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Abstract. In population pharmacokinetic analyses, missing categorical data are often encountered. We
evaluated several methods of performing covariate analyses with partially missing categorical covariate
data. Missing data methods consisted of discarding data (DROP), additional effect parameter for the
group with missing data (EXTRA), and mixture methods in which the mixing probability was fixed to the
observed fraction of categories (MIXobs), based on the likelihood of the concentration data (MIXconc), or
combined likelihood of observed covariate data and concentration data (MIXjoint). Simulations were
implemented to study bias and imprecision of the methods in datasets with equal-sized and unbalanced
category ratios for a binary covariate as well as datasets with non-random missingness (MNAR).
Additionally, the performance and feasibility of implementation was assessed in two real datasets. At
either low (10%) or high (50%) levels of missingness, all methods performed similarly well. Performance
was similar for situations with unbalanced datasets (3:1 covariate distribution) and balanced datasets. In
the MNAR scenario, the MIX methods showed a higher bias in the estimation of CL and covariate effect
than EXTRA. All methods could be applied to real datasets, except DROP. All methods perform
similarly at the studied levels of missingness, but the DROP and EXTRA methods provided less bias
than the mixture methods in the case of MNAR. However, EXTRA was associated with inflated type I
error rates of covariate selection, while DROP handled data inefficiently.
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INTRODUCTION

In population pharmacokinetic (PopPK) and or pharmaco-
dynamic modeling analyses, the researcher is often confronted
with missing data due to left censoring (e.g., data below the lower
limit of quantification), data not being measured or recorded
(e.g., genotype data), or data missing for other reasons. Handling
of missing covariate data in PopPK analyses in an appropriate
way, i.e., one that does not induce bias or imprecision in model
parameter estimation is important, and several methods are
available to the modeler. However, most established methods
focus on missing continuous data (1,2). Briefly, these consist of

case deletion, single and multiple imputation methods, and
maximum likelihood methods.

In several PopPK analyses performed by our group,
missing data of the categorical type were encountered, which
were handled in various ways (3–7). In this article, we
evaluated the performance of several methods for handling
missing categorical data in nonlinear mixed-effects analyses.
This was done both by simulations and by retrospective
analysis of some of the cited studies. We have investigated the
impact of these methods on the estimation of parameters,
type I error of covariate inclusion (i.e., the probability of
falsely demonstrating a significant covariate relationship), and
the feasibility of implementing the methods.

The nature of missing data can be separated into several
classes with somewhat confusing terms: data can be missing at
random (MAR), missing completely at random (MCAR), or
missing not at random (MNAR) (1,8). The situation of MCAR
occurs when themissingness does not depend on any (observed or
unobserved) data or model parameters. The situation of MNAR,
in which the missingness pattern is (partly) dependent on the
missing data itself, occurs, e.g., in the situation of data below the
lower limit of quantification. TheMAR situation occurs when the
observed missingness pattern depends on the observed data, but
not on the missing data. Both situations of random missingness
and non-random missingness were investigated in this study.

For application in PopPK analyses performed using
nonlinear mixed-effects modeling with NONMEM, we
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identified five methods for handling missing categorical data,
which are presented in Table I: discarding subjects with
missing data (DROP), estimation of an additional covariate
effect for the missing group (EXTRA), and several methods
using mixture models (MIX). A mixture model is a model
that explicitly assumes that the population consists of two or
more subpopulations. Each of these subpopulations can be
defined as having its own model with associated population
parameter values (9). With two subpopulations, as in the
analyses presented here, some fraction p of the population has
one set of typical values, while the remaining fraction (1−p) has
another set. The fraction(s) of subjects in each category can
either be set to the fraction observed in the non-missing subjects
(MIXobs), estimated based on the maximization of the likeli-
hood of PK concentration data alone (MIXconc) or estimated
based on the likelihood of both PK concentration data and
observed categories for non-missing subjects (MIXjoint).

Using simulations, we first evaluated the performance of
these methods in terms of bias and imprecision in the
estimation of PK parameters and covariate effect(s) for a
representative PK example with a non-time-varying cova-
riate, as well as a scenario for a time-varying covariate, and a
sparse sampling design. We also included situations with non-
ignorable missingness, i.e., the percentage of missing
depended on the value of the covariate. In statistical
literature, several methods have been presented to cope with
non-ignorable missing data, most of them using maximum
likelihood approaches to handle these data (10,11). Subse-
quently, we have evaluated the missing data methods using
two real datasets, mainly to evaluate the feasibility of
implementation.

METHODS

Missing Data Mechanism

The “missing data mechanism,” as described in the
“INTRODUCTION,” can be more formally described by (12)

pi ¼ Pr Ri ¼ 1jy1; xi; zið Þ ð1Þ

with πi describing the probability of missingness in data for
covariate zi (missing indicated by Ri), yi a vector describing
the observed data, and xi a vector of other covariates. In the
situation of MCAR, πi does not depend on any of the vectors
y, x, or z. In the situation of MAR, πi can depend on yi and/or
xi, but not on zi. If πi depends on zi, the missing data
mechanism is said to be MNAR.

Simulation Study

A virtual compound was studied which was administered
orally and exhibited first-order absorption (ka=0.5 h−1, F=1)
to the central compartment (V=50 L) and first-order
distribution to a peripheral compartment (Q=5 Lh,

−1 Vper=
100 L). Elimination was linear from the central compartment
(CL=10 Lh−1). CL, V, and ka were assigned an inter-
individual variability of 25% using a log-normal distribution,
with 50% correlation between individual CL and V. The
proportional residual error was set at 20%, and no additive
error was included. Sample points were at t=0.5, 1, 1.5, 2, 4, 6,
8, 12, 16, and 24 h after a 100-mg oral dose.

The simulated covariate effect was incorporated as an
effect of the binary covariate sex (SEX) on clearance, with
varying fractions of male (M, SEX=0) versus female subjects
(F, SEX=1), and two levels of missingness (10% and 50%).
The covariate effect of sex was purely hypothetical, i.e., there
was no physiological rationale behind the choice of covariate
name. The design of the various datasets is shown schemat-
ically in Fig. 1, with black fractions indicating males and white
indicating females. Grayed-out areas represent censored parts
of the dataset. To be able to assess type I error rates, another
binary covariate, DUM, having no relation to SEX and no
effect on any PK parameter was simulated in a similar ratio as
the SEX covariate. The DUM variable was set to 0 and 1 for
the appropriate fractions of patients (see below). Datasets
were simulated containing 100 patients each. For each sub-
analysis, 100 datasets were simulated and re-estimated. With
respect to the sex ratios, several dataset designs were
investigated.

(a) “Balanced”—in which the ratio M/F was 1:1
(b) “M+”—in which the M/F ratio was 3:1
(c) “F+”—in which the M/F ratio was 1:3
(d) “NonRand”—in which the overall ratio was 1:1 and

50% of the dataset was missing, but the probability
of being missing (pmix) was three times higher for
males than for females. Thus, in the non-missing part
of the dataset, the M/F ratio was 1:3, but in the
missing part of the dataset the ratio was 3:1.

(e) “Sparse sampling”—which used a covariate scenario
design similar to “Balanced,” however with only four
PK samples taken the first 24 h and additional trough
samples taken after 1 and 2 weeks of treatment
(100 mg, q.d.). The simulations were performed for
both a scenario of MCAR and a scenario of MNAR.
In the MNAR scenario, the missingness depended
on the value of the covariate (when COM=1, the
probability of missingness was three times higher).
Baseline probabilities (for COM=0) of being missing
were 10%, 20%, and 30% (so 30%, 60%, and 90%
for occasions where COM=1).

Table I. Methods for Dealing with Missing Categorical Data

Method Description

DROP Case deletion method. Data from the patient of which
the covariate data are missing and are not used in the
estimation of the model parameters

EXTRA Estimate separate parameter for the effect of missing
covariate

MIXobs Use of a mixture model to appoint the category for each
subject. pmix fixed to the observed population fraction

MIXconc Use of a mixture model. pmix estimated, with likelihood
defined by the observed PK data alone

MIXjoint Use of a mixture model. pmix estimated, with likelihood
defined by both observed categories for each subject,
and PK data

pmix mixing probability
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These scenarios, with amoderate covariate effect magnitude
on CL (θmale=1.25), a moderate magnitude of between-subject
variability (25%), and a moderate magnitude of residual error
(20%), were considered “moderately informative” to assess the
impact of SEX on CL. Additionally, a collection of “highly
informative” datasets was simulated aswell in which the covariate
effect magnitude on CL was increased (θmale=2 instead of 1.25),
or the magnitude of between-subject variability was lower (ω=
10% instead of 25%), or the magnitude of residual error was
lower (εprop=10% instead of 20%), as well as one dataset with
higher IIV (ω=50% instead of 25% for both CL and V). The
analysis was also repeated based on datasets simulated with no
effect of the covariate on any PK parameter (“non-informative”),
with similar PK parameters to the “moderately informative”
scenario, except for the covariate effect. Besides the scenarios
above, a scenario with a time-varying covariate was studied. The
same virtual drug was used, but now the covariate (“COM”, use
of co-medication that increased CL by 1.25 times) was allowed to
change randomly between occasions (0/1).

Models and Estimation

In general, the simulated data were reanalyzed using the
“true” basic structural PK model using all missing data
methods. For the time-varying scenario, re-estimations were
only performed for DROP and EXTRA since MIX
approaches (as currently implemented in NONMEM) cannot
be applied to analyze time-varying covariate data. For the
sparse sampling scenario, data were analyzed using both the
true model and the simpler one-compartment PK model
(using DROP and EXTRA methods).

In general, the covariate was implemented as

CL ¼ �Base � �COV
Ri � e� ð2Þ

with Ri being the covariate of interest, e.g., SEX or COM,
θCOV the parameter estimate for the covariate effect, and η
signifying the inter-individual variability in CL. For the
EXTRA method, where covariate was missing, the following
equation was used:

CL ¼ �Base � �MGRP � e� ð3Þ
with θMGRP estimated as the coefficient for the “missing
group.” For the mixture methods, a probability of belonging
to either group of the covariate was defined as:

Pr Ri ¼ 1ð Þ ¼ �R

Pr Ri ¼ 0ð Þ ¼ 1� �R
ð4Þ

The fraction(s) of subjects in each category (θR)were either
set to the fraction observed in the non-missing subjects (MIXobs)
or estimated based on the maximization of the likelihood of PK
concentration data alone (MIXconc). In the MIXjoint approach,
the covariate data were added as dependent variables to the
dataset and jointly analyzed in NONMEM based on a joint
maximum likelihood of the nonlinear mixed-effects analysis of
concentration data and the likelihood of observing the covariate
data. For missing covariates of Ri, the maximum likelihood
estimate for Ri in MIX approaches was used in the covariate
effect equation (Eq. 2). In the Electronic Supplementary
Material, NONMEM code snippets of these implementations
are supplied.

Analysis of Output

The imprecision and the bias of parameters were
evaluated using the relative root mean squared error (RMSE)
across all 100 runs, e.g., for CL.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with CLest and CLnom being the estimated and true CL,
respectively. A difference in OFV of >3.84, correlating with a
significance level of p<0.05, was considered a significant
covariate effect. The following output measures were
recorded and evaluated:

& RMSE of CL, θmale, and pmix (MIX methods only)
& RMSE for other PK parameters
& Type I/II error rate of covariate effect

Type I error rates were calculated as the percentage
or runs that identified DUM as a significant covariate on
CL. Type II error rates, i.e., the probability of falsely
rejecting a true covariate relationship, were calculated as
the percentages of runs that did not identify SEX as a
significant covariate on CL. For the calculations of type I/
II errors, simulations were repeated 500 times instead of
100 times to allow a more precise calculation of these
parameters.

Balanced (10%)

Balanced (50%)

M75 (50%)

F75 (50%)

NonRand (50%)

Fig. 1. Dataset designs used in the simulation analysis. Black
indicates the fraction of male subjects; white indicates females. Left
part shows the observed covariate data and right part (grayed out)
shows the missing part. Missingness percentage in observed popula-
tion given between brackets. NonRand probability of missing is 25%
for females and 75% for males
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Real Dataset 1: Efavirenz

A PK dataset of efavirenz was analyzed, containing data
from 172 outpatients, including 315 plasma concentrations at
a single time point, and 40 full PK curves (13). A linear two-
compartment oral model, with first-order absorption, was fit
to these data. In the previously described analysis, only two
significant covariates were identified: belonging to the Asian
race (19.8% missing, n=34) and having a total bilirubin level
of >1.5 the upper level of normal (11.0% missing, n=19),
which both significantly increased the bioavailability. The
covariate equation that was implemented was

F ¼ Fbase � �Asian
1 � �Bili2

with Asian and Bili being binary operators. The original
(continuous) laboratory values for Bili were not available for
analysis. Since only data after oral administration of efavirenz
were available, the absolute bioavailability could not be
estimated and Fbase was set to 1 (a logit transformation of F
was not used here). In the original analysis, the EXTRA
method was used for handling the missing data; thus, besides
the effect sizes of the covariates, two additional effect sizes
were estimated for subpopulations where data were missing.

Real Dataset 2: Nevirapine

A dataset of nevirapine was reanalyzed, which consisted
of data from 173 patients with nevirapine plasma concen-
trations measured at 757 time points, including full curves
from 13 patients (4). A linear one-compartment model with
elimination from the central compartment was fit to the data,
which included inter-individual and inter-occasion variability
in CL, but not in the other parameters. Three covariates were
identified as significant: weight (WT), hepatitis C (HepC)
comorbidity, and elevated aspartate aminotransferase
(ASAT) >1.5 times the upper limit of normal. From only six
patients, data on ASAT were missing (3.5%); the EXTRA
method was applied to handle this. For all patients, WT was
available. The following equation was used as the covariate
model:

CL ¼ CLbase þ WT� 70ð Þ � �1ð Þ � �HepC
2 � �ASAT

3

with WT being a patient’s weight in kilograms and θ1 the
effect of weight on CL normalized to 70-kg individuals. θ2
and θ3 are the effects on clearance of hepatitis C
comorbidity and elevated ASAT, which are incorporated
into the equation by the binary operators HepC and
ASAT. Again, the original (continuous) laboratory values
were not available for analysis.

Software

NONMEM 7.1 (ICON Development Solutions,
Ellicott City MD, USA) (9) was used for the simulation
and estimation. The FOCEI method was used throughout
the analysis, except for the estimation of MIXjoint, for
which the Laplacian conditional estimation method was
used. Pirana was used as the modeling environment (14),
and the statistical software R (version 2.10.1 or later;

www.r-project.org) was used to perform descriptive statis-
tics and to create plots.

RESULTS

Simulation Study

Figure 2 shows the distribution of bias for CL obtained
with each missing data method at the two levels of missing-
ness, while Table II shows the RMSE for CL and the
covariate effect θmale in the balanced datasets with random
missingness (MCAR). Table II shows that, as expected,
RMSE for the estimation of CL (Fig. 2), V, and the covariate
effect magnitude θmale (Fig. 3) were equal between all
methods at both 10% and 50% of missingness.

In Fig. 4, the distribution of estimates for pmix is shown
for the MIX methods, again for the balanced datasets with
MCAR data. This shows that at both levels of missingness,
the MIXjoint method performed well at estimating pmix and
provided a less biased estimate of the true mixing probability
than when using the observed fraction. Remarkably, the
distribution of estimated MIXconc was very wide and almost
uniform, showing that this method was unable to correctly
estimate pmix. Additionally, in many runs, the estimation of
pmix ran into a boundary (0 or 1), thereby hindering model
convergence. We attempted to apply a logit transformation to
constrain the pmix between 0 and 1 instead of applying
parameter boundaries. Although this did resolve the bound-
ary problems, the percentage of successful runs did not
improve and the logit-transformed value for pmix shot up to
very high or very low values. For the mixture methods, no
correlation was observed between pmix and θmale.

The simulations studying the situation of the covariate
having no effect on PK parameters showed similar perfor-
mance to the situation in which there was an actual effect
present: again, all methods performed well at both 10% and
50% of missingness (results not shown). Especially for
MIXconc, the overestimation of effect size was also associated
with high type I error rates compared to MIXjoint, which is
shown in Table III. It was observed that at both 10% and
50%, the type I error using the EXTRA methods was higher
than when using the mixture methods or the DROP method.
Lowest type I errors were obtained using the MIXobs method
at both missingness levels. Type II errors (false negatives)
were about equal for all methods. The MIXjoint produced
slightly higher type II errors than the other mixture methods.
In the “sparse sampling scenario,” type I and II errors were
similar between methods and close to nominal value, and
were not increased for EXTRA.

In line with expectations, when models were fitted to the
“informative” datasets, which were simulated with a higher
effect magnitude and lower magnitudes of intra-individual
variability and residual error, estimation of covariate effects
was much more precise and comparable between methods.
Estimation of pmix was also comparable between all mixture
methods. The results of the analyses of the “informative”
datasets are not shown in this paper as the differences
between methods were very low or non-existent and probably
also not commonly observed in actual PK analyses. Results
from the scenario which analyzed simulated data with a
higher percentage of IIV (50% in both CL and V) were also
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evaluated, which were very similar to those obtained for the
“moderately informative” scenario and are therefore not
presented.

In the unbalanced datasets “F+” and “M+,” the estima-
tion of CL and the covariate effect magnitude were highly
similar to the results obtained with the balanced (50/50)
dataset using all missing data methods (not shown). The
estimation of mixing probabilities in the MIX methods
showed the lowest bias and imprecision at all levels when
using MIXjoint (Electronic supplementary material (ESM)
Fig. S-1), similar to our experience with the balanced dataset.

In the situation of non-random missingness with 50%
missing covariate data, low bias and imprecision in the
estimation of CL and θmale were observed for the DROP and
EXTRA methods, showing RMSE values similar to those
obtained with the balanced dataset. However, using the MIXobs

method, a considerable positive bias in the estimation of CLwas

observed (mean bias, +10%; RMSE=8%), while bias was much
lower using MIXconc or MIXjoint, which is shown in Fig. 5.
Furthermore, pmix could only be estimated without bias using
the MIXjoint method and was overpredicted using MIXconc (not
shown). These data suggest that if the estimate for pmix using the
MIXconc method is markedly different from pmix established
from the observed data, this might be an indication of the
presence of non-random missingness (MNAR) in the dataset.
When re-estimating models based on datasets containing no
covariate effect, the estimation of CL was unbiased with all
methods, although MIXconc and, to a lesser extent, MIXjoint,
overestimated the parameter value.

The performance of the methods in the sparse sampling
scenarios showed similar performance for all methods re-
garding bias and imprecision in parameter estimation, with
good to moderate estimation for CL, but a much higher bias/
imprecision for the covariate effect magnitude. Most

Fig. 2. Distribution of bias in CL, balanced dataset. Numbers in the bottom indicate RMSE

Table II. RMSE Values Obtained for Missing Data Methods for Both the Typical PK Scenario and the Sparse Sampling Scenario

Error Missingness (%) DROP (%) EXTRA (%) MIXobs (%) MIXconc (%) MIXjoint (%)

CL 10 4 4 4 4 4
50 5 5 4 5 4

θmale 10 6 6 6 6 6
50 7 7 7 7 7

CL (sparse) 10 23 23 22 22 27
50 34 27 22 25 28

θmale (sparse) 10 48 229 265 259 204
50 505 207 356 304 270
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interestingly, at the higher level of missingness, the ability to
identify the true structural model (two-compartment versus
one-compartment) was different between DROP and the
other methods. For DROP, the ability to identify the correct
model from the simulated data was about similar for the 10%
missingness scenario, but in the 50% missingness scenario, for
14% of the re-estimations, the simpler one-compartmental
model would have been selected (using a cutoff of p<0.01
(dOFV>6.63 in model selection) as the structural model
(ESM Fig. S-2 compares DROP and EXTRA methods).

For the simulated scenario of a time-varying covariate,
the performance of both DROP and EXTRA methods was
good, as can be seen from Fig. 6. For the scenario in which
data were either MCAR or MNAR, bias and imprecision
were not relevantly increased for either method.

Real Dataset 1: Efavirenz

Parameter estimates for CL were highly similar between
all missing data methods; however, V was considerably
different between estimates using the mixture methods and
EXTRA methods (Table IV). Additionally, estimates for ka
were different between methods. However, similar estimates
were obtained for θAsian when using any of the mixture
methods, but were estimated to be about 30% higher than
when using the EXTRA method. It was noted that model
estimation was not supported from the remaining data when
using the DROP method as the parameters for the structural

model established for this compound (two-compartment)
could not be estimated. Estimation of a one-compartmental
model resulted in the phenomenon of flip-flop PK, which
could not be resolved easily, and the DROP method was
therefore considered invalid for this specific analysis. The
mixture methods were also able to estimate the effect
magnitude with a lower imprecision than the EXTRA
method (lower relative standard errors, RSE). The difference
between methods in the estimation of θBili was less pro-
nounced, with slightly higher estimates for the mixture
method compared to EXTRA. Mixing probabilities estimated
with the MIXjoint method for both covariates were close to
those observed and could be estimated with reasonable
accuracy (~30%). In contrast, the MIXconc method estimated
the pmix close to 0% (resulting in an imputation of 0 for all
subjects for this category) and was therefore fixed to this
percentage to allow the estimation of uncertainty for the
other parameter estimates.

Real Dataset 2: Nevirapine

Table V shows that the results obtained for all model
parameters were highly similar between missing data methods,
including estimates for CL and θASAT+. This was expected as
only a low number of data wasmissing. However, due to this low
level of missingness, use of the MIXconc was shown to be not
feasible: estimation of pmix was not possible since the estimation
ran into the 100% boundary, and pmix was therefore fixed.

Fig. 3. Distribution of bias in covariate effect, balanced dataset. Numbers in the bottom
indicate RMSE
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DISCUSSION

In this article, we investigated several methods of handling
missing covariate data in population PK analyses, implemented
in NONMEM. The simulation studies and modeling analyses of
real datasets described here showed the advantages and draw-
backs of the use of various methods for handling missing
categorical covariate data. Adequate assessment of covariate
relationships is important since a biased estimation of effect size
may also lead to falsely establishing significance of covariates or

erroneous rejection of true covariate relationships. A frequently
used approach for handling missing data is single or multiple
imputations (MI) (15), but these techniques were not evaluated
in this article. MI has been applied in modeling with NONMEM,
e.g., in (16), but this technique requires additional simulation
steps and cannot be deployed in a single NONMEM estimation.
Furthermore, since imputation requires additional computation,
estimates obtained by these methods may be considered less
efficient than those obtained from likelihood-based methods
(15). Therefore, we chose not to include imputation methods in
this analysis and focused on methods that can be applied more
conveniently from within NONMEM. The current analysis was
restricted to binary covariates. While some of our results and
conclusions may be extrapolated to categorical covariate data of
more than two categories (e.g., metabolizer status), the perfor-
mance of themissing datamethods should ideally be investigated
as a new case.

In the simulation study presented here, it was shown that all
five methods provided adequate performance (bias/impreci-
sion) at either low (10%) or high (50%) level of missingness.
DROP is the simplest method presented here, but since in the
DROP method data are discarded, information not only on the
covariate effect but also on other PK parameters is discarded,
thereby qualifying on theoretical grounds as an inferior method
compared to the other methods. This issue was demonstrated in
the analysis of sparse data for the two-compartmental PK
model. In 14% of the cases, the simpler one-compartmental
model was chosen over the true model, i.e., resulting in lack of
significance due to the lack of data. EXTRA is the next simplest
method to implement and performs rather well in the estimation
of covariate effects and PK parameters. A disadvantage of using
the EXTRA method is that it showed higher type I errors. This
is probably due to the fact that, in principle, a model
misspecification is introduced in the model and model mis-
specifications are usually associated with higher type I error
rates. This could be circumvented by adjusting to the actual
significance level by performing a simulation and re-estimation
analysis for the covariate analysis (17), although it is impractical
to do so for every covariate analysis. A considerable advantage
of the DROP and EXTRA methods over the MIX methods is
that they are relatively simple to implement and can be applied
in analyses were data frommore than one covariate are missing

Table III. Type I/II Error Rates for Covariate Inclusion in Simulation Study, Balanced Dataset, for Both the Typical PK Scenario and the
Sparse Sampling Scenario

Error Missingness (%) DROP (%) EXTRA (%) MIXobs (%) MIXconc (%) MIXjoint (%)

Type I 0a 6 6 6 6 6
10 8 19 8 10 10
50 4 15 4 8 9

Type I, sparse sampling 0a 8 8 8 8 8
10 7 6 7 8 13
50 6 8 6 13 7

Type II 0 2 2 2 2 2
10 2 1 1 1 3
50 9 8 5 5 11

Type II, sparse sampling 0 59 59 59 59 59
10 65 63 63 57 71
50 75 77 75 64 75

a Since missingness was 0%, the missing data methods were not actually applied for the 0% scenario, so the type I/II errors indicate the ”gold
standard”

Fig. 4. Estimated pmix, balanced dataset
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as well as in automated covariate modeling procedures. For a
scenario studying a sparse sampling design, performance was
very similar across methods.

MIXobs, the simplest mixture method for dealing with
missing covariate data, often provides adequate results
and also showed the lowest type I/II error of covariate
inclusion of all methods. However, when non-random
missingness (MNAR) is present in the data, the use of
the observed category distribution, as is done in the
MIXobs method, induced bias in the estimation of the

parameter correlating with the covariate (CL in this
analysis) while estimation of the covariate effect magni-
tude itself was unaffected (Fig. 6). In this situation, all
other methods resulted in estimates of CL and covariate
effect size that were only slightly biased. Forcing the
mixture model into a different mixture than present in the
actual overall population causes the failure of MIXobs in
the situation of MNAR data. In our example, this could
only be “corrected” by estimation of a higher value for
CL. The other methods showed very low bias in the

a

b

Fig. 5. “NonRand” dataset: bias in CL (left) and covariate effect size (right)
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MNAR scenario. It may be that at more extreme scenarios of
MNAR (for even higher probabilities of missingness in one
category or at even higher percentages of missingness), bias and
imprecision will increase.

Both in the simulations and in the analysis of real data,
MIXconc performed poorly, regularly running into the 0 or 1
boundary for pmix, which was (logically) especially the case
when the amount of missing data was low. As expected,
analysis of datasets with larger covariate effects (θmale=2)

showed better performance, equaling the performance of
MIXjoint.

The analysis of the efavirenz dataset showed that the
MIX methods also allow the handling of more than one
covariate with missing data. However, the implementation of
mixture models quickly becomes more complex at higher
numbers of covariates with missing data, requiring xn

subpopulations in the mixture model for n covariates with
missing data and x categories per covariate as well as a

Fig. 6. Distribution of bias in covariate effect for the datasets with time-varying covariates
for MCAR (left) and MNAR (right) scenarios

Table IV. Parameter Estimates for Missing Data Methods: Efavirenz Dataset and Model

Parameter Unit DROPa EXTRA MIXobs MIXconc MIXjoint

CL L h−1 – 11.9 (4%) 12.1 (4%) 12.1 (4%) 11.6 (4%)
V L – 308 (19%) 149 (19%) 149 (19%) 144 (27%)
Q L h−1 – 30 (30%) 40.4 (12%) 40.4 (12%) 40.6 (11%)
V2 L – 244 (45%) 332 (30%) 333 (30%) 332 (31%)
ka h−1 – 0.591 (19%) 0.268 (27%) 0.267 (29%) 0.277 (50%)
θAsian – – 1.57 (26%) 2.04 (15%) 2.03 (14%) 2.04 (16%)
θAsian,miss – – 1.13 (17%) – – –
θbili+ – – 1.67 (17%) 1.71 (16%) 1.75 (16%) 1.71 (15%)
θbili+,miss – – 0.922 (17%) – – –
pmix,Asian % – – 7.25b 8.55 (70%) 7.36 (28%)
pmix,bili % – – 7.97b 0.1c 6.97 (29%)
ωCL % – 47.0 (9%) 45.2 (9) 45 (9%) 44.9 (9%)
ωka % – – 68.9 (21) 69 (21%) 55.4 (18%)
εprop % – 23.9 (15%) 24 (15%) 24 (15%) 24.2 (16%)
εadd mg L−1 – 0.312 (21%) 0.312 (21%) 0.312 (21%) 0.310 (24%)

Values in parentheses are the RSEs, calculated as (ω/θ)×100%
aEstimation of both one- and two-comparmental models was not supported by the data
b Fixed
cEstimated close to boundary, therefore fixed
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multitude of additional lines of code to cope with the
estimation of the covariate effects. We did not evaluate the
estimation of mixture models with more than four
subpopulations (=two covariates), but it is likely that for
the distinction of higher numbers of subpopulations,
estimation of the mixing probabilities will become
unstable if the dataset does not contain sufficient
information. To complicate matters, correlations between
mixture probabilities may also be present in the data, e.g.,
a larger portion of women having increased bilirubin
levels than men. Therefore, the use of mixture models is
limited to simpler covariate analyses.

In the simulation study, it was noted that non-random
missingness induced a difference in the estimated mixing
probabilities between the MIXobs and MIXconc methods.
Since such a difference was also found in the analysis of
efavirenz for pmix,bili, it is tempting to conclude that non-
random missingness in that covariate was also present in
the dataset of efavirenz. This may of course be possible,
but the amount of missingness (11%) and the fraction of
patients with elevated bilirubin levels (observed, 8%)
were likely too low to substantiate this conclusion.
Convergence problems with the DROP method for this
problem could not easily be solved. Possibly, with more
exhaustive efforts, the problem may have been solved,
e.g., using different estimation methods or changes in
model structure, but our goal was to judge the
general performance in a retrospective analysis without
performing additional model construction.

Due to the very low amount of missing data on
ASAT (3.5%) in the nevirapine dataset, no relevant
differences were observed between parameter estimates
obtained with the different methods. The low amount of
missing ASAT data explains why pmix could not be
estimated in the MIXconc method: due to the low amount
of information in the remaining concentration data on
ASAT (n=6 patients), this was not sufficient to discrim-
inate between patients with increased and normal ASAT.
Using MIXjoint, pmix could be estimated adequately due
to the extra information on ASAT supplied to the model,
and the estimate expectedly did not differ much from the
observed pobs.

A drawback of implementing the MIXjoint method is
that the Laplacian estimation method in NONMEM has
to be used, which is known to be more prone to
convergence problems during estimation. We did not,
however, experience any problems during the simulation
study or with the real dataset. Another hurdle in the
implementation of MIXjoint is that the dataset needs to
be updated to include the data on the studied covariate
as a dependent variable. In addition to the approaches
presented here, it is possible to incorporate the observed
fraction of patients as a prior on the estimated covariate
effect. In terms of dependence on the use of observed
covariate data for the estimation of mixing probability,
this approach can be placed somewhere between MIXobs

and MIXconc, depending on the weight given to the priors.
Such an approach is likely to perform similar to MIXjoint

and would also circumvent possible problems associated
with using the Laplacian estimation method.

Concluding, we showed that at low to intermediate
percentages of missingness, all evaluated methods perform
similarly with respect to bias and imprecision in parameter
estimates. In the situation of non-random missingness, DROP
and EXTRA methods showed less bias than the mixture
methods. Since it is usually not known whether data are
missing randomly or not, and due to its ease of implementa-
tion, the DROP or EXTRA method can be considered
appropriate methods for handling missing categorical data.
If the data are rich enough to allow appropriate model
construction and parameter estimation, the DROP method is
advised since the EXTRA method may increase the type I
error for covariate selection. As shown, the DROP method is,
however, data inefficient. Since the simulation scenarios
presented in this article are inherently arbitrary, if the
problem is relevantly different from the scenarios presented
here, it is advised to implement a simulation study to evaluate
the performance of missing data methods.
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Table V. Parameter Estimates for Missing Data Methods: Nevirapine Dataset and Model

Parameter Unit DROP EXTRA MIXobs MIXconc MIXjoint

CL L h−1 3.28 (3%) 3.28 (3%) 3.26 (2%) 3.28 (3%) 3.3 (2%)
V L 132 (10%) 131 (9%) 131 (9%) 131 (9%) 130 (10%)
ka h−1 1.94 (14%) 2.13 (14%) 2.13 (14%) 2.13 (14%) 2.22 (15%)
θWT L

h−1 kg−1
0.0175 (39%) 0.0167 (40%) 0.0168 (39%) 0.0169 (40%) 0.0176 (39%)

θHepC – 0.727 (11%) 0.725 (11%) 0.731 (10%) 0.731 (10%) 0.717 (11)
θASAT+ – 0.882 (9%) 0.884 (10%) 0.885 (9%) 0.864 (7%) 0.888 (10%)
θASAT,miss – – 0.82 (8%) – – –
pmix % – – 8.98a 100b 9.06 (25%)
ωCL % 24.8 (9%) 24.3 (9%) 24.6 (9%) 24.4 (9%) 24.3 (9%)
κCL % 12.3 (18%) 12.4 (19%) 12.4 (19%) 12.4 (19%) 11.6 (23%)

Values in parentheses represent RSE, calculated as (ω/θ)×100%
a Fixed
b pmix estimated close to boundary, therefore fixed
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