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Abstract. A quantitative systems toxicology (QST) model for citalopram was established
to simulate, in silico, a ‘virtual twin’ of a real patient to predict the occurrence of cardiotoxic
events previously reported in patients under various clinical conditions. The QST model
considers the effects of citalopram and its most notable electrophysiologically active primary
(desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac
electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with
the biophysically detailed model of human cardiac electrophysiology to investigate the
impact of (i) the inhibition of multiple ion currents (IKr, IKs, ICaL); (ii) the inclusion of
metabolites in the QST model; and (iii) unbound or total plasma as the operating drug
concentration, in predicting clinically observed QT prolongation. The inclusion of multiple
ion channel current inhibition and metabolites in the simulation with unbound plasma
citalopram concentration provided the lowest prediction error. The predictive performance
of the model was verified with three additional therapeutic and supra-therapeutic drug
exposure clinical cases. The results indicate that considering only the hERG ion channel
inhibition of only the parent drug is potentially misleading, and the inclusion of active
metabolite data and the influence of other ion channel currents should be considered to
improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge
the gaps existing in the quantitative translation from preclinical cardiac safety assessment to
clinical toxicology. Moreover, this study shows that the QST models, in combination with
appropriate drug and systems parameters, can pave the way towards personalised safety
assessment.

KEY WORDS: Citalopram; Cardiotoxicity; QT prolongation; Cardiac safety simulator; Simcyp; hERG;
Personalised medicine; Quantitative systems toxicology; Virtual twin.

INTRODUCTION

Citalopram (CT) is one of the most widely prescribed
antidepressant drugs (1). It has been linked with cardiac
toxicity (especially at higher doses) resulting in the US FDA
advocating restrictions on the maximum daily dose in 2011 (2)
and further restrictions to the recommended dosage in special
populations in 2012 (3). Cardiac safety concerns associated
with CT were documented prior to the 2011 FDAwarning. In
fact, the clinical development of the drug was halted in the

1980s due to the sudden unexplained deaths of dogs who
were administered CT as part of high dose toxicity studies (4).
Later, as part of a detailed evaluation, the torsadogenic
poten t ia l o f the secondary metabo l i t e o f CT,
didesmethylcitalopram (DDCT), was investigated. Following
CT dosing, the metabolite DDCT was found at high levels in
dogs but not in other species studied, including humans due
to species-specific metabolic differences (4). There is evidence
suggesting that CT inhibits multiple cardiac ion currents: IKr

(rapidly activating delayed rectifier potassium channel cur-
rent) (5), IKs (slowly activating delayed rectifier potassium
channel current) (5), and ICaL (late calcium channel current)
(6,7); it is also suspected to interfere with additional ionic
channels and currents (8). Furthermore, the primary metab-
olite desmethylcitalopram (DCT) and secondary metabolite
(DDCT) are also known to inhibit IKr and IKs currents (5).
DDCT is only detectable in human blood following the
administration of high CT doses. The peak in the level of
DDCT typically occurs several hours after the ingestion of
high doses of CT. The cardiotoxicity is also observed much
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later after ingestion of high doses of CT which can be
attributed to the delayed formation and accumulation of
DDCT following high CT dose administration (9). However
DDCT is not the only toxicity factor involved, since high
concentrations of CT can also affect cardiac function by
modifying the electrophysiology of the heart via the central
nervous system (CNS). This complex interplay of the parent
drug, its metabolites, and the inhibitory effect on multiple
cardiac ion channels may all contribute to the continued
debate on the cardiac safety associated with CT (3,10–12).
Until recently, torsadogenicity assessments were typically
focused on the inhibition of the cardiac IKr current occurring
at the level of the hERG channel (encoded by the human
ether-a-go-go gene) (13–16). Over the last few years, the
comprehensive in vitro proarrythmia assay (CiPA) initiative
has been advocating the in vitro assessment of multiple
cardiac ion currents and the estimation of the combined
effect of multiple ionic channel inhibition using cardiomyo-
cyte cell-based quantitative systems models (17,18). However,
the primary focus of the CiPA has been on the parent drug,
specifically at the single cardiac cell level (19). Assessment of
the QT prolongation liability of a drug based only on the
parent drug and the hERG-centric evaluations could be
misleading since many drugs such as CT affect not only IKr

but also other ionic currents and may have electrophysiolog-
ically active metabolites (14,20). Testing all probable hypoth-
eses in clinical and/or animal studies may be practically,
ethically, and economically unfeasible (4). Therefore, model-
ling and simulation methods can complement experimental
studies and reduce and/or refine the number of performed
experiments. In this study, we assessed the ability of the
biophysically detailed models of cardiac electrophysiology,
parameterised with in vitro cardiac ion channel inhibition
data, to predict the QT prolongation observed clinically at
various exposure levels and under varied clinical scenarios.
We also investigated the following scientific questions to
explain the observed QT prolongation with CT administra-
tion at therapeutic and supra-therapeutic concentrations (up
to 100-fold higher): (i) is the parent drug (CT) exclusively
responsible for the observed QT prolongation? (ii) is the IKr

(hERG) inhibition activity by all chemical moieties (CT,
DCT, and DDCT) the only ion current that causes the
observed clinical cardiotoxic events? (iii) what is the operat-
ing concentration of drug and metabolites to drive the cardiac
response—unbound plasma or total plasma concentration?
Most of the systems toxicology models are established and
verified based on the average response of a population or a
trend. Using quantitative system modelling, here we assessed
the potential of actually simulating the ‘virtual twin’ (21) of a
real patient, considering their physiology and specific clinical
conditions (drug exposure, heart rate, etc.). The resulting
cardiotoxic event was then predicted for a given individual
under specified conditions in silico. The meaning of a ‘virtual
twin’ could be different in clinical literature (22), so for our
study, we refer to a ‘virtual twin’ as an in silico model with
systems (physiology) parameters mimicking an individual
patient under given clinical circumstances that allows simula-
tion of the clinical response/outcome of interest for that
patient. We simulated four clinical scenarios from therapeutic
dose to 70-fold overdose situations and compared the
simulation results with clinically observed QT prolongation

or TdP. Utilisation of quantitative systems models to simulate
absorption, distribution, and elimination of a single drug or
combination of drugs, generally referred to as physiologically
based pharmacokinetics (PBPK) models, have already been
well established in defining or refining appropriate dosage
recommendations in regulatory submissions (23–26). How-
ever, utilisation of such a quantitative systems approach to
simulate therapeutic response or toxicity events is not widely
explored, probably due to the limited availability of suffi-
ciently verified systems toxicology models and/or the avail-
ability of suitable input and quantitative systems (physiology)
data to parameterise the model. Here we employed a QST
model to predict drug cardiotoxicity, namely QT prolonga-
tion, after therapeutic and supra-therapeutic dosing of CT.
Verification of the predictive performance of the model was
done against four different clinical datasets of varying
demographics and physiological conditions.

MATERIAL AND METHODS

The ten Tusscher (2006) ventricular cardiomyocyte cell
model (27) was used to form a one-dimensional (1D) string
mimicking the cross-section of the ventricular wall (as
implemented within the Cardiac Safety Simulator (CSS)
version 2.0 (13)) for simulating pseudo-electrocardiogram
(pseudoECG) traces. It is termed pseudoECG since it is
based only on the string of ventricular cells, hence missing
atrial activity, characterised by the P wave on a clinical
electrocardiogram (ECG) signal. The CSS is a platform
combining electrophysiologically based models of the human
left ventricular cardiomyocytes and a database of human
physiological, genotypic, and demographical data. The CSS
platform facilitates the generation of a virtual realistic
population variability in cardiac physiology during simula-
tions (Fig. IA) (28,29). The CSS platform is the first of its
kind accounting for circadian variability in heart rate and
plasma concentration of electrolytes Na+, K+, and Ca2+ using
covariate models derived from actual clinical data (30, 31).
Epidemiological models which take into account the effect of
gender and age on ventricular heart wall thickness,
cardiomyocyte volume/capacitance, and sarcoplasmic
reticulum are also built into the CSS platform (Fig. IB) (28).
A 1D string of cells (ventricular wall thickness) paced at the
endocardial side used the 50:30:20 distribution of the endo-,
mid-, and epicardium cells, respectively, with an average
diffusion coefficient of 0.0016 cm2/ms. The forward Euler
method was used to integrate the model equations with a
space step and a time step of 0.01 mm and 0.01 ms,
respectively. Total simulation time was set to 10,000 ms, and
during the simulation, multiple beats were added at the
beginning to reach a steady state and then withdrawn from
the final analysis to assure stability and to avoid computation
bias.

A thorough literature search was conducted to identify
the reported clinical cases of TdP associated with citalopram
in which there were no known physiological diseases (e.g.,
cirrhosis) or medications (e.g., metabolic drug-drug interac-
tions) that could alter the disposition of CT. We used all the
cases we could find from public literature where both plasma
concentration of at least parent and time-matching QT
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measurement was available along with patient characteristics.
As the aim was to mimic an individual subject, we did not use
population mean or average apart from the TQT trial from
FDA for therapeutic dose of 20 mg. To avoid bias, we
intended to find cases where maximum possible data on
pharmacokinetics and patient electrophysiology information
was measured in the clinic. We conducted literature search
and review via PubMed, Google Scholar, and citation within
some review articles and could identify three clinical case
reports which presented the occurrence of actual cardiotoxic
events following the ingestion of CT where drug concentra-
tions, patient demographics and heart rate parameters, and
clinical conditions (e.g. plasma electrolyte concentrations)
were measured for us to closely mimic the real clinical
scenario (30–32). Most of these reports were overdose
situations, hence to verify the QST model, QT prolongation
at a therapeutic dose of 20 mg was also simulated and
compared with corresponding clinical data although matching
set of measured drug concentration, QT prolongation, and
heart rate was not available from single study at the
therapeutic dose level of 20 mg. We simulated a 20-mg dose
to assess the applicability of the model not only at overdose
situation but also at lowest clinical dose to include the wider
range of exposure and effect relationship. Additional heart
wall physiology parameters which are not commonly mea-
sured in routine clinical trials such as ventricular heart wall
thickness, and cardiomyocyte size were either calculated from
age and gender of the patient using known covariate models
or assumed based on known values of that parameter for a
healthy Caucasian population. Finally, four clinical reports
containing measured plasma drug concentration and QT
prolongation data (with CT doses ranging from 20 mg to >
1400 mg (> 70-fold dose range) and the 100-fold range of
maximum observed plasma CT concentrations) were chosen
for the simulations (2,30–33). The reported clinical settings, in
terms of the number of subjects and their demographic and
physiological parameters, were replicated as precisely as
possible in the simulations. With the exception of the Ji
et al. study (33), the metabolite concentrations were not
typically reported. When not reported, the metabolite con-
centrations were estimated from the reported parent drug
(CT) concentration using known parent/metabolite ratios
calculated from the Ji et al. study (33)—4 and 36 for the
CT/DCT and CT/DDCT ratios, respectively. Free plasma
concentrations were estimated from plasma protein binding
information obtained for the parent and its metabolites. The
unbound plasma fraction (fu) was estimated using the
quantitative structure activity relation (QSAR) model imple-
mented within the Simcyp Simulator V14.0 (Sheffield, UK)
since experimentally measured values were not available for
the metabolites (34,35). The QSAR model for fu in Simcyp is
based upon the equations published by Lobell and Sivarajah
(36), modified to explicitly account for a fraction of com-
pound ionised at physiological pH considering pKa of the
compound. The QSAR-based fu of CT (0.23) was very similar
to the reported value of approximately 0.2 (37). As CT, DCT,
and DDCT are very similar in chemical structure, we assumed
that the QSAR model can also reliably predict the CT
metabolite (DCT and DDCT) fu values. We therefore used
the predicted plasma protein binding for both metabolites
DCT (fu = 0.38) and DDCT (fu = 0.52) in the absence of

experimentally measured values. Although CT, DCT, and
DDCT may appear structurally very similar, the removal of
methyl groups lead to significant difference in compound
lipophilicity (LogP) and ionisation (pKa) which are structural
properties used in the QSAR equation to predict fu.
Reduction in lipophilicity and increase in polarity of chemical
lead to reduction in binding to plasma proteins resulting to
increase in predicted value of fu from CT to DCT to DDCT.
The plasma concentrations of CT, DCT, and DDCT for each
of the four clinical scenarios are reported in Table I.

In vitro ion channel inhibition activity data for CT, DCT,
and DDCT for IKr, IKs, and ICaL currents were extracted from
the literature (Table II). Drug concentration-dependent
reduction of the maximal conductance of a particular ionic
current was calculated directly in the CSS platform according
to Eq. 1.

Inhibition factor ¼ 1

1þ IC50=Concentration
μmol
L

� �� �n ð1Þ

The simple additive effect model (38) of all active
moieties was assumed during simulations to calculate the
total inhibition with the use of in vitro inhibition parameters
of individual moieties provided in Table II.

We ran five simulations with different settings to assess
which scenario is most likely to explain the observed QT
prolongation. The tested scenarios are as follows:

SIM 1: Free plasma concentrations of all moieties
(CT, DCT, and DDCT) and multiple ion channel inhibition
information (IKr, IKs, and ICaL) for all moieties

SIM 2: Total plasma concentrations of all moieties
and multiple ion channel inhibition information for all
moieties

SIM 3: Free plasma concentrations of all moieties
but considering IKr inhibition only

SIM 4: Free plasma concentration of CT only to
drive the response and using only IKr inhibition data for CT

SIM 5: Free plasma concentration of CT only to
drive the response and using IKr, IKs, and ICaL inhibition data
for CT.

The overdose clinical case reports (30–32) refer to the
patients under intensive hospital care due to experiencing a
life-threatening cardiac event after CT ingestion. Hence,
many parameters were monitored such as heart rate, plasma
K+, Na+, and Ca2+ ion concentrations in addition to the actual
drug concentration. Further details of the simulated scenarios
are provided below in a case by case format. The physiology
parameter inputs used in the simulations for each of the four
cases are described in Table III.

Study-Specific Data Used in the Simulations

Case I. From the case report of a CT overdose of a 46-
year-old female subject (with the intention to commit suicide)
published by Unterecker et al. (2012), drug exposure and
clinical ECG data were obtained at multiple time points after
drug ingestion (32). The demography (age and gender) and
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physiology (heart rate, plasma K+, Na+, Ca2+ ion
concentrations) reported in the clinical case study were
simulated using the reported CT plasma drug concentrations
and estimated metabolite concentrations. In other words, a

‘virtual twin’ of the actual subject was built in silico and used
to assess the observed QT prolongation. Many parameters
defining the subject physiology were measured; however,
there were some (e.g. heart wall thickness and conductance)

Fig. I. a Framework of Cardiac Safety Simulation (CSS) platform. b Physiological
covariate relationship and circadian models incorporated in the CSS platform

Table I. Plasma Concentrations of CT, DCT, and DDCT Used During the Simulation

Clinical
scenario

Clinical study Exposure
IDa

Time post
dose

Total plasma concentration (μM) Free plasma concentration (μM)

CT (rep) DCT (calc) DDCT (calc) CT (rep) DCT (calc) DDCT (calc)

Case I Unterecker et al. 2012 (32) S1E1 Day 2 3.795 0.949 0.105 0.873 0.361 0.055
S1E2 Day 3 2.842 0.711 0.079 0.654 0.270 0.041
S1E3 Day 4 2.454 0.613 0.068 0.564 0.233 0.035
S1E4 Day 6 1.514 0.378 0.042 0.348 0.144 0.022
S1E5 Day 23 0 0 0 0 0 0

Case II Tarabar et al. 2008 (31) S2E1 33 h 1.470 0.368 0.041 0.338 0.140 0.021
Case III Liotier and Coudoré 2011 (30) S3E1 7 hb 18.126 4.532 0.504 4.169 1.722 0.262

S3E2 21 hb 7.460 1.865 0.207 1.716 0.709 0.108
S3E3 45 hb 7.398 1.850 0.206 1.702 0.703 0.107

Case IV Ji et al. 2014 and FDA (3,33) S4E1 Day 1 0.195 0.051 0.005 0.045 0.019 0.002

rep reported in the respective clinical trial, calc calculated as described in the main text, CT citalopram, DCT desmethylcitalopram, DDCT
didesmethylcitalopram, ID identification
aEach set of drug and metabolite exposure points were simulated and given an ID for clarity in the discussion in the main text
bThe time reported is post hospitalisation as the exact time of drug administration was not available in the study
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which were not available, so we calculated those unavailable
parameters using the covariate models of a healthy Caucasian
population physiology from age and gender of a patient (28).
The values of the heart rate and plasma ion concentrations
reported in the clinical studies were either the average values
recorded over a period of a few seconds or minutes or were a
specific value at the time of measurement, both of which are
known to have inter-occasion variability. To account for such
uncertainty, we simulated each drug concentration effect, for
an individual subject, five times considering known ‘within-
subject variability’ in those parameters implemented within
the CSS platform.

Case II. Tarabar et al. (2008) reported the case of a 36-
year-old woman who ingested 50 tablets of 20 mg CT
(approximately 1000-mg dose) with wine (31). We used the
clinically measured drug concentrations, estimated metabolite
concentrations, and physiological parameters (such as heart
rate and plasma ion concentrations) as inputs to the model.
Each concentration time point was simulated five times. The
model does not take into account the influence of alcohol on
the heart rate mechanistically; however, the measured heart
rate values were used as input data which implicitly considers
the effect of alcohol on the heart rate in our simulations.

Case III. In the Liotier and Coudoré 2011 study, a 54-
year-old female subject ingested an unknown number of CT
tablets that demonstrated a 100-fold higher plasma drug
concentration as compared to the typical plasma drug
concentrations reported with a therapeutic dose level
(20 mg) (30). She also suffered from hypokalemia. We
included all known clinical parameters (age, gender, plasma
K+, Na+, Ca2+ ion concentrations, heart rate, etc.) in our
simulations to mimic the clinical scenario as precisely as
possible. Each concentration time point was simulated five
times to factor in uncertainty or inherent variability in those
physiological parameters as described earlier.

Case IV. QT prolongation information for a 20-mg CT
dose was obtained from the US FDA assessment report (2)
which, to the best of our knowledge, is not published in the

peer-reviewed journals. The plasma concentrations of CT,
DCT, or DDCT were not reported in the FDA assessment
report. Hence, we used the plasma drug concentrations
reported in another informative clinical study conducted with
a 20-mg CT dose to simulate the effect at a 20-mg dose level
(33) where CT, DCT, and DDCT concentrations were
reported. Moreover, the FDA letter only reported ΔQTc
(QT prolongation by the drug in comparison to placebo), and
the correction method for heart rate was not clearly specified.
Hence, we calculated ΔQTc from our simulation results (QT
prolongation triggered by the drug in comparison to QT at
zero drug concentration under the same physiological condi-
tions) using the Fridericia correction method (QTcF). As
clinical data for case IV is a population mean value rather
than the response of particular patient, we simulated 16
virtual healthy Caucasian individuals (50% females) based on
default covariate models implemented in the CSS platform
and compared the population mean values of ΔQTcF
generated from the simulated trial to the observed clinical
trial.

CT is known to modify the electrophysiology of the heart
via the CNS, an effect that could contribute to the observed
QT prolongation. We did not explicitly model the impact of
the CNS-mediated cardiac effect of CT in this current work.
However, we used the clinically measured heart rate values at
different drug concentration time points implicitly considering
the effect of CT on the heart rate via the CNS modulation.

The simulated QT prolongation observed with the above
described four cases (cases I–IV) was then compared with the
clinically measured QT prolongation.

RESULTS

The simulated QT and QTc for all four clinical cases
(cases I–IV) and ten simulated exposure data points for five
different scenarios (SIMs 1–5) along with corresponding
clinical observations are summarised in Table IV. Absolute
error (AE) in prediction [Abs (OBS-PRED)] and average
absolute error (AAE) are reported for each case where the
observed data allowed to accurately calculate the errors.
For all cases (cases I–IV) and exposure levels, the SIM 1
simulation scenario setting has consistently provided the
lowest prediction error with respect to clinically reported
QT prolongation. We tested all simulation scenarios (SIMs
1–5) for case I and case II to establish our hypothesis and
then simulated only the SIM 1 and SIM 2 settings for the
remaining two cases (case III and case IV) to verify the
hypothesis. Since case I is the richest in terms of data points,
the average absolute error (AAE) was also reported for
easier comparison of various settings (SIMs 1–5).

The predicted QTc for all five time points of case I with
different simulation settings (SIMs 1–5) are shown along
with clinical QTc in Fig. II. It is evident from Fig. II and
Table IV that when parent and both metabolites effect on
all three cardiac ion currents were accounted for with
unbound plasma concentration as operating concentration
to drive response, the predictions were closest to the clinical
data. The actual QT was not reported in case IV; hence, the
average ΔQTcF of the simulated population was compared

Table II. Cardiac Ion Channel Inhibition Data Used in the Simula-
tions and its Source

Moiety IC50 in μM (Hill equation coefficient)

IKr IKs ICaL Reference

CT 1.1 (0.83) 1059a (1) 60.28 (1)b (5,7)
DCT 2.1 (0.89) 3956a (1) NA (5)
DDCT 2.7 (0.92) 0.28 (0.88) NA (5)

NA the data was not available, hence it was assumed negligible in all
simulations; CT citalopram; DCT desmethylcitalopram; DDCT
didesmethylcitalopram; IKr, IKs, ICaL represent rapidly activating
delayed rectifier potassium channel current, slowly activating delayed
rectifier potassium channel current, and late calcium channel current,
respectively; IC50 half maximal inhibitory concentration
aCalculated IC50 within the CSS platform based on %inhibition
versus concentration profile reported in the reference
bHill coefficient was not reported in the study, hence assumed to be 1

The AAPS Journal (2018) 20: 6 Page 5 of 10 6



with the population mean ΔQTc reported in the clinical
study report to calculate the prediction error. Although all
important assumptions are declared in the ‘Discussion’
section and information about the model inputs and how
they were obtained are described in the ‘Material and
Methods’ section, detailed simulation output report files are
provided as supplementary material for an interested user
to explore further raw simulated psedoECG traces, addi-
tional output parameters, and all input parameters used
during simulations. Supplementary materials 1, 2, 3, and 4
represent the simulation output reports of S1E1, S2E1,
S3E1, and S4E1 simulations.

DISCUSSION

Case I records the highest number of clinical measure-
ments (i.e. drug concentration with matching QT and RR
interval for four different time points after CT ingestion)
providing the most comprehensive scenario for verifying our
hypotheses (32). We ran five different simulations (SIM 1–
SIM 5) with various combinations of responsible moieties, ion
channels, and operating concentrations as specified in the
‘Material and Methods’ section. The results are shown in Fig.
II and Table IV. The simulated results showed that when free
plasma concentrations of all three entities (CT, DCT, and
DDCT) and multiple ion channel interactions were consid-
ered (SIM 1), the simulated QTcB (QT interval corrected for
heart rate by Bazett’s correction) (41) showed the lowest
AAE (Table IV). We used Bazett’s correction method to
match the reported QTc in the clinical study report. The heart
rate (as RR interval) is provided in Table IV; hence, an
interested reader can apply any other heart rate correction
formulae, e.g. Fridericia, and compare the results; however,
we do not anticipate the choice of correction formulae to
influence our conclusions. When total plasma concentrations
were used as the operating concentration with all moieties,

and all ion channel interactions were considered (SIM 2), the
QT prolongation was over-predicted. PseudoECG traces of
SIM 1 and SIM 2 scenarios compared to placebo (zero drug
and metabolite concentrations) over a period of 10 s are
shown in Fig. III. QT interval from the ECG signals was
automatically calculated by an inbuilt algorithm within the
CSS platform and reported in Table IV.

When we used free plasma concentration as the operat-
ing concentration and all moieties with only hERG inhibition
(SIM 3), the model under-predicted the effect; hence, it
appears that the inclusion of the IKs current is important.
When we neglected the effect of metabolites by simulating
only the parent (CT) concentration with either only IKr (SIM
4) or with multiple ion channels (SIM 5), we under-predicted
the observed QTcB indicating the significant contribution of
metabolites (especially that of DDCT which is clinically
important as a potent IKs current inhibitor). Thus, the
simulation result of case I indicates that consideration of
metabolites, together with parent drug and multiple ion
channels, is important in the accurate prediction of QT
prolongation after CT ingestion (Table IV, Fig. II). However,
it is worth noting that the established model has several key
assumptions:

& A 1D model of the ventricular heart wall is
sufficient to simulate the clinical ECG signal which is
a three-dimensional phenomenon in reality.

& The parent to metabolite ratios obtained at a 20-
mg CT dose level are valid at supra-therapeutic dose
levels. Studies by Unterecker et al. (32) and Liotier
and Coudoré (30) showed a linear elimination phase
of CT plasma concentration profiles at supra-
therapeutic doses, probably indicating non-saturable
clearance at the studied dose ranges.

& The combined effect of parent and metabolite on
various ion channel currents is additive.

Table III. Physiology (Systems) Parameters Input to the QST Model in the Simulation Cases I–IV

Physiology input
parameters

Case I
simulated
(clinical)

Case II
simulated
(clinical)

Case III
simulated
(clinical)

Case IV
s i m u l a t e d
(clinical)

Reference

Gender F e m a l e
(female)

F e m a l e
(female)

F e m a l e
(female)

9 females; 9
male (NR)

As reported/assumed

Age (years) 46 (46) 36 (36) 54 (54) 27 ± 7 (NR) As reported/assumed
Cardiomyocyte area
(μm2)

4 3 4 2 ±
1360 (NR)

2936 ± 919
(NR)

5 9 6 3 ±
1882 (NR)

2 0 9 6 ± 8 0 6
(NR)

Calculated with known covariate model from age and gender
(29)

Left ventricular wall
thickness (cm)

1.45 (NR) 1.36 (NR) 1.54 (NR) 1 . 2 8 ± 0 . 1 3
(NR)

Calculated with known covariate model from age (29)

Cell capacitance (pF) 1 1 5 ± 3 6
(NR)

7 8 ± 2 4
(NR)

1 5 8 ± 5 0
(NR)

56 ± 21 (NR) Calculated with known covariate model from age and gender
(28)

Heart rate A s
reported

A s
reported

A s
reported

Ca l c u l a t e d
(NR)

Reported or calculated if not reported, with known covariate
model from age, gender and time of day (39)

Plasma K+ [mM] 4 . 05 ± 0 . 4
(normal)

3 . 1 ± 0 . 3
(3.1)

2 . 9 ± 0 . 3
(2.9)

4 . 1 5 ± 0 . 8
(NR)

Calculated from covariate model with age, gender and time of
day (40)

Plasma Na+ [mM] 1 3 5 ± 1 . 9
(normal)

1 3 4 ± 2
(133)

1 3 5 ± 1 . 9
(NR)

140 ± 4 (NR)

Plasma Ca++ [mM] 2 . 2 ± 0 . 1
(normal)

2 .25 ± 0 . 1
(2.3)

2 . 2 ± 0 . 1
(NR)

2.4 ± 0.3 (NR)

NR not reported in the clinical study report
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& In the absence of measured/estimated heart
tissue concentrations, the CT plasma concentrations
are considered the effective drug exposure driving
the cardiac response, while other reports suggest that
the heart tissue concentration is a better surrogate
drug exposure driving the cardiac response (42–44).

& Plasma protein binding is non-saturable for the
studied drug concentrations.

With several assumptions and uncertainties described, to
build more confidence in the model, we employed a further
three clinical scenarios to see if the same model can also
explain other observed clinical outcomes. We tested the
model using data collated from other clinical studies; QT
prolongation at a therapeutic dose of 20 mg and two more
cardiotoxicity case reports describing a CT overdose (30,31).
The results consistently indicated that considering all moieties
(CT, DCT, and DDCT) and multiple ion channel interactions
with free plasma concentration as the operating concentration
is crucial in the prediction of an accurate cardiotoxicity profile
of citalopram at therapeutic and supra-therapeutic doses
(Table IV). The pseudoECG trace simulated for the Liotier
and Coudoré 2011 study (case III) was morphologically
erratic, and the signal analysis module implemented within
the CSS platform was not able to calculate the QT interval
using the default automated QT interval calculation algorithm
[Fig. IV]. We hypothesise that the erratic pseudoECG signal
was the effect of a combination of high concentrations of
active moieties, rapid heart rate, and hypokalemia (30). The

observation of clinical ECG traces in the clinical study report
appears to show deviation from the standard rhythm of an
ECG signal. However, the clinical study reported a QT
interval probably from the manual reading of the observed
QT interval taken from the erratic ECG profile. The
simulations were able to predict the erratic ECG signal of
this clinical scenario although comparison of the QT interval
was not possible since the automatic calculation of QT
interval in the model could not be performed due to the
erratic and non-physiological simulated ECG traces (Fig. IV).
It could be read manually from the predicted native ECG
traces; however, we did not perform a manual interpretation
of the pseudoECG signal into the QT interval.

Table IV. Observed and Predicted QT Interval or Prolongation (in Milliseconds) After Administration of Various Doses of CT

Case Exposure
ID

Observed Predicted

All moieties multiple channels Free Plasma Concentration

Free
plasma

Total
plasma

All moieties
only IKr

Only CT
only IKr

Only CT
multiple channels

SIM 1 SIM 2 SIM 3 SIM 4 SIM 5

QT
(ms)

RR
(s)

QTcB
(ms)

QTcB
(ms)

AE
(ms)

QTcB
(ms)

AE
(ms)

QTcB
(ms)

AE
(ms)

QTcB
(ms)

AE
(ms)

QTcB
(ms)

AE
(ms)

Case Ia S1E1 460 0.74 535 538 3 618 83 499 36 481 54 484 51
S1E2 460 0.83 505 495 10 576 71 465 40 452 53 455 50
S1E3 440 0.74 511 513 2 589 78 486 25 473 38 475 36
S1E4 420 0.78 476 483 7 536 60 413 63 404 72 404 72
S1E5 380 0.78 430 438 8 438 8 438 8 438 8 438 8

AAE (ms) 6 60 34.4 45 43.4
Case IIa S2E1 NA 0.4–0.6 572–600 597 11 624 38 577 9 566 20 569 17
Case IIIa S3E1 440 0.531 604 CNC CNC

S3E2 600 0.8 671 641 30 737 66
S3E3 420 0.428 642 CNC CNC

Case IVb,c S4E1 NA NA 8.5 9.53 1.03 21.93 13.43

CNC cannot calculate due to a metamorphic ECG trace which can be inferred as arrhythmia as in the actual clinical study, NA not available,
AE is the absolute error in prediction, AAE is the average absolute error for a given case study, RR is the time interval in seconds between two
consecutive R waves on the ECG trace which also represents heart rate, QTcB is the QT interval in ms corrected for heart rate by Bazzett’s
formulae, ID identification, CT citalopram, SIMs 1–5 simulations 1–5
a Predicted is an average of five simulations for a given individual (see supplementary material for inter-occasion variability generated in heart
rate and plasma electrolyte concentrations and simulated pseudoECG)
bAverage value of a population in clinical and simulation studies
c Prolongation in QTcF interval (in ms) from drug as compared to placebo (ΔQTcF)

Fig. II. Comparison of simulated QTcB interval with different
simulation settings (SIM 1–SIM 5) at five different exposure levels
(S1E1–S1E5) of case I
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We established the systems cardiotoxicity model for CT
and verified the predictive performance of the model against
four different clinical studies at different dose levels and
physiological conditions to improve confidence in our find-
ings. We identified a simulation scenario that consistently
explained the observed QT prolongations, at all dose levels,
as the plausible mechanism of the QT prolongation of
citalopram. Mechanistic models are useful tools for assessing
hypotheses and understanding mechanisms of toxicity which
are otherwise difficult or practically impossible to study
in vivo. For example, it is difficult to only study the effect of
CT in vivo since the drug is converted to the metabolite DCT
via multiple metabolic pathways and then rapidly trans-
formed to DDCT; hence, all three moieties exist and exert
their effects simultaneously, blocking multiple ion channels.
In contrast, accurately parameterised and sufficiently quali-
fied physiologically based models can be used to conduct
various simulations to investigate ‘what-if?’ scenarios for
understanding or establishing the underlying mechanisms
and for investigating the effect of each contributing factor.

The current study also highlights the application of
population-based biophysically detailed models of cardiac
electrophysiology to simulate real patients within a virtual
environment providing the possibility of applying such
approaches towards personalised medicine and therapeutics.
For example, with the use of such mechanistic modelling

approaches in combination with infrequent clinical measure-
ments, one can estimate when the plasma concentrations in
an overdosed patient return to safe levels and also assess
when the safety biomarkers (e.g. QTc) are expected to reach
safe levels. This individual patient-centred assessment proce-
dure could allow the medical staff to estimate the duration of
hospitalisation, potentially replacing the current frequent
blood sampling and clinical marker measurements to assess
the recovery of the patient.

CONCLUSIONS

The results of this study indicate that considering only
hERG ion channel inhibition of the parent drug, when
predicting cardiotoxicity, may not provide reliable predictions.
Where possible, the inclusion of active metabolite data and the
influence of other ion channel currents should be considered for
a better prediction of potential cardiac toxicity. Mechanistic
modelling can help fill the current gaps in the quantitative
translation of preclinical cardiac safety assessment to clinical
toxicology. Population-based biophysically detailed models can
potentially be used in personalised therapeutics, and the
mathematical models based around the ‘virtual twin’ concept
should be considered as one of the approaches towards such
bespoke patient therapies. Further case studies with varying PK
and PD characteristics are warranted to improve confidence in

Fig. III. PseudoECG trace over a 10-s period for S1E1 exposure level with free plasma (SIM 1) or total plasma (SIM 2) concentrations
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this approach and increase awareness of such modelling
strategies in the quantitative translation of preclinical cardiac
safety assessment to clinical situations.
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