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Alteration in P-glycoprotein Functionality Affects Intrabrain Distribution
of Quinidine More Than Brain Entry—A Study in Rats Subjected
to Status Epilepticus by Kainate

Stina Syvänen,1,3 Maarten Schenke,1,2 Dirk-Jan van den Berg,1 Rob A. Voskuyl,1,2 and Elizabeth C. de Lange1

Received 15 September 2011; accepted 15 December 2011; published online 4 January 2012

Abstract. This study aimed to investigate the use of quinidine microdialysis to study potential changes in
brain P-glycoprotein functionality after induction of status epilepticus (SE) by kainate. Rats were infused
with 10 or 20 mg/kg quinidine over 30 min or 4 h. Plasma, brain extracellular fluid (brain ECF), and end-
of-experiment total brain concentrations of quinidine were determined during 7 h after the start of the
infusion. Effect of pretreatment with tariquidar (15 mg/kg, administered 30 min before the start of the
quinidine infusion) on the brain distribution of quinidine was assessed. This approach was repeated in
kainate-treated rats. Quinidine kinetics were analyzed with population modeling (NONMEM). The
quinidine microdialysis assay clearly revealed differences in brain distribution upon changes in P-
glycoprotein functionality by pre-administration of tariquidar, which resulted in a 7.2-fold increase in
brain ECF and a 40-fold increase in total brain quinidine concentration. After kainate treatment alone,
however, no difference in quinidine transport across the blood–brain barrier was found, but kainate-
treated rats tended to have a lower total brain concentration but a higher brain ECF concentration of
quinidine than saline-treated rats. This study did not provide evidence for the hypothesis that P-
glycoprotein function at the blood–brain barrier is altered at 1 week after SE induction, but rather
suggests that P-glycoprotein function might be altered at the brain parenchymal level.
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INTRODUCTION

P-glycoprotein (P-gp) is the best studied efflux trans-
porter at the endothelial capillaries constituting the blood–
brain barrier (BBB) (1,2). It is responsible for reduced brain
distribution of many clinically used drugs. For drugs aimed at
systemic targets this can be a benefit as the action of P-gp will
help to reduce central side effects. P-gp might, however, also
hamper the ability of drugs to reach target sites within the
brain. For example, about 30–40% of all people with epilepsy
do not become fully seizure free with current medications,
even when treated at maximal tolerated doses. Lack of
response in these individuals is not limited to a specific drug
or drug class, but occurs with the complete range of anti-
epileptic drugs (3,4). Thus, it has been hypothesized that

increased P-gp expression in a subpopulation of people with
severe epilepsy is, at least in part, responsible for pharma-
coresistance by impairing drug access to the brain

There are many methods used to study drug distribution
into the brain (5). However, most of these methods focus on
total brain concentrations. Since brain tissue is rather
lipophilic, total brain concentrations will often mainly reflect
the lipophilicity of the drug, i.e., a lipophilic drug will have a
higher total brain concentration than a more hydrophilic
drug. If the transport across the BBB is of interest, methods
that measure free concentrations in brain are needed, as a
reflection of the fraction of the molecules in plasma that can
pass the tightly connected cell membrane of the BBB.
Microdialysis is the state-of-the-art methodology for measuring
free drug concentrations in the brain. Transport processes at the
BBB and the brain parenchyma can be separated by using
microdialysis in combination with measurement of plasma and
total brain concentrations (6,7).

Quinidine, a substrate with high affinity for P-gp, was
used in the present study as a model substrate for determin-
ing P-gp functionality at the BBB. To investigate the specific
contribution of P-gp at the BBB, rats were studied without or
with co-administration of the P-gp inhibitor tariquidar
(TQD). Quinidine concentrations were determined in arterial
plasma and extracellular brain fluid for 7 h after the start of
quinidine administration. In addition, quinidine concentration
in brain tissue was determined at the end of the experiment.
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In rats, treatment with intraperitoneal (ip) injections of
kainate leads to status epilepticus (SE) (8). After a latent
period of 3–4 weeks post-SE, rats start to show spontaneous
seizures. The kainate model in rats displays several features
of temporal lobe epilepsy, the most common form of epilepsy
frequently associated with pharmacoresistance, including an
increase in P-gp expression (9,10). In a recent positron emission
tomography (PET) study it was shown that the brain distribu-
tion volume of the PET P-gp substrate tracer (R)-[11C]
verapamil was increased in kainate-treated rats compared to
control rats (11). However, unlike microdialysis, PET measures
total concentrations and hence pharmacokinetics at the level of
the BBB versus intrabrain cannot be separated.

The aim of the present study was first develop a
microdialysis method for studies of drug transport across the
BBB and intrabrain distribution, and second, to investigate
the influence of kainate treatment and TQD pre-administration
on quinidine pharmacokinetics with focus on P-gp functionality,
both at the BBB and brain parenchyma.

MATERIALS AND METHODS

Chemicals and Solutions

Tariquidar (XR9576, TQD) was obtained from Xenova
Group PLC (Cambridge, England) or API Services Inc.
(Westford, USA), kainic acid, quinidine, quinidine sulfate
dehydrate, quinidine hemi sulfate and quinine hemi sulfate
from Sigma Aldrich (Zwijndrecht, The Netherlands), triethyl
amine from Baker (Deventer, The Netherlands), boric acid
and orthophosphoric acid 85% was from Merck (Darmstadt,
Germany),methyl tert-butyl etherfromBioslove (Valkenswaard,
The Netherlands), isoflurane from Pharmachemie BV
(Haarlem, The Netherlands), 5% glucose in saline and saline
from hospital pharmacy of the University Medical Centre
Leiden (UMCL, Leiden, The Netherlands).

Perfusion fluid for microdialysis was a modified
artificial cerebrospinal fluid solution previously described
by Moghaddam et al. (12). In short, it was a water based
solution containing 140 mM NaCl, 3 mM KCl, 1 mM
MgCl2, and 1.2 mM CaCl2. For injections, kainate was
dissolved in saline to a total concentration of 5mg/mL; quinidine
was dissolved in saline to a total concentration of 1.25 or
2.5 μg/μL and TQD was dissolved in 5% glucose in saline to a
total concentration of 3.75 mg/mL.

For the HPLC analysis, quinidine was dissolved in
methanol and diluted with water to a concentration of

100 μg/mL. This stock solution was further diluted in water
(plasma and brain analysis) or perfusion fluid (microdialysate
analysis) to construct calibration curves for quinidine analysis.

Animals

Adult male Sprague–Dawley rats (n=74, Harlan, Horst,
The Netherlands) weighing 200–249 g on arrival were housed
in groups of five to six per cage until treatment or surgery and
thereafter housed individually. They were kept at a constant
temperature of 21±1°C and at a 12 h light/dark cycle, in
which white lights were switched on at 8:00 AM. Animals had
unrestricted access to food (RM3 (E) DU, Special Diets
Services B.V., Witham, Essex, England) and acidified water.
Animal procedures were performed in accordance with
Dutch laws on animal experimentation. All experiments were
approved by the Ethics Committee for Animal Experiments
of Leiden University (approval numbers UDEC08134 and
UDEC08200).

Two groups of animals were studied: (1) untreated
control rats and (2) kainate-treated rats. The number of
animals in each group is shown in Table I. Of the initial 74
animals, 10 animals had to be excluded either because of
technical reasons such as clogging of cannulae or irregularities in
flow through the microdialysis probe, or due to death or
insufficient recovery after kainate treatments.

The control group (n=48) underwent surgery approxi-
mately after 1 week of habituation and 7 days prior to
microdialysis experiments. In short, rats were anesthetized via
a nose mask with isoflurane, 4–5% induction and 1.5–2%
maintenance, in oxygen 1 L/min. Blood cannulae (Portex
Fine bore PE tubing, Smith Medical B.V., Rosmalen, The
Netherlands) were implanted in the femoral artery for blood
sampling and the femoral vein for drug administration. This
was followed by insertion of a microdialysis guide with a
dummy probe (CMA, Solna, Sweden), which was implanted
in the hippocampus (AP-5.6, L4.6, V-2.5). Six of the control
animals were used to determine the in vivo recovery of
quinidine by retro dialysis (13). These animals had a micro-
dialysis guide and dummy implanted 7 days prior to the
experiment, but no blood cannulae.

The rats in group 2, were treated with saline (n=3), or
kainic acid (n=16) to induce SE after approximately 1 week
of habituation and 7 days prior to microdialysis experiments.
Kainic acid was administered repetitively until full-blown
seizures were seen (8). First, an initial dose of 10 mg/kg
(2 mL/kg) i.p. was administered followed by 5 mg/kg (1 mL/kg)
i.p. every 30–60min until stage IV seizures according toRacine's

Table I. Number of Animals in the Different Treatment Groups

Control rats + vehicle
co-administration

Control rats + tariquidar
co-administration

Kainate-treated + vehicle
co-administration

Kainate-treated + tariquidar
co-administration

Quinidine 12.5 μg/min over 4 h 7 6 – –
Quinidine 25.0 μg/min over 4 h 8 8 – –
Quinidine 100 μg/min over 30 min 9a 7b 8 8
In vivo retrodialysis 3 3 – –

aTwo of the nine animals were included from the second groups of rats (see text for further explanation)
bOne of the seven animals were included from the second groups of rats (see text for further explanation)

88 Syvänen et al.



scale (14) occurred, or when a total amount of 30 mg/kg kainic
acid was reached. Six days later and 1 day prior to the
microdialysis experiment, the animals underwent cannulation
surgery and the implantation of the microdialysis probe as
described in the section above.

After the microdialysis study, animals were euthanized
by decapitation and the brain was removed. All samples, i.e.,
plasma, microdialysate and brain tissue were stored at −80°C
until analysis

Pharmacokinetic Study in Rats

The dummy probe was replaced with the microdialysis
probe 1 day (18–22 h) prior to the microdialysis experiment.
On the day of the microdialysis study, the probe inlet was
connected to the perfusion fluid syringe and the outlet to an
automatic cooled fraction collector (Univentor microsampler
820, Univentor Ltd, Zejtun, Malta). When the rat was
properly connected the perfusion rate was set to 2 μL/min
and was kept on this rate throughout the experiment.
Samples were collected for 15 min, i.e., the fraction collector
turned every 15 min. The perfusion rate was checked by
weighing each sample, and samples obtained at perfusion
rates deviating from the set rate with more than 10% were
excluded. The probes were perfused for at least 60 min (blank
period) prior to the start of the quinidine intravenous
infusion. Quinidine was infused at 10 μL/min (2.5 or
1.25 μg/μL) over 4 h or 40 μL/min (2.5 μg/μL) over 30 min.
The number of animals in each dose group is shown in
Table I. Half of the animals were treated with the P-gp
inhibitor TQD, 15 mg/kg, 30 min before the start of the
quinidine infusion. The other half was treated with 5%
glucose in saline (vehicle) at the same time point.

In Vivo Retro Dialysis

Microdialysis probe recovery was determined in six rats
through in vivo retro dialysis (15). The animals were each
infused with one or two concentrations of quinidine in
perfusion fluid. The quinidine concentrations were random-
ized and ranged between 20 and 500 ng/mL to cover the
whole concentration range observed in the study. The probe
recovery was calculated as described in Eq. 1.

Extraction fraction ¼ Cin � Cout

Cin
ð1Þ

Where Cin is the quinidine concentration in the perfusion
fluid, Cout is the concentration in the dialysate and the
“extraction fraction” loss of molecules to the tissue. It is
assumed that the loss is equal to the gain, i.e., if 25% of
molecules in the perfusion fluid are lost to the tissue it is
assumed that a blank perfusion fluid, as used in the experiments,
will pick up 25% of the molecules present in the tissue.

Quantification of Quinidine in Plasma, Dialysates,
and Brain Tissue

Quinidine was measured using HPLC with fluores-
cence detection. A LC10-ADVP HPLC pump (Shimadzu,
‘s-Hertogenbosch, the Netherlands) using a flow of 1 mL/min.
AnAltima C-18 150×4.6 mm column (Grace Altech, Breda, the

Netherlands) was used to elute quinidine. Detection was
performed using a Jasco FP-1920 fluorescence detector (Jasco,
de Meern, the Netherlands) set at 488 nm for excitation and
512 nm for emission. Injection was performed using a Waters
717 autosampler (Waters, Etten-Leur, the Netherlands). The
injection volume was 20 μL. Data acquisition was per-
formed using Empower Software (Waters, Etten-Leur, The
Netherlands). The mobile phase consisted of acetonitrile and
phosphate buffer (25 mM) with triethyl amine (10 mM) at a pH
of 2.3 in a ratio of 17:83 (v/v) and 14/86 (v/v) for microdialysis
and plasma samples, respectively.

Microdialysate was injected directly, without any pretreat-
ment and measured dialysate concentrations were converted
into brain extracellular fluid (brain ECF) concentrations by
division with the extraction fraction obtained using Eq. 1.

CECF ¼ Cdial

Extraction fraction
ð2Þ

To 20 μL plasma, 50 μL of the internal standard quinine
(Sigma Aldrich, Zwijndrecht, the Netherlands) was added in
a concentration of 500 ng/mL.

After homogenization with 200 μL of borate buffer
pH 10, 5 mL of methyl tert-butyl ether was added. After
vortexing, centrifugation, and freezing of the aqueous layer,
the organic phase was evaporated to dryness. The extracts
were reconstituted in 100 μL of mobile phase and centrifuged
at 4,000×g during 5 min. The clean plasma extracts were
injected using a mobile phase with an acetonitrile/buffer ratio
of 1:6. Calibration was performed using 20 μL aliquots of
quinidine in concentrations of 5, 10, 20, 50, 100, 200, 500,
1,000, 2,000, and 5,000 ng/mL which were added to 20 μL
blank plasma.

Quinidine concentration in brain tissue was analyzed by
the following steps: whole brain was homogenized in phos-
phate buffer at pH 7.4. Per gram brain, 5 mL of buffer was
added (50 mM). After addition of the internal standard
quinine to 0.6 mL of the homogenate, 100 μL of sodium
hydroxide 1 M was added and mixed thoroughly. Tertiary
butyl methyl ether was added in a volume of 5 mL. After
vortexing for 5 min and centrifugation, 4 mL of the
supernatant was transferred to a clean glass tube and
100 μL of phosphoric acid 30 mM was added. After another
5 min of vortexing followed by centrifugation at 4,000×g for
10 min, the supernatants were aspirated and discarded. The
remaining aqueous phase was centrifuged for 10 min at
11,000×g. An aliquot of 40–60 μL was transferred to clean
glass vials and 20 μL was introduced into the HPLC system,
using a mobile phase with an acetonitrile/buffer ratio of 1:6.

Precision and accuracy of the determination of quinidine
in plasma and brain were below the 15% level. The precision
and accuracy of quinidine measurement in microdialysate
were less than 10%. Limit of quantification was 5 ng/mL for
plasma, 20 ng/mL for brain, and 1 ng/mL for dialysate.

Data Analysis

Analysis of quinidine pharmacokinetics was performed
using nonlinear mixed effects modeling in NONMEM VI
(GloboMax LLC, Hanover, MD, USA). The phamacokinetic
model was constructed in three steps. In the first step, a
pharmacokinetic model for quinidine plasma concentrations
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was developed. One, two, and three compartment models
were evaluated. In the second step the model was
extended to include brain ECF concentrations, while
allowing the plasma estimates to change freely from the
values obtained in the first step. Again, one and two
compartment models were evaluated. The final step was
to also include the total brain concentrations that were
obtained at the end of the experiments.

Data from all rats were processed simultaneously. The
subroutine ADVAN 6 and first-order conditional estimation
with interaction were used throughout the modeling proce-
dure. Model selection was based on the objective function
value (OFV) with the lowest value corresponding to the best
model. For nested models, OFV reductions of 3.83, 6.63 and
10.83 units correspond to improved fits at p<0.05, p<0.01,
and p<0.001 levels, respectively. Further, model parameter
uncertainty and visual analysis using software Xpose 4 (16)
implemented in R 2.7.1 (The R foundation for Statistical
Computing) accessed from Census (17) was used to assess the
model performance. For example, predicted concentrations
were plotted against measured concentrations and conditional
weighted residuals (18) were calculated and plotted against
time and concentration.

The inter-individual variation of a parameter was described
by the exponential variance model:

�i ¼ �pop � exp �ið Þ ð3Þ

where θi is the parameter in the ith animal, θpop the
parameter in a typical animal and ηi the inter-animal
variability, which is assumed to be normally distributed
around zero with a standard deviation ω. Equation 3 provides
a means to distinguish the parameter value for the ith animal
from the typical value predicted from the regression model.
Inter-individual variation was investigated for all parameters,
but incorporated only for those parameters for which it
significantly (p<0.01, OFV reduction of 6.63 units) improved
the model.

Pre-administration (TQD or vehicle), rat group (control
or kainate-treated), infusion time, quinidine dose, recovery
time since surgery and animal weight on the experimental day
were defined as covariates to study their effects on the
parameter estimates. A stepwise forward addition and
backward deletion approach was applied to test the
significance (p<0.01) for covariate inclusion. The residual
variability was described with proportional error models
for each compartment.

Performance of the population pharmacokinetic model was
evaluated using 100 additional bootstrap replicates (re-sampling
with replacement) of the data by fitting the final model to them.

RESULTS

Quinidine Plasma and Brain Profiles

Quinidine plasma and brain ECF concentration profiles
for the groups of rats that were infused with 100 μg/min over
30 min are shown in Fig. 1. The brain uptake of quinidine
without TQD pretreatment was in general low but was
increased by pretreatment with TQD.

Development of the Pharmacokinetic Model

Quinidine kinetics in both plasma and brain were analyzed
using mixed effects modeling in NONMEM. The final model
including covariate effects is shown in Fig. 2. Both the plasma and
brain profiles were best described with two compartment models.
As a first step, only plasma was modeled and as a second step the
brain ECF and total brain compartments were included. When
the ECF and total brain compartments were included, onlyminor
changes were observed for the plasma parameter estimates
(Table II). The model diagnostics plots, separated for plasma
and brain ECF concentrations, are shown in Fig. 3.

It was not possible to estimate Qin, Qout, and Vbr (Fig. 2)
independently with good precision and thus the model was
simplified to include a correlation between Qin and Qout:

Qin ¼ f1 �Qout ð4Þ

where f1 describes the correlation between Qout and Qin. In
the final model, Qout was fixed to a value of 10.8 mL/min as it
was observed in the bootstrap analysis that the volume of
distribution Vbr1 and Qout were to some extent correlated, i.e.
the ratio between the two parameters was stable, but for
some of the data sets generated in the bootstrap analysis Vbr1

was estimated to an unrealistically high value. The value of

Fig. 1. Quinidine concentrations in plasma (upper panel) and brain
ECF (lower panel) during and after an intravenous infusion of 100 µg/min
over 30 min. Blue and red symbols are saline- and kainate-treated rats,
respective. Open and closed symbols are without and with tariquidar
treatment, respectively
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10.8 mL/min was obtained with the final model when Qout

was kept free during the estimation.
The concentration in the total brain compartment (Cbr2)

was assumed to be correlated with the concentration in the
first brain compartment (Cbr1) as:

Cbr2 ¼ f2 � Cbr1 ð5Þ

In the present study, measurements were obtained in
both of these brain compartments. The concentration in the
first brain compartment (Cbr1) was the free quinidine
concentration in brain ECF, while the concentration in the
second brain compartment (Cbr2) was the concentration of
quinidine in total brain tissue, i.e., intra- and extracellular
fluid as well as brain tissue.

Inter-individual variation was found for structural
model parameters CL, V1, V2, VBr, and Qin (Table II).
The covariate analysis showed no correlation between
parameter estimates and quinidine dose, infusion time,
recovery time after surgery or recovery time after probe
insertion. When only plasma was fitted the OFV was
reduced by 9.5 units (p<0.01) when animal weight was

added as a covariate for clearance. However this covariate
was not significant when the model was extended also to
include brain compartments (Table III).

Analysis of Influence of TQD and Kainate Treatment

Both TQD pre-administration and kainate treatment
were treated as categorical covariates, i.e., they were assigned
a value of 0 or 1. The final parameter equations, including
covariates were defined as:

�i ¼ �pop � exp �j
� � � �covarCOVARIATE 1 or 0ð Þ ð6Þ

Where θcovar describes the influence of TQD pre-
administration or kainate treatment on parameter estimate
θpop (Eq. 6). In Eq. 6, the exponent COVARIATE was
assigned a value of 1 for TQD pre-administration and kainate
treatment and a value of 0 for vehicle co-administration and
control rat. The θcovar estimate therefore represents the
fractional change between TQD and vehicle pre-administered
or kainate-treated and untreated groups. Equations for all
model parameters are given in Table IV.

Fig. 2. Final pharmacokinetic model including covariates. C1, C2, CBrF, and CBrT are the quinidine concentrations (in nanograms per milliliter)
in central plasma, peripheral tissue, unbound brain, and deeper brain compartment, respectively. V1, V2, and VBr are the volumes of
distribution (in milliliters) in central plasma, peripheral tissue and unbound brain, respectively. CL, Q, Qin, and Qout are the clearances (in
milliliters per minute) from plasma, between the two plasma compartments, into the brain and out from the brain, respectively. Qin was defined
as a fraction of Qout, Qin = f1•Qout. The distribution from the free brain compartment to the deeper brain compartment was described with a
fraction, f2, so that CBrT = f2•CBrF. The covariate analysis showed that kainate treatment decreased the systemic clearance, the volume of
distribution in peripheral tissue and brain while tariquidar co-administration decreased the systemic clearance, increased the quinidine
clearance into the brain, decreased the clearance out from the brain and increased the distribution from the unbound brain compartment to the
deeper brain compartment
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TQD Treatment

TQD pre-administration increasedQin 2.65-fold, decreased
Qout 2.73-fold (1/0.366) and increased f2, i.e., the correlation
between Cbr1 and Cbr2, 5.66-fold (see Table II). Since it was
assumed that there was a correlation betweenQin andQout, the
model was also fitted with only TQD influence on either Qin or
Qout, but in both cases the OFV increased by >25 units(see
Table III). Taken together this indicates that TQD pre-
administration can increase the free brain concentrations 7.2-
fold (2.65×1/0.366=7.2) by acting on both Qin and Qout. The
increase in total brain concentrations was much larger, about 40-
fold (2.65×1/0.366×5.66=41) indicating that TQD also in-
creased the distribution from the brain ECF to brain tissue.

Kainate Treatment

Typically, three injections, i.e., a cumulative dose of
20 mg/kg, were needed to reach stage IV or V seizures
according to Racine’s scale (14) and SE was usually reached
within 20 min after the last injection. Without exception all
rats reached this stage. Rats usually displayed seizures for 6–
12 h, with the most intense and frequent seizures occurring
during the first 2 h. The seizures were not interrupted by any
anti-epileptic drug treatment. The mortality was less than
10%. Due to the design of this study it was not possible to
determine whether these animals eventually would have

developed spontaneous epilepsy, but the signs and symptoms
during and after SE were very similar to those observed in
previous studies where animals did develop epilepsy. Further,
some of the kainate-treated animals had seizures during the
microdialysis experiments. The seizures were usually
provoked by stress, i.e., the rats experienced seizures
during or just after being connected to the perfusion fluid
syringe and sample collector.

Kainate treatment was found to be a significant covariate
for the systemic clearance (CL) and volume of distribution in
the peripheral plasma (V2; see Fig. 2 and Table II). Kainate
treatment also reduced the Vbr 1.69-fold (1/0.59; Table II).

Further, the total brain-to-plasma concentrations ratios
at the end of experiments were lower in kainate-treated than
in control animals. This brain-to-plasma ratio was (average ±
standard deviation) 0.9±0.6 in control animals and 0.6±0.4 in
kainate-treated animals pre-administered with only vehicle.
In TQD pre-administrated animals the ratios were 114±80 in
control animals and 45±29 in kainate-treated animals.
However, in the population model kainate as a covariate for
f2, i.e., the distribution into the deeper brain compartment,
did not result in a significant drop of OFV (Table III).

In Vivo Retro Dialysis

A typical profile of retrodialysis in one animal is shown
in Fig. 4. The probe concentration recovery was not

Table II. Quinidine Pharmacokinetic Model Parameter Estimates

Estimation Bootstrap Estimation plasma only

Objective function −2898 −2964 −695

Parameter Value CV% Shrinkage% Value CV% Value CV%

Fixed effects
CL (mL/min) 32.1 5.1 32.3 5.2 29.9 4.8
V1 (mL) 146 42 145 32 188 27
Q2 (mL/min) 66.6 11 66.8 11 73.3 10
V2 (mL) 1840 6.5 1851 6.1 1630 4.4
Qout (mL/min) 10.8 N.A. 10.8 N.A.
f1 0.0619 8.2 0.0621 8.3
VBr (mL) 269 14 281 15
f2 8.67 2.7 9.51 30

Covariates
Kainate (CL) 0.537 8.5 0.539 8.4 0.556 8.8
Kainate (V2) 0.678 7.0 0.676 5.9 0.746 6.4
Kainate (VBr) 0.592 13 0.591 12
Tariquidar (CL) 0.835 6.8 0.835 6.5
Tariquidar (Qout) 0.366 14 0.376 16
Tariquidar (Qin) 2.65 17 2.73 18
Tariquidar (f2) 5.66 33 5.65 29
Weight (CL) N.A N.A N.A N.A 0.967 46

Inter-individual variability
η(CL) 0.0682 20 6 0.0612 19 0.0731 18
η(V1) 1.92 30 18 2.03 34 1.61 29
η(V2) 0.0686 34 15 0.680 32 0.0231 50
η(Qin) 0.101 19 13 0.0965 19
η(Vbr) 0.196 31 16 0.183 44

Propotional residual error
σ2(plasma) 0.270 7.0 0.271 7.6 0.233 5.6
σ2(brain ECF) 0.185 9.4 0.183 9.1
σ2(total brain) 0.694 21 0.636 22
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Table III. Model Development Table

Model ΔOFV (compared to final model) Comment

1-comp plasma 1,133 Increase >6.63 in OFV → significant worse fit than final model
Without covariates
Kainate (CL) 40.38 Increase >6.63 in OFV → significant worse fit than final model
Kainate (V2) 14.36 Increase >6.63 in OFV → significant worse fit than final model
Kainate (VBr) 9.91 Increase >6.63 in OFV → significant worse fit than final model
Tariquidar (CL) 49.25 Increase >6.63 in OFV → significant worse fit than final model
Tariquidar (Qout) 28.93 Increase >6.63 in OFV → significant worse fit than final model
Tariquidar (Qin) 25.41 Increase >6.63 in OFV → significant worse fit than final model
Tariquidar (f2) 19.22 Increase >6.63 in OFV → significant worse fit than final model

With covariates
Weight (CL) −0.289 Non-significant change from final model
Weight (V1) −0.123 Non-significant change from final model
Weight (V2) −0.09 Non-significant change from final model
Kainate (Q) 0.00 Non-significant change from final model
Kainate (V1) −5.09 Non-significant change from final model
Kainate (Qin) −5.32 Non-significant change from final model
Kainate (Qout) −6.42 Non-significant change from final model
Kainate (f2) −0.73 Non-significant change from final model
Tariquidar (V1) −5.19 Non-significant change from final model
Tariquidar (V2) −0.02 Non-significant change from final model
Tariquidar (Q) −3.11 Non-significant change from final model
Tariquidar (VBr) −2.485 Non-significant change from final model

Fig. 3. Model diagnostics for plasma (upper panel) and brain extracellular fluid (lower panel). The model described the data well, as the
residuals in the left and middle columns are distributed around the line of identity (thin black line), with dots closer to this line in the middle
column as the inter-individual variability is taken into account in these two plots. Plots in the right column show the conditional weighted
residuals versus time and these are also randomly scattered around zero, thus showing no trend over time
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dependent on quinidine concentrations (20–500 ng/mL) nor
on treatment with TQD. As can be seen in Fig. 4, there was
an instantaneous equilibrium (no lag-time) when the concen-
tration in the perfusion fluid was changed. The loss from the
perfusion fluid was average 24% (standard deviation 5.8%)
and this value was used as the extraction fraction in Eq. 2 to
convert quinidine microdialysate concentrations to brain ECF
concentrations.

DISCUSSION

Quinidine concentrations in the brain were very low in
both kainate- and saline-treated rats. Remarkably, kainate-
treated rats tended to have a lower total brain concentration
but a higher brain ECF concentration of quinidine than
saline-treated rats. This suggests merely that the P-gp
function in kainate-treated rats is altered at the parenchymal
level rather than at the BBB. TQD pre-administration
increased the brain ECF brain concentration 7.2-fold and
the total brain concentration about 40-fold, supporting an

important role for P-gp in intrabrain distribution. The effect
of TQD was similar in control and kainate-treated rats.

Compared to many other methods, microdialysis has the
important advantage of measuring the free (ECF) brain
concentration (6,7). This concentration is relevant for esti-
mating the transport across the BBB (19). In addition to the
free concentrations that were measured with microdialysis
over the whole study time, total quinidine concentrations
were measured at the end of the experiment. Hence, the
combination of microdialysis, plasma and total brain tissue
concentrations produced a very rich data set including
information on both transport across the BBB and distribution
within the brain.

TQD treatment was used to inhibit the P-gp function. As
mentioned, this resulted in a 7.2-fold increase in brain ECF-
to-plasma concentration ratio and an approximately 40-fold
increase in total brain-to-plasma concentration ratio. PET
studies have shown 10–15-fold increase in brain-to-plasma
concentrations of the P-gp substrate (R)-[11C]verapamil after
inhibition with 15 mg/kg TQD (11,20). PET data can be
compared to total concentrations and thus, the present study
indicates that quinidine might be a better model drug to study
P-gp functionality than verapamil, as a large difference in
concentration between baseline and P-gp inhibition states is
desirable for a good P-gp function marker, regardless of
whether PET or microdialysis is used. Another possible
conclusion is that microdialysis as a method is more
sensitive than PET to assess changes in P-gp functionality as
it measures the free concentration, while the PET signal is not
solely reflecting on processes at the BBB but also distribution
within the brain. In the future, it would be very interesting to
use 11C-labeled quinidine as a PET tracer to be able to
compare the read-out from microdialysis and PET. Initially,
verapamil was also tried in the microdialysis setting, but due
to extensive sticking of verapamil to the microdialysis tubing
and probes this was not possible. When designing the present
study, use of an anti-epileptic drug as a model drug was
considered, but since a large difference between normal P-gp
function and increased/decreased P-gp function was desired,
it was concluded that a strong P-gp substrate, such as
quinidine, was the best way to demonstrate proof of
concept. In addition, quinidine as opposed to many other P-
gp substrates, show no interaction with the other major efflux
transporters, e.g., breast cancer resistant protein (21,22).

All brain tissue samples were obtained at approximately
the same time point, i.e., at the end of the experiment 7 h after
the start of quinidine infusion, at which equilibrium was
assumed to be reached. However, rate constants for distribution
to and from the total brain compartment could not be estimated
based on the present data set. Therefore, concentration of
quinidine in brain tissue was in the final pharmacokinetic model
described as a multiple (f2) of the free brain ECF concentration.
Previous studies (unpublished data) in our lab have showed that
equilibrium between brain ECF and total brain concentrations
is very rapid and hence even if brain samples had been obtained
at different time points it would still have been possible to use
the present model structure. The result showed that quinidine
concentration is 8.7-fold higher in brain tissue than in brainECF.

In epilepsy, it has been hypothesized that P-gp expres-
sion at the BBB is upregulated and hence contributes to the
development of pharmacoresistance (23–28). Therefore, it

Table IV. Model Parameter Equations

Plasma
CL ¼ �1 � �2KAINATE � �3TARIQUIDAR � exp �1ð Þ
V1 ¼ �4 � exp �2ð Þ
Q ¼ �5
V2 ¼ �6 � �7KAINATE � exp �3ð Þ
Brain
Qout ¼ �8 � �9TARIQUIDAR

VBr ¼ �10 � �11KAINATE � exp �4ð Þ
f1 ¼ �12
Qin ¼ f1 � �8 � �13TARIQUIDAR � exp �5ð Þ
f2 ¼ �14 � �15TARIQUIDAR

Where covariates KAINATE and TARIQUIDAR are 1 for treated
animals and 0 for non-treated animals

Fig. 4. An in vivo retrodialysis profile for a typical animal. Blank
perfusion fluid was perfused during 0–60 min. Then, a perfusion fluid
containing 71 ng/mL quinidine was perfused up to 240 min. From 240
to 420 min, the perfusion solution contained 273 ng/mL quinidine.
After 420 min, the animal was again perfused with blank perfusion
fluid. Samples we obtained every 15 min
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was also of interest to investigate the P-gp function in
kainate-treated rats, a frequently used model for temporal
lobe epilepsy, and compare quinidine pharmacokinetics in
this epilepsy model both at baseline and after P-gp inhibition
to naïve control rats. Rats subjected to kainate induced SE
become truly epileptic only after 3–4 weeks when spontane-
ous seizures start to occur (8), but the most prominent
increase in P-gp expression has been reported between 1
and 7 days after SE (9,10,29–31). Thus, although seizures
were not yet present at 1 week after induction of SE by
kainate (apart from a few incidental observations), it can be
assumed that at this time point after SE the brain both
exhibits increased P-gp expression and is progressing towards
the epileptic state. In a previously published study using the
same epilepsy model, it was shown that the brain glucose
metabolism, measured with 18F-fluorodeoxyglucose, was
significantly lower in kainate-treated rats 7 days post-SE
than in controls (11). It is a common clinical observation that
18F-fluorodeoxyglucose uptake is decreased in epileptic brain
tissue (32). This suggests that the kainate model in rats
mimics some functional changes that have been observed in
the human epileptic brain.

Kainate treatment influenced the plasma pharmacokinetics
of quinidine by decreasing the clearance (CL) and the peripheral
volume of distribution (V2). There was no effect on the Qin and
Qout, but kainate treatment decreased the volume of distribution
in the brain, Vbr. A decrease in Vbr suggests higher concen-
trations of quinidine in the brain, which may appear to be a
contradiction to the notion that kainate treatment should result
in upregulation of P-gp and thus rather a decrease in brain
concentrations. However, P-gp is not only expressed at the
endothelial cells of the BBB but also at other cell types such as
astrocytes and pericytes (33–35). There are studies showing that
breakdown of BBB function may be a consequence of an
inflammatory response and that inflammation is a cause for P-gp
upregulation (33). In the normal healthy brain, P-gp is probably
not an important player in the brain beyond the endothelial cells,
but after SE, an inflammatory reaction could lead to upregula-
tion of P-gp not only in endothelial cells, but also in glial cells and
neurons and these may thus act as a “second line of defense in
addition to the BBB” (34–36). Total brain concentrations
appeared to be lower in kainate-treated although this effect did
not reach significance in this study, probably due to a large
variability in the different rat groups. In this context, the findings
of Bankstahl et al. are of interest, as they reported that, after SE,
total brain-to-plasma ratio of phenytoin in rats was lower, while
the opposite was found in the brain dialysate to plasma ratio (30).
Phenytoin is considered to be a (weak) P-gp substrate (37) and
hence the results by Bankstahl et al. are in line with the results
from the present study, i.e., that SE decreases the total brain
concentrations and increases the free brain concentrations.

CONCLUSION

Quinidine uptake in the brain was very low in both kainate-
and saline-treated rats. The effect of TQDwas similar in control
and kainate-treated rats and TQD treatment increased total
quinidine brain concentrations more than ECF concentrations.
Kainate-treated rats tended to have a lower total brain
concentration and a higher brain ECF concentration of
quinidine than saline-treated rats. Thus, this study did not

provide evidence for the hypothesis that P-gp function is altered
at the endothelial capillaries constituting the BBB at 1 week
after SE induction. However, the study indicated that P-gp
functionality might be altered at the brain parenchyma.
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