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Abstract. Orally administered artemisinin-based combination therapy is the first-line
treatment against uncomplicated P. falciparum malaria worldwide. However, the increasing
prevalence of artemisinin resistance is threatening efforts to treat and eliminate malaria in
Southeast Asia. This study aimed to characterize the exposure-response relationship of
artesunate in patients with artemisinin sensitive and resistant malaria infections. Patients
were recruited in Pailin, Cambodia (n = 39), and Wang Pha, Thailand (n = 40), and received
either 2 mg/kg/day of artesunate mono-therapy for 7 consecutive days or 4 mg/kg/day of
artesunate monotherapy for 3 consecutive days followed by mefloquine 15 and 10 mg/kg for 2
consecutive days. Plasma concentrations of artesunate and its active metabolite,
dihydroartemisinin, and microscopy-based parasite densities were measured and evaluated
using nonlinear mixed-effects modeling. All treatments were well tolerated with minor and
transient adverse reactions. Patients in Cambodia had substantially slower parasite clearance
compared to patients in Thailand. The pharmacokinetic properties of artesunate and
dihydroartemisinin were well described by transit-compartment absorption followed by
one-compartment disposition models. Parasite density was a significant covariate, and higher
parasite densities were associated with increased absorption. Dihydroartemisinin-dependent
parasite killing was described by a delayed sigmoidal Emax model, and a mixture function
was implemented to differentiate between sensitive and resistant infections. This predicted
that 84% and 16% of infections in Cambodia and Thailand, respectively, were artemisinin
resistant. The final model was used to develop a simple diagnostic nomogram to identify
patients with artemisinin-resistant infections. The nomogram showed > 80% specificity and

sensitivity, and outperformed the current practice of day 3 positivity testing.
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INTRODUCTION

Malaria-related mortality has decreased significantly
during the last decade, but there are still approximately
500,000 deaths each year (1). Artemisinin-based combination
therapy (ACT) is the recommended first-line treatment for
uncomplicated falciparum malaria (2). ACTs comprise a
short-acting but potent artemisinin derivative combined with
a long-acting antimalarial with a different mechanism of
action. The artemisinin component is responsible for elimi-
nating the majority of the parasite biomass during the first
days of treatment, and its rapid and broad parasiticidal
activity has been a major advantage compared to other
antimalarial agents (3). However, this efficacy is threatened
by the emerging artemisinin resistance in Southeast Asia (4—
7). Artemisinin resistance has been manifested by a gradual
increase in parasite clearance times over the last decade and
has resulted in increasing rates of ACT treatment failure (8).
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PK-PD Modeling of Artemisinin Resistance

Artemisinin-resistant falciparum malaria has been confirmed
in Cambodia, Laos, Myanmar, Thailand, and Vietnam. The
recently discovered molecular marker (i.e., mutations in
P, falciparum (Pf) kelchl3) is associated with artemisinin resistance
and correlated with increased parasite clearance times (7,9,10).
Slower parasite clearance results in a higher parasite burden
requiring to be eliminated by the ACT partner drug and an
increased probability of selecting resistance. High failure rates have
been observed recently after dihydroartemisinin-piperaquine
treatment in Cambodia and Vietnam and after artesunate-
mefloquine on the Thailand-Myanmar borders (11,12). Strategies
to restore high cure rates include increasing dosage, duration, and
frequency of artemisinin administration and use of triple combina-
tions. These do not restore rapid parasite clearance in infections
with artemisinin-resistant parasites (13).

The aim of this study was to characterize the population
pharmacokinetic (PK) properties of artesunate (ARS) and its
active metabolite, dihydroartemisinin (DHA), in patients
with artemisinin sensitive and resistant falciparum infections,
and then to develop a population exposure-response model to
describe the time course of drug exposure and its relationship
to the elimination of malaria parasites. The developed
pharmacokinetic-pharmacodynamic (PK-PD) model was also
used to develop a simple algorithm (nomogram) to identify
patients with in vivo artemisinin-resistant infections.

METHODS

Study Design

The data used in this study were from two open-label
randomized clinical trials; Pailin Referral Hospital in western
Cambodia and the Shoklo Malaria Research Unit (SMRU)
clinic in Wang Pha, Tak Province, north western Thailand. The
trial which recruited patients between June 2007 and December
2009 aimed to assess the efficacy of artemisinin in two locations
in the Greater Mekong subregion and is reported in full
elsewhere (4). Ethical approval was obtained from the Ministry
of Health in Cambodia, the Ethics Committee of the Faculty of
Tropical Medicine of Mahidol University in Thailand, the
Oxford Tropical Medicine Ethical Committee, the WHO
Research Ethics Review Committee, and the Technical Review
Group of the WHO Western Pacific Regional Office
(ClinicalTrials.gov number, NCT00493363).

Briefly, 40 patients with uncomplicated falciparum malaria
were recruited at each site. Non-pregnant adults and children
(> 5 years) were enrolled in Pailin, and non-pregnant adults
(> 16 years) were enrolled in Wang Pha. Patients were randomized
(50:50) to receive once daily oral ARS monotherapy for 7 days
(2 mg/kg/day) or once daily oral ARS monotherapy for 3 days
(4 mg/kg/day) followed by mefloquine treatment (15 mg base/kg
on day 4 and 10 mg base/kg on day 5). ARS was provided by
Guilin Pharmaceutical (repacked and quality-controlled by Sanofi
Synthelabo for distribution in Cambodia and by Atlantic for
distribution in Thailand). Mefloquine was provided by
Medochemie for Cambodia and Mepha Pharma for Thailand.

Venous plasma samples were obtained at 0 (pre-dose), 0.25,
05,1, 15,2,3,4,5, 6, 8 and 12 h post-dose on the 1st day of
treatment. Opportunistic sparse sampling was performed after each
dose throughout the study. Blood samples were collected in pre-
chilled fluoride oxalate tubes in Pailin and in pre-chilled lithium

1843

heparin tubes in Wang Pha. Samples were centrifuged at 4°C and
stored in liquid nitrogen until transported to the Department of
Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Re-
search Unit, Thailand, for drug measurements. The laboratory is
accredited according to ISO15189 and ISO15190 and participates in
the Worldwide Antimalarial Resistance Network Pharmacology
Proficiency Testing Programme (14,15). ARS and DHA plasma
samples were quantified using high-throughput liquid
chromatography-tandem mass spectrometry (16). The lower limit
of quantification (LLOQ) was 1.2 and 2.0 ng/ml for ARS and DHA,
respectively. Quality control samples at three levels (low, middle,
and high) were analyzed within each batch of clinical samples to
ensure precision and accuracy during routine clinical drug measure-
ments. The relative bias (accuracy) was below 15%, and the
coefficients of variation (precision) were lower than 5% for all
quality control samples, which is well below the required precision
of + 15% according to US FDA regulatory guidelines (16).
Venous blood asexual and sexual parasite densities were
assessed by microscopy. Parasite counts (thin or thick blood
films) of asexual parasites and gametocytes were performed at 0
(pre-dose), 4, 8, and 12 h after the first dose and then every 6 h
until two consecutive slides were negative for asexual parasites.

Population Pharmacokinetic and Pharmacodynamic
Modeling

Estimation and simulation were performed using nonlin-
ear mixed-effects modeling in the software NONMEM v.7.3
(ICON Development Solutions, Ellicott City, MD) (17). Post-
processing, diagnostic plots, and automation were performed
using Perl-Speaks-NONMEM (PsN), v. 4.5.3 (18,19), Xpose,
v.4.5.3 (20,21), Pirana, v. 2.9.2 (22), and R, v. 3.2.4 (The R
Foundation for Statistical Computing) (23,24).

Population Pharmacokinetics

Molar units of ARS and DHA concentration measurements
were transformed into their natural logarithms and characterized
simultaneously, assuming complete and irreversible in vivo con-
version of ARS into DHA (25,26). The fraction of data below the
LLOQ was high (~ 40%). Observations below LLOQ was
therefore included in the analysis and modeled as categorical
observations, conditioned on the underlying model predicted
plasma concentrations using the Laplacian estimation method
(ie., likelihood-based M3-method) (27-29). Different disposition
models were explored for the two compounds (one-, two-, and
three-compartment models). The best performing disposition
model was carried forward to evaluate different absorption models,
i.e., first-order absorption with and without lag-time, zero-order
absorption, sequential zero- and first-order absorption, and transit-
compartment absorption model (30). Between-subject variability
(BSV) was modeled exponentially as illustrated below (Eq. 1).

0; = Oy X el (1)

where 6; is the estimated individual parameter value, Oy is
the estimated population parameter value, and #; represents
the BSV, assumed to be independent and symmetrically
distributed around zero with a variance ®’. BSV was
estimated for all structural parameters initially but only
maintained if they could be estimated with adequate
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precision (< 50% RSE). Correlations between individual
parameters were also evaluated by estimating the off-
diagonal elements in the covariance-variance matrix.
Between-occasion variability (BOV) was explored between
dose occasions on relevant absorption parameters. The
unexplained residual variability (RUV) was estimated by
separate additive error models for log-transformed ARS and
DHA concentrations (i.e., essentially equal to exponential
error models on an arithmetic scale).

Body weight (BW) was evaluated as an allometric
function on all clearance and volume parameters, where
clearance was scaled to a power of 0.75 and volume to the
power of 1 (Eq. 2):

. v
0; = Orv x ( BWi ) ()

where BW, is the individual body weight, BW,;,.4 is the median
body weight of the population, and 7 is the allometric exponent.
Potential malaria disease effects on absorption parameters were
evaluated using observed parasitemia as a continuous time-
dependent covariate. The covariate relationship was centered
on the lowest observed parasite density (Log (PARA i) and
evaluated manually using both linear and nonlinear
implementations (i.e., linear, piecewise linear, power, exponen-
tial, and Emax functions). The Emax relationship was imple-
mented according to Eq. 3 (MTT) and Eq. 4 (F).

0; = Oy x <1 + PARAwT X (Log (PARA;)~Log (PARAmn) ) (3)

(Log (PARA; )~Log (PARAp, )) x PARAmaxg
0= Oy x |1+
(Log (PARA; )~Log (PARAin) ) + (PARASOF-Log (PARAmn ))

“4)

where PARAy T is the estimated linear effect of parasite
density on MTT, PARAmaxg is the maximum effect of
parasite density on F, PARASOg is the parasite density which
produces 50% of the maximum covariate response, and Log
(PARA,)) is the individual parasite density. Relationships
between model parameters and other potentially influential
covariates (i.e., age, sex, baseline hemoglobin, baseline
parasitemia, and temperature) were identified using correla-
tion plots and subsequently evaluated by stepwise forward
inclusion (p < 0.05) and backward exclusion (p < 0.01)
covariate modeling using linear, piecewise linear, power, and
exponential functions.

Population Pharmacodynamics

A PK-PD model was developed using a sequential
approach, in which individual PK parameter estimates
from the final PK model were used in the PK-PD model
(31). Observed total parasite densities for each patient,
i.e., asexual parasite count per microliter of blood
multiplied by a theoretical blood volume (assuming
80 mL of blood per kilogram body weight), were
transformed into their natural logarithms and modeled
using the first-order conditional estimation method with
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interactions or with addition of the Laplacian option
(likelihood-based M3 method) to evaluate the dynamic
parasite effects of ARS/DHA. Parasite microscopy LLOQ
was set to an observed parasite count of 16 per microliter.
All the data below the LLOQ were explored with and
without the application of the M3-method for censored
observations (29). Parasite densities at day 4 and forward
were censored in the mefloquine group since combination
treatment started at this day. However, only 10.5% of
patients had detectable asexual parasite counts at this
time point.

In the absence of any drug, the parasites were assumed
to grow exponentially with a parasite multiplication rate
(PMR) of approximately tenfold multiplication per asexual
cycle of 48 h (32,33). The predicted plasma concentrations of
DHA were used to link to the drug-dependent killing of
parasites (Kxir) (Eq. 5) (34). Both direct and delayed
concentration-response Emax models were evaluated (34).
The delayed effect model links the central compartment of
the PK model to a hypothetical intraerythrocytic effect
compartment that exerts the PD effect (Fig. 1).

Emax x Ce
Kxirr = ECy 1 Ce (5)

where Emax is the maximum parasite kill rate, Ce is the drug
concentration in the effect compartment, and ECs, is the
concentration which produces 50% of maximum killing effect.

A mixture model was evaluated on Emax and/or ECs to
quantify the bimodal distribution of the observed parasite
clearances. The probability of having a resistant infection was
estimated for each site separately, and potentially influential
covariates (i.e., site and study arm) were evaluated. Individ-
ual Emax values of the two mixture populations, one with low
parasite-killing (resistant infections; Emaxg) and one with
high/normal parasite-killing (sensitive infections; Emaxg)
were parameterized as below (Eqs. 6 and 7) to prevent
aliasing, i.e., to constrain all individual Emaxg; to be greater
than the typical population Emax value for the resistant
population.

EmaxR = OTVR x e (6)

Emaxg = Otvr + (O1vs—0O1vR) X € (7)

where O1ygr and O1vys are the estimated population parameter
values for resistant and sensitive populations, respectively,
with their associated variance (7).

Model Evaluation

Model selection was guided by plausible parameter
estimates, precision of parameters, visual diagnostics, and
minimum objective function value (OFV); proportional to
minus twice the log-likelihood of the data, computed by
NONMEM. A drop in OFV of 3.84, 6.63, and 10.83 or more
was considered a significant improvement at P < 0.05,
P < 0.01, and P < 0.001, respectively, between two hierarchi-
cal models after inclusion of one additional parameter (one
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Fig. 1. Schematic representation of the final population pharmacokinetic-pharmacodynamic model of artesunate
(ARS) and its active metabolite, dihydroartemisinin (DHA), in patients with uncomplicated malaria. Ce predicted
DHA concentration in the effect compartment, CL elimination clearance, ECs, the concentration which produces
50% of maximum parasite kill, Emax maximum parasite kill, Kz, effect compartment rate constant governing
the delayed drug effect, Ksrowrn parasite multiplication rate, fixed to tenfold multiplication per 48-h cycle, KTR
first-order transit absorption rate constant [KTR = (n + 1)/mean transit time], V apparent volume of distribution

degree of freedom). Visual predictive checks (VPCs) were
performed (1000 simulations) to evaluate the predictive
performance of the PK and PK-PD models. The 5th, 50th,
and 95th percentiles of observed data for the PK model and
for the PD model were overlaid with the model predicted
95% confidence intervals of the same percentiles. Diagnostic
plots were used to evaluate the overall goodness of fit by
plotting observed drug concentrations against the population
and the individually predicted concentrations. The reliability
of individual parameter estimates and goodness-of-fit plots
were assessed by reported eta and epsilon shrinkages (35).
Precision or parameter uncertainty in parameter estimates
was obtained from a recently developed sampling importance
resampling (SIR) procedure (36).

Simulation of Alternative Dosing Regimens for Patients with
Resistant Infections

The final PK-PD model was also used to simulate
different dosing scenarios to evaluate possible alternative
dosing in patients with artemisinin-resistant infections. The
following dosing scenarios were evaluated; 2 mg/kg of
artesunate administered twice a day for 3 days (i.e., increased
frequency of dosing), 8 mg/kg of artesunate administered
once daily for 3 days (i.e., increased dosage), and 4 mg/kg of
artesunate administered once daily for 5 days (i.e., increased
treatment duration). All simulations assumed a total baseline
parasitemia of 10", The simulated residual parasite burden
was evaluated 24 h post last dose for each of the evaluated
dosing regimens.

Resistance Nomogram

The established PK-PD model was used to simulate data
for the development of a static nomogram to identify patients
with artemisinin-resistant falciparum infections. The develop-
ment of this nomogram was based on the hypothesis that the

ratio between baseline parasite density at enrollment and the
parasites density at a later time point could be a more
sensitive approach to identify patients with “slow” parasite
clearance compared to the traditionally used microscopy-
based day 3 positivity test.

A simulated dataset with 10,000 hypothetical patients
with artemisinin-resistant (n = 5000) and artemisinin-sensitive
(n = 5000) infections was created using the developed PK-PD
model, and this was regarded as the reference “true”
classification. A uniform baseline parasite density distribution
of 10'° to 10'** parasites was applied for the simulations to
mimic the observed clinical parasite density distribution. The
individual parasite density ratio (Ratio;) was calculated for
time point j, i.e., 24, 48, and 72 h post-dose as below (Eq. 8).

Ratio; j 0445 72) = Log (PARA); g—Log (PARA); j044572)  (8)

The calculated median ratio at each time point (i.e., 24,
48, or 72 h) was considered as the resistant/sensitive “cutoff”
value. The simulated individual patient ratios were then
compared to the “cutoff” values at each time point to
categorize them as having a resistant or sensitive infection
(e.g., the 48-h time point calculation is shown in Eq. 9).

Resistant,

Ratioj 43 < Median of Ratio,g 9)
Sensitive,

Category s = { Ratio;4s > Median of Ratioss

However, in case the simulated parasite density was
below the LLOQ at the evaluated time point, the ratio
calculation was not performed and the patient was catego-
rized as having a sensitive infection. The category outcome
was compared to the simulated patient’s known classification,
and a sensitivity analysis was performed according to the
statistical metrics in Table I. A schematic overview of the
above approach is presented in Fig. 2.
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Table I. Statistical Metrics used in the Sensitivity Analysis

Lohy Das et al.

Metric

Interpretation

Negative results (N)

Positive results (P)

The nomogram predicts the patient to have a sensitive infection (i.e., the individual
parasite density ratio (Ratio;) is above the average ratio/“Cutoff” value)
The nomogram predicts the patient to have a resistant infection (i.e., the individual

parasite density ratio (Ratio;) is below the average ratio/“Cutoff” value)

True negative (TN)
True positive (TP)
False negative (FN)
False positive (FP)

Sensitivity = T—PII])-‘N
Specificity = TTJTE FP

_ __'TP+IN
Accur.acy o = TPLTN+FP+FN
Negative predictive value (NPV) =5 PN
Positive predictive value (PPV) = T

The nomogram predicts correctly the patient to have a sensitive infection
The nomogram predicts correctly the patient to have a resistant infection
The nomogram predicts incorrectly the patient to have a sensitive infection
The nomogram predicts incorrectly the patient to have a resistant infection
Probability of identifying correctly patients with resistant infections
Probability of identifying correctly patients with sensitive infections
Proportion of all correctly predicted patients

Probability of a patient identified as having a sensitive infection to be true
Probability of a patient identified as having a resistant infection to be true

A sensitivity analysis was used to compare the individual classification of sensitive and resistant patients described above to the simulated

patient’s known resistance status

Absolute parasite clearance time is directly proportional to
initial parasite density, assuming that parasite clearance half-life
is independent of initial parasite density (37). Thus, the
performance of the nomogram (baseline-adapted nomogram)
at different initial parasite densities was explored to avoid any
potential bias. As such, 10,000 hypothetical patients with

artemisinin-resistant (n = 5000) and artemisinin-sensitive
(n = 5000) infections were simulated for each baseline
parasitemia scenario (i.e., 10,000 hypothetical patients were
simulated for each baseline parasite density of 10% up to 10"
with an integral of a half log), using the developed PK-PD
model. The performance of the nomogram was evaluated for

Simulate data

Simulate a large dataset of patients with resistant and sensitive malaria
infections (50:50) and varying baseline parasite densities

) 4

Obtain ratio
Ratioi,j (24,48,72) = Log(PARA; o) — Log(PARA)i,j (24,48,72)

o

Obtain ”cutoff”’ value

Median of Ratio; ; is considered the “cutoff” value for each time point

¥

4 N
Apply classification rule

< LLOQ: classify as sensitive infection

> LLOQ: apply rule:
Ratio;; < cutoff ; resistant infection
Ratio;; > cutoff ; sensitive infection

$

Compare the nomogram-classification to the
simulated patient’s known resistance status

L 4

Sensitivity analysis

- J

\ J

Fig. 2. A schematic representation of the development of the resistance nomogram
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each individual baseline parasite density in the same manner as
above. However, the optimal day of assessing the nomogram
was evaluated for individual baseline parasite densities in order
to develop the baseline-adaptive nomogram. For each individ-
ual baseline parasite density, a sensitivity analysis was per-
formed to inform if the nomogram should use measurements on
day 1, 2, or 3 for optimal performance.

The same simulated hypothetical patients (used during the
static nomogram development) with artemisinin-resistant and
artemisinin-sensitive infections (i.e., 10'° up to 10'*° baseline
parasite density) were used to evaluate the developed
monograms (static and baseline adaptive nomogram) and also
(1) a pure PK-PD model-based approach and (2) the commonly
used day 3 positivity test as a measure of the proportion of
resistant infections. For (1), individual parameters of the devel-
oped PK-PD model were fitted to the simulated data, and for (2),
the simulated day 3 positivity test (i.e., above LLOQ at day 3) was
obtained to get individual patient resistance classifications. The
individual classification of sensitive and resistant patients de-
scribed above was compared to the simulated patient’s known
resistance status with a sensitivity analysis as described in Table I.

RESULTS
Population Pharmacokinetics

Seventy-nine patients in this study were analyzed (Table II),
and the final PK model and parameter estimates are presented in
Table III and Fig. 1. Simulation-based diagnostics for the parent
compound, ARS, and its active metabolite, DHA, are presented
in Fig. 3. The final PK model consisted of one-compartment
disposition models for both ARS and DHA. A transit compart-
ment absorption model, consisting of four transit compartments,
was superior to all other absorption models. In the final model,
the absorption rate constant (k,) and the transit-compartment
rate constant (Ktgr) were fixed to be identical due to the inability
to estimate them separately. BSV was estimated for all structural
parameters, except for elimination clearance of ARS which was
estimated with poor precision (> 50% RSE). Incorporating BOV
had a significant impact on both MTT (AOFV = — 127) and F
(AOFV = -916). Body weight, implemented allometrically on all
clearance and volume parameters, resulted in an improved model
fit (AOFV = — 6.5). Malaria infection had a significant impact on
MTT (AOFV = — 48.1), resulting in a linear 10% decrease in
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MTT with every log increase in parasite density. Observed
parasite densities also had a significant impact on F (implemented
as an Emax-type relationship; AOFV = — 724), resulting in
increasing drug exposure with increasing parasite densities. Eta
shrinkages (BSV) computed in the final PK model were relatively
low (Vars = 4.24%, Vppa = 0.01%, MTT = 37.8%, and
F =35.6%). Eta shrinkages (BOV) for MTT and F were around
30% for occasion 1-4 but higher than 50% for occasion 5-6, due
to the relative sparseness of data at later dose occasions.
Computed epsilon shrinkage was 20.0 and 21.0% for ARM and
DHA, respectively.

Population Pharmacokinetics-Pharmacodynamic Relationships

The first-order conditional estimation method with interac-
tions and the M3-method produced similar parameter estimates,
with no bias in LOQ data when treated as missing or categorical
data. Thus, the first-order conditional estimation method was
used throughout modeling since the M3-method was somewhat
less stable and produced substantially longer computational run-
times. A delayed concentration-response model (i.e., hysteresis
model) showed a significantly better model fit compared to the
direct concentration-response model. The introduction of a
mixture model on Emax resulted in a significantly better model
fit and was able to describe the bimodality of the parasite
clearance profiles and resulted in a significantly better model fit
(AOFV = - 11.3). There was no significantly improved model fit
when the mixture model was implemented on ECs, alone
compared to a model without a mixture model (AOFV = —2.53).
Furthermore, there was no further improvement on model-fit
when a mixture model was implemented on both Emax and ECs,
compared to when implemented on Emax alone. Site was found
to be correlated with the bimodal distribution, and it significantly
improved the model when it was introduced as categorical
covariate to the mixture probability (AOFV = — 14.0). No other
covariates were found to be significant in this analysis. The final
model estimated 84% of the patients in Pailin (Cambodia) to
have artemisinin-resistant infections compared to only 16% of
patients in Wang Pha (Thailand). The ECs, was estimated to be
9.81 ng/mL (34.5 nM), but the uncertainty in this parameter was
relatively high (31.7% RSE). The half-life of effect compartment
was 9.66 h. The final model demonstrated reasonable parameter
precision (Table IV) and a good predictive performance (Fig. 3).

Table II. Baseline Study Demographics

Wang Pha, Thailand

Artesunate mono- Artesunate-

therapy (N = 20)

mefloquine (N = 20)

Body weight (kg)
Age (yr)

No. male (%)
Temperature (°C)

Hemoglobin (g/dl)
Total baseline circulating
parasite biomass (log;o)

55.0 (52.8-60.0)

29.5 (26.3-38.3)
19 (95)

37.9 (37.2-38.5)

12.2 (11.7-13.7)

114 (11.2-11.7)

51.0 (45.3-55.0)

28.0 (22.0-34.0)
20 (100)

36.8 (36.7-37.8)

12.6 (11.6-13.5)

113 (11.1-11.5)

Pailin, Cambodia P value®
Artesunate Artesunate-mefloquine
mono-therapy (N = 20) (N =19)
46.5 (41.4-52.0) 46.5 (30.5-52.5) 0.001
23.0 (16.5-37.0) 18.0 (13.5-26.5) 0.08

15 (75) 16 (84) 0.01
38.5 (37.9-39.0) 38.4 (37.6-38.8) < 0.001
12.1 (11.3-13.3) 12.2 (10.6-14.0) 0.21
11.2 (11.0-11.4) 10.9 (10.6-11.3) < 0.001

All values are presented as median (interquartile range) unless otherwise specified
“Potential differences (P value) between sites (Wang Pha vs. Pailin) were calculated using the Mann-Whitney U test
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Table III. Parameter Estimates from the Final Population Pharmacokinetic Model

Parameter Population estimate (% RSE) 95% CI CV% for BSV/BOV? (% RSE) 95% CI

Artesunate

F 1 fixed - 25.8 (25.5) 19.3-46.0
43.1 (13.5)* 19.3-46.1*

MTT (h) 0.869 (7.94) 0.81-1.05 35.1 (35.4) 22.5-75.1
68.8 (11.0)* 58.7-84.7*

CLARrs/F (L/h) 1890 (6.73) 1770-2210 - -

Vars/F (L) 778 (9.45) 727-980 62.6 (19.8) 55.9-100

RUVaRgs (%) 105 (2.95) 100-110 - -

Dihydroartemisinin

CLpua/F (L/h) 116 (6.15) 108-132 -

Vpua/F (L) 124 (6.72) 112-140 18.4 (18.3) 10.1-20.8

RUVppa (%) 59.1 (2.31) 57.0-61.0 - -

Covariate effects

PARAmTT 0.115 (9.11) 0.0946-0.130 - -

(Log10 parasitemia)

PARAmaxg 1.76 (11.7) 1.55-2.27 - -

PARASOg 8.69 (9.44) 7.87-10.5 - -

(Log10 parasitemia)

ARS artesunate, DHA dihydroartemisinin, F bioavailability, MTT mean transit time, CL elimination clearance, V apparent volume of
distribution, RUV unexplained residual variability, PARA ;7 estimated linear effect of parasite density on MTT, PARAmax; maximum effect
of parasite density on F, PARA50F parasite density which produces 50% of the maximum covariate response

Coefficient of variation (%CV) for between subject variability (BSV) and between occasion variability (BOV) was calculated as
100 x ("¢ —1)12  Relative standard errors (% RSE) were calculated as 100 x (standard deviation/mean). The 95% confidence intervals
(95% CI) of parameter estimates were obtained with the sampling importance resampling (SIR)

Simulation of Alternative Dosing Regimens for Patients with
Resistant Infections

As expected, the predicted mean residual parasite density
24 h after the last dose was substantially lower in patients with
sensitive infections (6.0 x 10%) compared to those with resistant
infections (5.1 x 107), assuming standard dosing (4 mg/kg of
artesunate administered once daily for 3 days). Increased dosing
frequency (2 mg/kg of artesunate administered twice daily for
3 days) resulted in negligibly improved residual resistant parasite
densities (4.4 x 107). Similarly, a higher dosage (8 mg/kg of
artesunate administered once daily for 3 days) had a minor
impact on the residual resistant parasite densities (2.3 x 107).
However, a substantial improvement was seen with increased
treatment duration (4 mg/kg of artesunate administered once
daily for 5 days) resulting in comparable residual parasite
densities in patients with resistant infections (2.2 x 10°) to that
seen after standard treatment in patients with sensitive infections
(6.0 x 10%). Thus, the residual parasite density, to be eliminated by
the partner drug, was considerably higher in patients with
resistant infections compared to patients with sensitive
infections and was not improved substantially by increased
dosing frequency or increased dosage over 3 days. A standard
dosage administered over 5 consecutive days was predicted to be
the most effective method of reducing the increased burden of
residual parasite densities in patients with resistant infections.

Resistance Nomogram

The evaluation of the developed static nomogram
showed that the ratio between baseline parasite density and
parasite density on day 2 post-dose (i.e., 48-h post-dose)
performed better than when using parasite density

measurements on day 1 or day 3 post-dose. The sensitivity
was ~ 70% with a type II error rate (i.e., resistance incorrectly
identified) of 29.2% (Table V).

The performance was improved further when the
nomogram was optimized to take into account the observed
parasite density at baseline (baseline-adapted nomogram).

For optimal performance, the nomogram should be
performed on day 1 (24-h post-dose) for patients with
baseline densities of 10° to 10'%% (“cutoff” value of 1.46;
sensitivity of 62.6 to 74.7%). For baseline densities of 10" to
10'*°, optimal performance was found on day 2 (“cutoff”
value of 2.93; sensitivity of 80.7 to 84.1%). The performance
for patients with hyper-parasitemia (i.e., baseline parasite
density > 10'*%) was optimal when performed on day 3
(“cutoff” value of 4.34; sensitivity > 85%). The nomogram
performance for low baseline density of < 10° was not
satisfactory with sensitivity below 30.0%. Figure 4 illustrates
the performance of the nomogram on day 1, 2, and 3 post-
dose for each parasite baseline density.

The overall sensitivities of the developed predictive tools
were 98, 80, 71, and 27% for applying the model-based
analysis, baseline-adapted nomogram, static nomogram, and
day 3 positivity test, respectively. Consistent with this, when
the developed baseline-adapted nomogram was applied on
the observed parasite density measurements from the clinical
trial, sensitivity was predicted at 83% with accuracy and
specificity of 81 and 87%, respectively.

DISCUSSION

The emergence of artemisinin resistance in Southeast
Asia is of great concern, and it must be contained and then
eliminated before spreading to other parts of the world. It is
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Fig. 3. Visual predictive check of final population pharmacokinetic model of
artesunate (a) and its active metabolite dihydroartemisinin (b), and population
pharmacodynamic model stratified by site (¢; Pailin, Cambodia, and d; Wang Pha,
Thailand), in patients with uncomplicated falciparum malaria. The open circles are
observed data; solid black lines represent the 50th percentiles of observed data;
dashed black lines represent the 5th and 95th percentiles of observed data for the
pharmacokinetic model (a and b) and the pharmacodynamic model (¢ and d); shaded
areas are the 95% confidence intervals of the simulated percentiles; vertical gray lines
represent the lower limit of quantification (LLOQ) for ARS (1.2 ng/ml), DHA
(2.0 ng/ml), and parasite density (107> [maximum parasite biomass for 16 parasite/
pL]). The lower panels show the fraction of observed data below the LLOQ (open
circles) overlaid with the 95% prediction interval of the fraction of simulated data

below the LLOQ (shaded area)

important to characterize the concentration-response rela-
tionship of artemisinin derivatives in resistant and sensitive
malaria infections and to develop new tools to identify
artemisinin resistant infections early and accurately in field
settings.

Population Pharmacokinetics

A simple one-compartment model was employed to
describe the concentration-time profiles of ARS and
DHA, which was in agreement with previous studies
(38). However, in some reports, peripheral compartment
structures have been proposed for DHA. Differences are
likely to reflect sampling methodologies and data censor-
ing due to quantification issues (39,40). Malaria infection

(measured by the parasite density) had a significant
impact on both absorption rate and relative bioavailability
of ARS, resulting in increased absorption during the acute
malaria infection compared to the convalescent phase.
Enzyme auto-induction cannot be excluded as an under-
lying cause to the time-dependent difference in exposure.
However, previous detailed PK studies of oral and
parenteral administration of ARS have demonstrated a
clear malaria effect on the relative bioavailability thought
to result from reduced first pass metabolism (40,41). The
decreased absorption rate with increasing parasite density
was unexpected and opposite to previous observations
(39,42-48). The underlying mechanism of this effect
cannot be elucidated from data collected in this study.
Reported PK parameter estimates were in agreement with
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Table IV. Parameter Estimates of the Final Population Pharmacodynamic Model
Parameter Population estimates (% RSE) 95% CI CV% for (% RSE) 95% CI
KGROWTH (hil) 0.0479 ﬁxed - - -
Parasite density at enrollment (Logl0)
Pailin, Cambodia 11.4 (0.82) 11.2-11.6 5.20 (17.1) 4.91-8.19
WangPa, Thailand 11.0 (1.01) 10.8-11.2 6.20 (15.5) 4.91-8.19
Kgo (B 0.0717 (15.3) 0.0566-0.0918 - -
Emaxg (") 0.187 (4.88) 0.172-0.202 10.1 (40.7) 5.43-18.1
Emaxg (h") 0.273 (6.25) 0.247-0.303 31.5% (34.9) 18.6-57.2
ECsp (nM) 34.9 (31.7) 16.2-51.7 - -
RUV (%) 35.2 (2.39) 33.9-36.7 - -
Probability of resistant infection (%)
Pailin, Cambodia 83.6 (9.74) 67.3-93.7 - -
Wang Pha, Thailand 15.9 (52.4) 5.20-33.8 - -

ECsy) DHA concentration which produces 50% of maximum parasite kill, Emaxg maximum parasite kill in patients with resistant infections,
Emaxg maximum parasite kill in patients with sensitive infections, Kz rate constant of effect compartment

Coefficient of variation (%CV) for between subject variability (BSV) and between occasion variability (BOV) was calculated as
100 x (e’ —1)"2  Relative standard errors (% RSE) were calculated as 100 x (standard deviation/mean). The 95% confidence intervals
(95% CI) of parameter estimates were obtained with sampling importance resampling (SIR)

“BSV (%CV) of Emaxs was calculated based on simulations (10,000 patients) with an estimated variance of 0.552 and the applied

transformation presented in Eq. 7

those previously reported and also with that obtained
from a model-independent analysis of the same data (4).

Population Pharmacokinetics-Pharmacodynamics

Parasite quantification by microscopy is prone to both
systemic and random errors, especially at low parasite densities
due to observational bias (49,50). To minimize the effect of this
potential observational bias, only the first parasite count of a
series of low parasite counts was retained in the data (51). DHA,
when implemented in an Emax model, showed a clear
concentration-response relationship as described previously
(33). A sub-population of patients having artemisinin-resistant
infections was supported by the implementation of a mixture
model on Emax. The resistance mechanism is not known
currently, but it was clear from data presented here that Emax
rather than ECsqy (potency) was affected by this resistance
mechanism. This was also supported by a recent clinical trial by
Das et al. (13) demonstrating no clinical benefit from an
increased dose (8 mg/kg/day), as could have been expected if
the potency would have been affected.

A high proportion of patients in Cambodia (84%) and a
lower proportion of patients in Thailand (16%) were
estimated to have an artemisinin-resistant infection, which is
in agreement with resistance prevalence reported at the time

of the study period (4). Cambodia is a historical breeding
ground for antimalarial drug resistance development. Since
the time of sampling, artemisinin resistance and the related Pf
kelch13 mutation have spread throughout the Greater
Mekong sub-region and efforts are ongoing to contain/
eliminate artemisinin-resistant malaria before resistant para-
sites spread further (9). In addition, molecular genotyping to
assess antimalarial drug resistance selection reported that the
majority of recent clinical isolates (2014-2015) from north-
eastern Thailand, Laos, and western Cambodia suggest a
hard transnational selective sweep originating from Cambo-
dia in 2008 (52). Thus, exposure-response resistance modeling
conducted on these data should therefore be relevant for the
Greater Mekong Sub-region.

There was a significant delay in drug effect, characterized
by a theoretical effect compartment. The most likely expla-
nation to this apparent and varying delay in drug effect might
be the in vivo stage of development and synchronicity of the
infection in falciparum malaria patients. Some patients may
present with infections undergoing synchronous schizont
rupture causing a rise in parasite numbers, while others may
have declining parasitemias as a result of sequestration. Thus,
the net-effect of drug-dependent parasite elimination will be
different in patients presenting with malaria at different
stages of the life cycle and therefore create an apparent

Table V. Predictive Property of the Developed Resistance Nomogram

Metric Predictive properties (%)
Model-based approach Baseline-adapted nomogram Static nomogram Day 3 positivity test
Sensitivity 98 80 71 27
Specificity 82 81 90 99
Accuracy 90 80 80 63
Negative predictive value 84 81 75 57
Positive predictive value 97 81 87 97
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Fig. 4. Overall nomogram performance (i.e., sensitivity) versus baseline parasite density
stratified on when the nomogram evaluation was performed (i.e., 24-h post-dose [red], 48-h
post-dose [green], and 72-h post-dose [blue]) within this study context

delayed drug effect in certain patients. The in vivo ECs, value
estimated here was 34.9 nM (9.92 ng/ml), which is 20-30-fold
higher compared to in vitro ECsy values (range: 0.12-
4.56 nM) from a variety of field isolates and laboratory
strains (53-55). DHA is 93% protein-bound in patients with
malaria infection, which could explain part of the differences
seen between in vitro results and in vivo results obtained here
(56). Furthermore, the ECsy value estimated in this study
should be interpreted with caution due to the high uncer-
tainty of the estimate. A substantial number of patients with
recrudescent infections would be needed for a solid estima-
tion of this parameter (57). Current methods of assessing
artemisinin pharmacodynamics assume concentration-
dependent parasite killing with or without hysteresis. These
do not satisfactorily explain why increasing dosing frequency
does not increase parasite killing substantially and therefore
accelerate parasite clearance and augment cure rates (13).
Saturation of splenic clearance with accumulation of dead
parasites in the circulation has been proposed to explain these
apparent contradictions (58,59) but there is no evidence for
this (51). The constructs used in the current and previous
studies may be oversimplifications. A second limitation is the
pooling of artemisinin resistance in a single category whereas
it is becoming increasingly apparent that there are significant
phenotypic differences between infections with the different
kelch mutations (9,51) and that other genetic factors may
modify the phenotype.

Simulation of Alternative Dosing Regimens for Patients with
Resistant Infections

The slower parasite clearance rates (decreased Emax)
associated with artemisinin resistance mean that a higher
parasite biomass has to be eliminated by the partner drug. This
generates an increased risk of treatment failure and drives the
development of partner drug resistance. Different dose regi-
mens (i.e., increased dosing frequency, increased dosage, and
increase duration of treatment) were explored at the population
level to evaluate potentially improved treatment regimens in

patients with artemisinin-resistant infections. Simulations per-
formed here suggested that increased dosage and increased
dosing frequency would not improve the parasite clearance
substantially. These observations were in line with the outcome
of a recent clinical trial conducted in a similar study site (i.e.,
Pailin, Cambodia, and Wang Pha, Thailand), demonstrating no
clinical benefit of twice daily doses or an increased dosage of up
to 8 mg/kg per day (13). The simulations indicate that increased
dose duration of up to 5 days of consecutive treatment is
required to ensure that the residual parasite burden is reduced
effectively in patients with resistant malaria infections. Five days
of treatment is expected to cover up to three parasite life cycles
(> 96 h) compared to two life cycles covered by standard 3-day
treatment. These predictions assume that PK-PD properties
estimates based on the standard 3-day dosing regimen can be
extrapolated to a 5-day dosing regimen. However, the pharma-
cokinetic samples collected here did not display time-dependent
properties. Furthermore, patients are likely to be symptom-free
and have relatively low parasite densities at day 3 so it is a
reasonable assumption that there will be no major differences in
the pharmacokinetics between day 3 and day 5. It is of course
more difficult to extrapolate the parasite killing beyond that
what can be measured by microscopy, but data presented here
did not demonstrate any parasite density-dependent effects on
the killing of parasites. These results are consistent with the
excellent efficacy demonstrated in the recent TRAC trial in
which a 3-day course of artesunate alone preceded the 3-day
ACT regimen (9).

Resistance Nomogram

Microscopy-based day 3 parasite positivity has been used
clinically to identify artemisinin-resistant infections. However,
this analysis does not take into account the baseline parasite
density which is directly proportional to the parasite clear-
ance time, assuming similar drug-dependent elimination of
parasites. The developed nomogram (baseline-adapted and
unadjusted nomogram) performed better than the commonly
used day 3 positivity test, and it proved to have high
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Fig. 5. Decision tree for the implementation of the nomogram in
order to identify patients with artemisinin-resistant malaria infections
in this study context

sensitivity in identifying patients with artemisinin-resistant
infections. The kelch 13 genotype is a generally accepted
molecular marker for artemisinin resistance, but it is difficult
to implement a PCR-based test in field settings which often
lack the necessary equipment. The developed nomogram
suggested here is a sensitive and field adapted alternative to
the day 3 positivity test, although it requires further validation
in different epidemiological settings with different levels of
immunity (60) and different kelch mutations, and thus
different degrees of slow parasite clearance conferred. A
simple decision tree for the implementation of the resistance
nomogram based on this study’s results is proposed in Fig. 5.

CONCLUSION

A PK-PD model describing the PK and PD properties of
ARS treatment in patients with artemisinin-resistant and
sensitive-falciparum malaria infections was developed. The
developed model could distinguish adequately between
patients with artemisinin resistant and sensitive infections
and predicted a high proportion of patients with resistant
infections in Cambodia. Simulations, using the final PK-PD
model, suggested that increased treatment duration is needed

Lohy Das et al.

in order to treat patients with resistant infections, to achieve
equivalent residual parasite densities to those in patients with
sensitive infections. A nomogram was developed to provide a
basis for a field-adapted tool to identify patients with
artemisinin-resistant infections. The proposed nomogram
showed better performance compared to the commonly used
day 3 positivity test and if validated in different epidemiolog-
ical contexts could be a useful tool in field settings.
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