
AT

t þ ∂Ptj j
∂ηk

∂AT
t

∂θn

þ ∂2Gt

∂ηk∂θn
GT

t þ ∂Gt

∂ηk

∂GT
t

∂θn
þ ∂Gt

∂θn

∂GT
t

∂ηk
þGt

∂2GT
t

∂ηk∂θn
; t∈ t j; t jþ1

� 	
∂2Ptj j
∂ηk∂θn

t j
� � ¼ ∂2P jj j

∂ηk∂θn

ð45Þ
where

∂2P jj j
∂ηk∂θn

¼ ∂2P jj j−1
∂ηk∂θn

−
∂2K j

∂ηk∂θn
R jKT

j þ
∂K j

∂ηk

∂R j

∂θn
KT

j þ
∂K j

∂ηk
R j

∂KT
j

∂θn

 

þ ∂K j

∂θn

∂R j

∂ηk
KT

j þK j
∂2R j

∂ηk∂θn
KT

j þK j
∂R j

∂ηk

∂KT
j

∂θn

þ ∂K j

∂θn
R j

∂KT
j

∂ηk
þK j

∂R j

∂θn

∂KT
j

∂ηk
þK jR j

∂2KT
j

∂ηk∂θn

!
ð46Þ

The derivatives ∂2R j

∂ηk∂xbjj j−1
, ∂2R j

∂ xbjj j−1∂θn
, and ∂2R j

∂ xb2
jj j−1

are calcu-

lated in the same way. In the special case of ∂2R j

∂xb2
jj j−1

, the

equations can be simplified to

∂2R j

∂xb2jj j−1 ¼ ∂2C j

∂xb2jj j−1 P jj j−1CT
j þ C j

∂2P jj j−1
∂xb2jj j−1 CT

j þ C jP jj j−1
∂2CT

j

∂xb2jj j−1
þ 2
�

∂C j

∂xbjj j−1
∂P jj j−1
∂xbjj j−1 CT

j þ
∂C j

∂xbjj j−1 P jj j−1
CT

j

∂xbjj j−1
þ C j

∂P jj j−1
∂xbjj j−1

CT
j

∂xbjj j−1
�
þ ∂2Σ j

∂xb2jj j−1
ð47Þ

with

d
dt

∂2Ptj j
∂xb2jj j−1

 !
¼ ∂2At

∂xb2jj j−1 Ptj j þAt
∂2Ptj j
∂xb2jj j−1 þ Ptj j

∂2AT
t

∂xb2jj j−1 þ
∂2Ptj j
∂xb2jj j−1 A

T
t

þ 2
∂At

∂xbjj j−1
∂Ptj j
∂xbjj j−1 þ

∂Ptj j
∂xbjj j−1

∂AT
t

∂xbjj j−1
� �

þ ∂2Gt

∂xb2jj j−1 G
T
t þ 2

∂Gt

∂xb jj j−1

∂GT
t

∂xb jj j−1
þGt

∂2GT
t

∂xb2jj j−1 ; t∈ t j; t jþ1
� 	

∂2Ptj j
∂xb2jj j−1 t j

� � ¼ ∂2P jj j
∂xb2jj j−1

ð48Þ
where

∂2P jj j
∂xb2jj j−1 ¼ ∂2P jj j−1

∂xb2jj j−1
−
�

∂2K j

∂xb2jj j−1 R jKT
j þK j

∂2R j

∂xb2jj j−1 K
T
j þK jR j

∂2KT
j

∂xb2jj j−1
þ2ð ∂K j

∂xbjj j−1
∂R j

∂xbjj j−1 KT
j þ

∂K j

∂xbjj j−1 R j
∂KT

j

∂xbjj j−1
þK j

∂R j

∂xbjj j−1
∂KT

j

∂xb jj j−1

��
ð49Þ

Second Derivative of the Kalman Gain. In both cases above,
the second partial derivative of the Kalman gain Kj is
required. This can be done as follows:

∂2K j

∂ηk∂θn
¼ ∂2P jj j−1

∂ηk∂θn
CT

j R
−1
j þ ∂P jj j−1

∂ηk

∂CT
j

∂θn
R−1

j þ ∂P jj j−1
∂ηk

CT
j

∂R−1
j

∂θn

þ ∂P jj j−1
∂θn

∂CT
j

∂ηk
R−1

j þ P jj j−1
∂2CT

j

∂ηk∂θn
R−1

j þ P jj j−1
∂CT

j

∂ηk

∂R−1
j

∂θn

−
∂K j

∂θn

∂R j

∂ηk
R−1

j −K j
∂2R j

∂ηk∂θn
R−1

j −K j
∂R j

∂ηk

∂R−1
j

∂θn

¼ ∂2P jj j−1
∂ηk∂θn

CT
j þ P jj j−1

∂2CT
j

∂ηk∂θn
R−1

j −K j
∂2R j

∂ηk∂θn

 

þ ∂P jj j−1
∂ηk

∂CT
j

∂θn
þ ∂P jj j−1

∂θn

∂CT
j

∂ηk
−
∂K j

∂θn

∂R j

∂ηk

!
R−1

j

−
∂P jj j−1
∂ηk

CT
j þ P jj j−1

∂CT
j

∂ηk
−K j

∂R j

∂ηk

 !
R−1

j
∂R j

∂θn
R−1

j

ð50Þ

The derivatives ∂2K j

∂ηk∂xbjj j−1
, ∂2K j

∂xbjj j−1∂θn
, and ∂2K j

∂xb2
jj j−1

are calcu-

lated in the same way. In the special case of ∂2K j

∂xb2
jj j−1

, the

derivative can be simplified to

∂2K j

∂xb2jj j−1 ¼
�
∂2P jj j−1
xb2jj j−1 CT

j þ P jj j−1
∂2CT

j

xb2jj j−1 R
−1
j −K j

∂2R j

xb2jj j−1
þ ∂2P jj j−1

∂xb jj j−1

∂CT
j

∂xb jj j−1
−

∂K j

∂xb jj j−1

∂R j

∂xb jj j−1

�
R−1

j

−
∂P jj j−1
∂xb jj j−1

CT
j þ P jj j−1

∂CT
j

∂xb jj j−1
−K j

∂R j

∂xb jj j−1

 !
R−1

j
∂R j

∂xb jj j−1
R−1

j

ð51Þ

MODEL DEFINITIONS

In all following models, A1, A2, and A3 represent the
absorption, central, and peripheral compartments of the PK part
of the model and R represents the PD response. The measured
concentration in the central compartment is denoted by

C tð Þ ¼ A2 tð Þ
V2

: ð52Þ

The two-compartment PK model is described with the
equations

dA1

dA2

dA3

0
@

1
A ¼

− kaA1 þ Input tð Þ
kaA1 −

CL
V2

A2 −
Q
V2

A2 þ Q
V3

A3

Q
V2

A2−
Q
V3

A3

0
BBB@

1
CCCAdt þ

− g1A1

g1A1

0

0
@

1
AdWt

ð53Þ

In model M1, the initial values are

A1 0ð Þ;A2 0ð Þ;A3 0ð Þð Þ ¼ Dose; 0; 0ð Þ; ð54Þ

Input(t) = 0, and the output is considered to be

yt ¼ C tð Þ þ et; et∼N 0;Σtð Þ ð55Þ
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with

Σt ¼ σ2
1 þ σ2

2C tð Þ2
� �

: ð56Þ

The parameters ka and CL are considered to be log-
normally distributed. The covariance matrix for the random
effects is

Ω ¼ ω2
11 0
0 ω2

22

� �
ð57Þ

For model M2, the dynamical equations displayed in Eq.
(53) are kept the same, but the initial values are

A1 0ð Þ;A2 0ð Þ;A3 0ð Þð Þ ¼ 0; 0; 0ð Þ; ð58Þ

Input(t) represents the dose given at time t, and the output is

yt ¼ C tð Þ
R tð Þ

� �
þ et; et∼N 0;Σtð Þ ð59Þ

where

R tð Þ ¼ 100 1−
ImaxC tð Þ

IC50 þ C tð Þ
� �

ð60Þ

and

Σt ¼ σ2
1 þ σ2

2C tð Þ2 0
0 σ2

3

� �
: ð61Þ

The parameters ka, CL, and IC50 are considered to be
log-normally distributed. The covariance matrix for the
random effects is

Ω ¼
ω2
11 0 0
0 ω2

22 0
0 0 ω2

33

0
@

1
A ð62Þ

For model M3, the dynamical system of equation is

dA1

dA2

dA3

dR

0
BB@

1
CCA ¼

− kaA1 þ Input tð Þ
kaA1 −

CL
V2

A2 −
Q
V2

A2 þ Q
V3

A3

Q
V2

A2−
Q
V3

A3

kin 1−Imax
A2

V2
= IC50 þ A2

V2

� �� �
−koutR

0
BBBBBBB@

1
CCCCCCCA
dt þ

− g1A1

g1A1

0
0

0
BB@

1
CCAdWt;

ð63Þ

the initial values are

A1 0ð Þ;A2 0ð Þ;A3 0ð Þ;R 0ð Þð Þ ¼ 0; 0; 0;
kin
kout

� �
; ð64Þ

Input(t) represents the dose given at time t and the output is

yt ¼ C tð Þ
R tð Þ

� �
þ et; et∼N 0;Σtð Þ ð65Þ

with Σt as given by Eq. (61). The parameters ka, CL, and IC50

are considered to be log-normally distributed. The covariance
matrix for the random effects is as given by Eq. (62).

The sampling scheme was the same for all three models,
relative to dosing. The PK part was sampled at hours 0.25,
0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 12, 16, and 24 and the PD part was
sampled at hours − 24, − 18, − 12, 0, 1, 2, 4, 12, 24, 48, 72, 96,
and 124. The doses of the hypothetical drug were 5, 10, 50,
100, and 200 dose units.
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