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Abstract. Clinical studies include occurrences of rare variables, like genotypes, which due to their
frequency and strength render their effects difficult to estimate from a dataset. Variables that influence
the estimated value of a model-based parameter are termed covariates. It is often difficult to determine if
such an effect is significant, since type I error can be inflated when the covariate is rare. Their presence
may have either an insubstantial effect on the parameters of interest, hence are ignorable, or conversely
they may be influential and therefore non-ignorable. In the case that these covariate effects cannot be
estimated due to power and are non-ignorable, then these are considered nuisance, in that they have to
be considered but due to type 1 error are of limited interest. This study assesses methods of handling
nuisance covariate effects. The specific objectives include (1) calibrating the frequency of a covariate that
is associated with type 1 error inflation, (2) calibrating its strength that renders it non-ignorable and (3)
evaluating methods for handling these non-ignorable covariates in a nonlinear mixed effects model
setting. Type 1 error was determined for the Wald test. Methods considered for handling the nuisance
covariate effects were case deletion, Box-Cox transformation and inclusion of a specific fixed effects
parameter. Non-ignorable nuisance covariates were found to be effectively handled through addition of a
fixed effect parameter.

KEY WORDS: Box-Cox transformation; case deletion and pharmacometrics; fixed effect parameter;
nuisance covariate.

INTRODUCTION

The aim of pharmacokinetic (PK) analyses is to under-
stand the time course of drug concentration exposure in order
to predict drug response. The population approach, using
nonlinear mixed effect modelling, is commonly used for PK
analyses and provides an estimate of the parameters of the
underlying structural PK model and the variance of between-
subject effects. In these analyses, it is also one of the aims to
identify potential covariates (patient characteristics that
influence the value of an individual’s parameter estimates).
These analyses are often implemented in data that arise from
late phase 3 clinical studies or post-marketing studies which
may be collected across multiple centres. The data collected
from such clinical studies may include rare factors such as
unexpected concomitant interacting medicines and/or geno-
types in the form of binary covariates. The rare occurrence of
these covariates creates a dilemma as to how best to
incorporate the information from the covariate. In the first
instance, as the frequency of the covariate approaches zero,

then the false positive rate increases (type 1 error inflation)
(1). The inflated type 1 error rate creates a covariate whose
influence cannot be differentiated from the null. Others have
explored the type 1 error rate of low-frequency covariates
and shown inflation of type 1 error rate in a population
analysis framework (1–5). These works have also shown that
the choice of estimation algorithm in NONMEM will also
influence the type 1 error inflation. Alternative approaches
are proposed for the increase of type 1 error for asymptotic
test for small sample size. The permutation test could be used
as a correction measure in such circumstances (2,6).

One method of dealing with low-frequency covariates is
to ignore them in the analysis by including the patient but not
including the covariate. However, this is reasonable only if
the covariate is not influential in the analysis. However, if the
effect of the covariate is strongly influential, then ignoring the
covariate will bias the analysis (either at the level of the fixed
effects or variance of the random effects parameter values).
Under these circumstances, the covariate is poorly estimable
statistically and non-ignorable. We term this covariate nui-
sance since we cannot account for its influence accurately and
cannot ignore it in the analysis. The work of Dansirikul et al.
(7) considers a case where incorporation of the covariate
resulted in significant inflation of the between-subject vari-
ance of clearance. In their work, they used a heavy-tail
distribution (multivariate log-t) for the between-subject
effects as a pragmatic solution which resulted in a significant
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reduction in the estimate of the variance of the random
effects compared to a multivariate lognormal.

The aim of this study was to evaluate approaches to
handle nuisance covariates that are non-ignorable in the
framework of nonlinear mixed effects modelling. The specific
objectives were the following:

1. To calibrate the frequency of the covariate that is
associated with type 1 error inflation.

2. To calibrate the strength of the covariate-parameter
relationship that renders the covariate non-ignorable
and hence nuisance.

3. To assess various methods for handling nuisance
covariate effects.

METHODS

Models and Simulations

A one compartment PK model with intravenous bolus
‘unit’ dose was considered as described elsewhere (1). A
binary covariate depicting the presence or absence of a
particular genotype was considered and randomly simulated
with a required probability with sampling replacement. The
expected concentration was given as Cij=f(θ,ηi,tij,di) where
Cij is the expected concentration in the ith subject at the jth
time (tij), di denotes dose that we, for simplicity, assume is the
same for all individuals, θ is a p×1 vector of population
parameters and ηi is a q×1 vector of between-subject
differences where p=2 and q≤p. The population parameters
here are clearance and volume of distribution that relate to
the individual parameters via the equation below:

φi¼θ�exp ηið Þ ð1Þ

ηi ∼
iidN 0;Ωð ÞwhereΩ ¼ ω2

CL 0
0 ω2

V

� �
ð2Þ

Here, ηi are assumed to be normally distributed centred
on zero and variance-covariance matrix of Ω (q×q). The
diagonal elements of Ω represent variances of the individual
parameter values (ω2). Virtual observed concentrations Yij

were then simulated with an additive random error (εij) such
that Yij=Cij+εij where εi j ∼iid N 0;σ2

� �
and σ2 is the variance of

the residual error. Additive random error was considered for
simplicity in the present simulation, and the methods used
here should be generalizable to other error model structures.
The use of an additive error structure yields the possibility of
the simulated observed concentrations being negative. The
negative concentrations were accepted in the analysis as if the
analytical scientist had reported all concentrations that were
extrapolated from the standard curve, even when below the
limit of quantification.

Blood sampling design with six observations per each
individual at t=(0, 0.001, 1.2, 3, 4 and 6) hours post-dose was
considered (note the units are arbitrary). A total of 100
datasets were simulated for each scenario studied. Each

dataset had a pre-determined number of subjects. Note the
structural model and design were the same for all simulated
scenarios. The parameter values used for simulation were
also the initial values for estimation for each specific objective
as shown in Table I. The choice of parameter values provides
a half-life of 1 h, and therefore, a sampling design to 6 h
provides data over six half-lives.

Simulations were performed using MATLAB software
(ver 2012b) and estimation using the software NONMEM®
(ver 7.2) using FOCE with INTERACTION.

Calibration of Covariate Frequency that Is Associated
with Type 1 Error Inflation

Population PK data, plasma drug concentrations, were
simulated under the null (true) model, i.e. no covariate
effect. There were three sample sizes of 20, 100 and 1000
patients with various frequencies of the covariate for each
sample size (50, 20, 10, 5, 2 and 1% frequencies). For the
largest sample size, 1000 subjects, a covariate frequency of
0.1% was also considered. Each patient provided six
plasma drug concentrations. The specific details of param-
eter values and models are described in Table I under the
title of this specific objective. Each simulated dataset was
estimated using FOCE with INTERACTION in
NONMEM with an alternative model (i.e. using a model
with a covariate effect). The decision to reject the null
model was based on a Wald test with p<0.05. The Wald
statistic is calculated using the NONMEM estimates of the
covariate coefficient and their asymptotic SE. The Wald
statistic follows a chi-square distribution with a p value of
0.05 at a value of 3.84 for 1 degree of freedom. Type 1
error was determined from the proportion of times that
the Wald test was rejected.

Calibration of Non-ignorability of a Covariate Effect

Population PK data were simulated under the full
model, i.e. the model that included the influence of the
covariate effect. Three scenarios were explored: (1) a
weak covariate effect, (2) a moderate covariate effect and
(3) a strong covariate effect with the presence of the
covariate increasing the value of CL by 20, 50 and 100%
respectively. For example, if we consider a typical value of
CL of 1 L/h, then the CL values for sub-population would
be 1.2, 1.5 and 2.0 L/h for weak, moderate and strong
covariate effect scenarios, respectively. The model param-
eter values and description of the models used for
simulation and estimation are given in Table I with the
title of this specific objective. Each of the scenarios of
weak, moderate and strong covariate effect considered
covariate frequencies of 50, 10, 5, 2 and 1%. This scenario
included a total number of subjects of 100 with 100
replications of each scenario performed. Each of the
simulated datasets was estimated using FOCE with INTE
RACTION in NONMEM with ignoring the covariate (i.e.
using the null model). The mean error (% relative
prediction error) was calculated from the difference of
the estimated and nominal values of CL and variance of
the random effect of CL.
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Handling Nuisance Covariate Effects

To assess objective 3, an extreme example of a very strong
covariate effect (+400% influence on CL) was considered similar to
that found in Dansirikul et al. (7) with a frequency of 4%, a
frequency that could reasonably be expected in routine data sets. In
this scenario, we considered an extreme case for simulation (albeit
not uncommon in practice) based on the frequency and strength of
the covariate to illustrate how nuisance covariates can be handled
effectively. This setting provided a working example of a nuisance
covariate. We included a total number of subjects of 100 for each
simulation with a total of 100 replications. Table I shows the
parameter values and models used for simulation and estimation of
PK data with the title of the specific objective. The following four
approaches were considered for handling the nuisance covariates:

Ignoring the covariate (IC)—in this approach, the
covariate was not included in the data analysis and all
patients were included in the dataset (i.e. that the patient
had the covariate in question that was ignored in the
analysis).

Addition of a nuisance fixed effect parameter
(FE)—here, the covariate was included in the data analysis
for all patients and a fixed effect parameter was added to
account for the influence of the effect.

Box-Cox transformation of between subject random
effects (η) (BC)—in this approach, the distribution of between-
subject variability (η) was assumed to arise from a transformed
normal distribution that was defined to have heavier tails as per
Eq. 4. The between-subject random effect ηi is assumed to be
normally distributed withmean zero and varianceω2. ABox-Cox
transformation of η involved calculation of a transformed ηei from
a normally distributed ηi and an estimated shape parameter (λ) as
per Eq. 4 (see 8). Absolute values of λ less than 1 provide heavier
tails, whereas λ values greater than 1 provide constricted tails.
This transformed ηei is then related to the parameter of interest as
per Eq. 1 in place of ηi.

ηi eN 0;ω2
i

� � ð3Þ

ηei ¼ eηið Þλ−1
� �

λ
ð4Þ

Case deletion (CD)—in this approach, the patients who
had the covariate of interest were deleted from the data set
prior to conducting the data analysis.

Table I. Parameter Values and Models for Simulation and Estimation of Pharmacokinetic Data for Each Specific Objective in the Study

Model details Random effects model Parameter values

General simulation model and parameter values for each specific objective (these models and values hold for all simulations and estimation
unless redefined)

CLi ¼ θ1 þ θ3:Zið Þ exp ηiCLð Þ
Vi ¼ θ2exp ηiVð Þ
Ci j ¼ d= Við Þexp −ti j: CLi=Við Þ� �
Yij ¼Cij þ εi j

ηi∼iid N 0;Ωð Þ

Ω ¼ ω2
CL 0
0 ω2

V

� �
εi j∼iid N 0;σ2

� �

θ1 ¼ ln 2ð Þ ; θ2 ¼ 1
Zi∈ 0; 1f g ;
θ3 ¼ asperobjectiveð Þ
ω2
CL ¼ 0:09;ω2

V ¼ 0:09
σ ¼ 0:01

Calibration of covariate frequency for type 1 error
Simulation model (no covariate effect) θ3=0(fix)
CLi=(θ1+θ3.Zi)exp(ηiCL)

Estimation model (with covariate effect)
θ1 ¼ ln 2ð Þ;
θ3 ¼ estimated

CLi=(θ1+θ3.Zi)exp(ηiCL)

Calibration of non-ignorability of nuisance covariate effect
Simulation model (with covariate effect) θ1=ln(2)
CLi=(θ1+θ3.Zi)exp(ηiCL) θ3∈{0.139;0.347;0.693}a

Estimation model (no covariate effect)
CLi=θ1exp(ηiCL) θ1=ln(2)

Handling nuisance covariate effects
Simulation model θ1=ln(2);θ3=2.7
CLi=(θ1+θ3.Zi)exp(ηiCL)

Estimation models
1. Ignoring the covariate θ1=ln(2)
CLi=θ1exp(ηiCL)

2. Including a fixed effect θ1=ln(2);θ3=2.7
CLi=(θ1+θ3.Zi)exp(ηiCL)

3. Case deletion θ1=ln(2)
CLi=θ1exp(ηiCL)

4. Box-Cox transformation of ηb θ1=ln(2);λ=0.5
CLi ¼ θ1exp ηeiÞð

aValues for weak, medium and strong covariate effects, respectively
bAs per Eqs. 3 and 4 in the text
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RESULTS

Calibration of Covariate Frequency that Is Associated
with Type 1 Error Inflation

The results for calibration are shown in Fig. 1, and it is
observed that as the frequency of the covariate decreases,
then there is an increase in type 1 error from the nominal
value. When the frequency of the covariate was less than 20%
with a total sample size of 100, the type 1 error was above the
nominal value of 0.05. When the total sample size increased
to 1000, the frequency of the covariate showing type 1 error
inflation was less than 10%. However, with a sample size of
20, the type 1 error was above the nominal value of 0.05 even
with 50% frequency of the covariate.

Calibration of Non-ignorability of a Covariate Effect

The second specific objective calibrates the size of the
effect at which the covariate becomes non-ignorable. This was
studied using weak, moderate and strong covariate scenarios.
For this specific objective, a total sample size of 100 was
considered based on the type 1 error observed in the specific
objective 1. For the weak covariate effect, it was found that
the percent mean error for both the estimated parameters CL
and variance of CL were negligible when the frequency of the
covariate was less than 10% (upper row in Fig. 2). At greater
values of the covariate effect (moderate and strong), the
frequency of the covariate occurrence at which percent mean
error was evident decreased. The covariate resulted in
apparent mean error for moderate or strong covariate effects
at frequency values greater than 5–10%.

Handling Nuisance Covariate Effects

An example of a strong covariate effect was considered
with a covariate frequency of 4%. Figure 3 shows the results
in terms of percent mean error for CL and variance of CL for
various approaches evaluated to accommodate the non-
ignorable nuisance covariate. It was seen that including the
subject but ignoring the covariate resulted in prediction mean
error for both the CL and variance of CL. Addition of a fixed
effect parameter resolved the mean error, and accurate
estimates were shown for both CL and variance of CL. The

estimated covariate effect parameter was 2.94 (confidence
interval 2.5 to 3.4), similar to the nominal value of 2.7. A Box-
Cox transformation of η showed no prediction mean error for
CL, but there was a slightly attenuated upward prediction of
mean for the variance of CL. Case deletion showed no
percent mean error for both these parameters. In the current
case, V was found to be marginally less precisely estimated
with case deletion with minimal effect on other parameters
(Fig. 4). It is noted that the SE values were higher for CL and
the between-subject variance on CL for both the method of
ignoring the covariate but including the patient and the Box-
Cox transformation. The latter is likely to be due to the
additional parameter for estimation. Interestingly, addition of
a fixed effect parameter did not decrease precision of
parameter estimation which suggests that the nonlinearity of
λ and the way it enters the statistical model for the random
effects may come at greater cost in case of Box-Cox
transformation.

DISCUSSION

Low-frequency covariates may often be observed in
large data sets particularly in large late phase clinical trials
and post-marketing evaluation studies. These data are then
often explored to quantify exposure response relationships
that can incorporate rare effects. This work and the work of
Ribbing et al. (1) show that weak covariate effects are difficult
to be determined accurately. The present study was intended
to identify the circumstances in which a covariate is likely to
be nuisance as well as evaluating various approaches of
handling these covariates.

In this work, the influence of type 1 error was related to
both the frequency of the covariate and the number of
subjects in the overall population. The increase in type 1 error
is more prominent at frequencies less than 5% which is likely
to be problematic for rare genotypes or unexpected concur-
rently administered medicines leading to interactions. The
work here was conducted in a nonlinear mixed effects
modelling framework, and hence, exact solutions to
standard statistical problems are generally not available. It
is likely these findings will be dependent on the structural
models chosen and the variance structures considered.
However, it is seen that the works of several authors (3–5,9–
11) show similar findings which are suggestive that these
results may be generalizable, albeit with caution.

It is evident that consideration of the frequency of a rare
covariate must be weighed against strength of its effect. Weak
low-frequency covariate effects, defined here as an effect on
the parameter of interest of <20%, appear to be ignorable, in
that they do not cause significant parameter mean estimation
error. However, strong and very strong covariate effects,
>100% increase in the parameter values or the corresponding
relative decrease in the parameter value, appear non-
ignorable. As expected, the level of percent mean error in
the parameter values depends on the frequency and strength
of the effect.

Various approaches to handle nuisance covariates were
evaluated in the setting of an extreme example of a very
strong covariate effect. The various approaches evaluated
were ignoring the covariate but including the patient in the
dataset (IC), addition of a fixed effect parameter (FE),

Fig. 1. Calibration of covariate frequency that is associated with type
1 error inflation with various sample sizes of 20, 100 and 1000. The
horizontal line indicates the nominal type 1 error value of 0.05 as the
reference

1391Handling Nuisance Covariates in Population Analysis



accounting for heavy-tailed distribution through Box-Cox
transformation of η (BC) and finally case deletion, i.e.

ignoring the covariate by deletion of patient data from
dataset (CD).

Fig. 2. Calibration of non-ignorability of nuisance covariate effect assuming a weak covariate effect (+20% influence on CL)
with varying frequencies of the covariate (top panels), a moderate covariate effect (+50% influence on CL) with varying
frequencies of the covariate (middle panels) and a strong covariate effect (+100% influence on CL) with varying frequencies
of the covariate (lower panels). The left plots show the percent mean error for CL and right plots the percent mean error for
between-subject variance of CL. The horizontal line indicates the reference line for zero percent mean error. Sample
size=100 for each scenario studied

Fig. 3. Evaluation of methods to handle a non-ignorable nuisance covariate with the top panels showing percent mean error
for CL and between-subject variance of CL and bottom panels showing percent mean error for V and between-subject
variance of V. The horizontal line indicates the reference line for zero percent mean error. The abbreviations in the plot
denote IC ignore covariate but include patient, FE include a fixed effect parameter, BC use a heavy tailed Box-Cox
transformation of η, CD case deletion
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It was observed that ignoring the covariate but including
the patient in the dataset resulted in greater percent mean
error for the parameter estimates relating to that covariate,
i.e. in this work, the percent mean error related to CL and its
associated variance of the random effect for CL. Naturally,
this also has important implications for unobserved covariates
which have strong effects. This latter case may occur in any
analysis and result in a lack of interchangeability of the results
of one analysis to another (see some discussion of this in
Duffull 2013 et al. (12)). However in circumstances when the
covariate is observed, it should be treated as non-ignorable.
A pragmatic solution is to consider a fixed effect parameter/
model to account for the covariate. In our work, this provided
a reasonable method for accommodating non-ignorability and
eliminated percent mean error of the parameters. However,
the resulting fixed effect parameter estimate itself is nuisance
and should not be used for inferential purposes since its value
may not be accurate and/or may itself be nonsignificant due
to type 1 error. In the current study, the estimated mean value
of the coefficient for the covariate was 2.94 compared to the
nominal value of 2.7. A reliable identification of covariate is
achieved after adjusting for the inflated type 1 error using a
permutation test. An inflated value is not unexpected given
the works of Ribbing et al. (1) and La Caze et al. (13) as is the
case with nuisance covariates. The approach of Box-Cox
transformation of η was as effective at eliminating the percent
mean error on the fixed effect parameter CL, but percent
mean error remained for variance of CL. This latter finding is
not however an appropriate conclusion since the variance of
the random effect was subject to further transformation, and
hence, the Gaussian distributional assumption on the original
domain does not necessarily hold. We see in the work of
Dansirikul et al. (7) that a multivariate log-t-distribution with
low degrees of freedom reduced the between-subject variance
of clearance in a Bayesian analysis. However, the work of
Dansirikul et al. did not provide additional theoretical
underpinning for handling low-frequency influential covari-
ates. Case deletion showed no percent mean error for the
parameters CL and variance of CL. However, a very slight

increase in the imprecision of V was observed with this
approach. This effect is minimal and is most likely to be due
to the reduction in the number of subjects due to case
deletion. Case deletion is useful if the focus is on the
population value of CL, but this will have consequences in
terms of precision of other parameter estimates (e.g. V). Case
deletion, although a simple method for reducing percent
mean error, is not desirable as it necessitates a change in the
data set which poses logistical problems with data owners in
formal clinical trial settings.

The approaches of case deletion and extra parameter
addition have been investigated for missing categorical
covariate data (14,15). In their work, the categorical covariate
is missing as opposed to the current work where the covariate
is not missing. Hence, the current work can explore different
approaches including fixed effects models that are not
possible when the covariates are missing. It is also possible
that the use of a mixture model will perform better than
ignoring the covariate. Further, one can argue that a mixture
model might be a good alternative to Box-Cox transformation
for a discrete covariate. In this case, the FE method described
here is equivalent to a mixture model but where the presence
of the covariate is known. If the covariate is latent, then a
mixture model where the probability of the presence of a
covariate effect is estimated may perform well, but this is
likely to depend on the frequency and strength of the
covariate effect.

In the present evaluation, a Wald test was used for
assessment of statistical significance. This provides a local
assessment of significance associated with a parameter or set
of parameter value(s). An alternative global measure of
statistical significance could use a likelihood ratio test (LRT)
or other similar statistic. The Wald test is less computationally
intensive as the test can be performed on any given analysis
without the need to repeat an analysis for the null model.
This may have advantages for some covariate model building
strategies. It is seen that type 1 error rates are less
pronounced with the LRT method, when using NONMEM
with the settings as FOCE with INTERACTION (3–5,9–11).

Fig. 4. Box plot of standard error estimates for CL (top left), between-subject variance of CL (top right), V
(bottom left) and between-subject variance of V (bottom right). The abbreviations in the plot denote IC
ignore covariate but include patient, FE include a fixed effect parameter, BC use a heavy tailed Box-Cox
transformation of between-subject random effect (η), CD case deletion. The horizontal lines indicate
reference lines that help the standard errors for CD approach to compare with other approaches studied
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This finding is also likely to be design dependent, and further
work is required here to understand the influence of nuisance
and non-ignorable covariates when model-based decisions are
undertaken using the LRT. While the same general results are
expected, caution should be used if extrapolating the specific
covariate frequencies explored in this work to other circum-
stances where different statistical tests are used. Though we
used an intensive sampling design for simulation and estima-
tion in this work, we believe our results could be generalized
to other settings. We would caution, however, that while the
findings are likely to remain similar, the scale of the influence
may vary based on models and designs. This work can also be
extended to include categorical covariates. It is expected that
simply accounting for the distribution of random effects is not
enough for less frequent covariates commonly observed in
pharmacogenetics. This work provides some general findings
relating to nuisance covariates and non-ignorability that can
be generalized to other model building settings in PKPD. Our
findings regarding methods for handling these low-frequency
methods while are likely to be generalizable should be
investigated on a case by case basis in circumstances that
involve more complicated covariate relationships. Further, we
have not determined power in the current work and it will be
low, as per observations from Ribbing (1), as both the sample
size and frequency of the covariate will influence the power to
detect a covariate.

CONCLUSION

In conclusion, nuisance covariate effects can be handled
via addition of a fixed effect covariate model but the
coefficient that pertains to the covariate effect should not be
used for inference. The approach of allowing for a heavy-
tailed distribution for inclusion of the covariate through a
Box-Cox transformation of between-subject random effects
was effective for reducing fixed effects parameter percent
mean error, but the variance of the random effects is affected
by the transformation. Case deletion and ignoring the
covariate are not recommended.
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