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Abstract. The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A
family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs).
Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been
functionally characterized. Despite their sequence homology, only MCT1–4 have been demonstrated to
be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been
demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1–4
vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most
extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates,
MCTs are involved in the transport of pharmaceutical agents, including γ-hydroxybuytrate (GHB), 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide.
MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such
they have the potential to impact a number of processes contributing to the disposition of xenobiotic
substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance
of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant
administration of GHB and L-lactate to rats results in an approximately two-fold increase in GHB renal
clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective
strategy for increasing renal and total GHB elimination in overdose situations. Further studies are
required to more clearly define the role of MCTs on drug disposition and the potential for MCT-
mediated detoxification strategies in GHB overdose.
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INTRODUCTION

Monocarboxylic acids play a major physiological role in
that they represent an energy source for all cells in the body.
Of these compounds, lactate is critically important as it is the
end product of glycolysis and intracellular accumulation of
lactate results in the inhibition of glycolysis. Furthermore,
lactate can be oxidized in the brain and red skeletal muscle to
fuel cellular respiration. As such, the transport of lactate and
other monocarboxylic acids both into and out of cells is vital
for cellular function.

Two transporter families have been identified that
facilitate this need: the proton-coupled monocarboxylate
transporters (MCTs) and the sodium-coupled monocarbox-
ylate transporters (SMCTs). MCTs (SLC16A) were first
identified in the mid-nineties and to date 14 members of this

family have been identified through sequence homology
(1,2). Currently, seven isoforms have been functionally
characterized and it has been demonstrated that not all
members function as proton-coupled transporters and that a
wide variety of endogenous and exogenous compounds are
substrates, including lactate, pyruvate, butyrate, γ-hydroxy-
butyrate, bumetanide, and simvastatin acid (3–6). In contrast,
the SMCT family contains only two members, SLC5A8 and
SLC5A12, which were identified within the past 5 years
(7–9). SMCTs have strikingly similar substrate specificities
transporting short-chain monocarboxylates and sodium ions
with ratios between 4:1 and 2:1 (Na:substrate) (9). These two
distinct transporter families are further differentiated by their
respective tissue distributions: SMCTs demonstrate a more
restricted distribution (primarily kidney and intestine) while
MCTs show a more ubiquitous distribution (4,9).

In addition, unlike SMCTs, some members of the MCT
family have been demonstrated to transport exogenous
compounds including drugs. The impact of MCT substrate/
inhibitor specificity and tissue distribution needs to be further
examined with respect to drug substrates, and the overall
influence of MCTs on drug disposition. The present review
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focuses on the proton-coupled MCTs and aims to summarize
our current understanding of their structure, function and
regulation as well as their role in drug disposition using γ-
hydroxybutyrate (GHB; a known MCT substrate) (10–12) as
a specific example.

STRUCTURE, FUNCTION AND REGULATION
OF MONOCARBOXYLATE TRANSPORTERS

The uptake of monocarboxylates was first demonstrated
to be transporter-mediated in erythrocytes (13,14). Subse-
quently, the existence of a family of monocarboxylate trans-
porters was proposed following the characterization of lactate
transport in a variety of cell types (13,15,16). To date, 14
members of the MCT family have been identified through
screening of genomic and expressed sequence tag (EST)
databases (4). Hydropathy plots have predicted that MCTs
have 12 transmembrane domains with the N- and C-termini
located in the cytoplasm (2,4). The transmembrane domains
(TMDs) are highly conserved between isoforms with the
greatest sequence variations observed in the C-terminus and
the large intracellular loop between TMDs 6 and 7, which has
a range of 29–105 amino acid residues (2). This observed
variability is common to transporters with 12 TMDs and it is
thought that these sequence variations are related to sub-
strate specificity or regulation of transport activity (2,17).
Human tissue distribution of all currently identified isoforms
has been investigated and is summarized in Table I. A
number of recent reviews and articles have examined the
tissue specific localization and physiological functions of MCT
isoforms in both humans and rodents (18–25). Regulation of
MCTs has been demonstrated to occur via transcriptional,
translational and post-transcriptional mechanisms (26–28).
These regulatory pathways appear to be age- and tissue-
dependent, which further complicates the understanding of
these pathways (27,28). Some MCTs require an ancillary
protein (see Table I) which can be involved in cellular
localization (29) or protein–protein interactions (30); howev-
er, the role of these accessory proteins in overall transporter
function is not yet completely understood (29).

Functional characterization of MCT isoforms has been
extended to seven isoforms (MCT1–4, 6, 8, 10) with the seven
remaining MCT family members being classified as orphan
MCTs (MCT5, 7, 9, 11–14). Table II provides a summary of
currently identified substrates and inhibitors of functionally
characterizedMCT isoforms from humans and rats. Our current
understanding indicates that the transport mechanism varies
betweenMCT isoforms and that not all MCT isoforms transport
monocarboxylates (e.g. MCT8). The following sections aim to
provide an overview of our current understanding of individual
MCT isoforms with respect to unique structural features,
substrate/inhibitor specificity and regulation.

MCT1

MCT1 was first identified in Chinese hamster ovary cells
when altered mevalonate transport resulting from a single
point mutation was detected (15). Subsequently, human, rat
and mouse homologues were cloned and functionally charac-
terized (16,31–34). Tissue distribution of MCT1 is ubiquitous
(Table I); however, localization within specific tissues varies.

For example, in the retinal pigment epithelium (RPE),
expression is restricted to the apical membrane (2,17).
Transport kinetics have been thoroughly explored using
lactate for this isoform and have demonstrated that it
functions as a proton-dependent cotransporter/exchanger
(13,35). Transport occurs by ordered sequential binding with
association of a proton followed by lactate binding. The
complex is translocated across the membrane and the lactate
and proton are released sequentially. Since the transporter
functions as an exchanger, transport can occur bidirectionally;
however, it is primarily responsible for the uptake of
substrates (17).

While initial studies focused on the transport of lactate
by MCT1, subsequent studies revealed that the substrate
specificity of MCT1 was much less specific than initially
thought (2,4,35). Substrate and inhibitor affinities are detailed
in Table II. Transport of lactate was shown to be stereo-
selective with MCT1 having a greater affinity for L-lactate
than L-lactate (35). Uptake of butyrate by intestinal epithelia
cells is highly dependent on MCT1 expression; alterations in
MCT1 levels results in altered uptake of butyrate which is the
primary energy source for these cells (36,37). Interestingly,
XP13512 (a gabapentin prodrug) was specifically designed to
be a substrate for MCT1 in the intestine to improve the
bioavailability of gabapentin (38,39). In addition to the
transport of short-chain monocarboxylic acids, MCT1 was
demonstrated to transport branched oxo-acids with a greater
affinity than lactate (35). The higher affinity of these acids for
MCT1 supports previous studies demonstrating their inhibi-
tory potential towards lactate transport. Inhibitors of MCT1
fall into three broad categories: (1) bulky or aromatic
monocarboxylates which act as competitive inhibitors (e.g.
phenyl-pyruvate and α-cyano-4-hydroxycinnamate (CHC));
(2) amphiphilic compounds with divergent structures (e.g.
quercetin and phloretin); and (3) some 4,4’-substituted
stilbene-2,2’-disulphonates (e.g. DIDS) (4). Other isoforms
can be distinguished from MCT1 based on the inhibitory
potential of these compounds (Table II).

Relatively few studies have been conducted to assess the
regulation of MCTs. Studies have indicated that altered
physiological conditions and the presence of xenobiotics
may alter the regulation of MCTs, in addition to altered
expression at different developmental stages (40–42). MCT1
expression undergoes transcriptional, post-transcriptional and
post-translational regulation and appears to be regulated in a
tissue-specific manner (26–28). In colonic epithelium, expo-
sure to butyrate resulted in a concentration- and time-
dependent increase in MCT1 mRNA, protein expression
and a corresponding increase in butyrate transport (43).
These data suggest the possibility of altered transcriptional
regulation; however, the authors further demonstrated in-
creased transcript stability indicating additional post-tran-
scriptional regulation mechanisms (43). High concentrations
of lactate have also been demonstrated to increase MCT1
mRNA and protein levels in L6 cells (44). In contrast,
treatment with testosterone resulted in increased skeletal
muscle MCT1 protein expression and lactate transport in the
absence of mRNA changes suggesting the importance of
post-transcriptional regulation (27). These results indicate
that careful experimental design is required to assess the
induction potential of exogenous compounds with respect to
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MCT1 and multiple regulation pathways appear to be
involved in its regulation. The MCT1 5’-flanking and 3’
untranslated regions were recently cloned and a variety of
transcription factor binding sites were identified (26). In
addition, increased MCT1 expression and activity have been
reported in human neuroblastoma and melanoma cell lines
resulting from low extracellular pH (41,45). Inhibition and
silencing of MCT1 in neuroblastoma and glioma cell lines
resulted in increased cellular pH leading to apoptotic cell
death suggesting that MCT1 may represent a novel chemo-

therapeutic target (41,46,47). Additional studies need to
address the potential for varied physiological states and
xenobiotics to alter MCT1 (or other isoforms) regulation, as
this may impact the disposition of both endogenous and
exogenous MCT substrates.

MCT1 is further regulated by its association with the cell
surface glycoprotein CD147, which has a single transmem-
brane domain with the C-terminus located in the cytosol
(48,49). Topology studies suggest that one MCT1 molecule
interacts with a single CD147 molecule with subsequent

Table II. Comparison of Substrates and Inhibitors for Various MCT Isoforms in Humans and Rats

Species Isoform Expression System Substrate Km (mM) Inhibitor
Kia or IC50b

(μM) References

Human MCT1 Xenopus oocytes Lactate 3.5–6 Phloretin 28a (17,35,38,43,53)
Pyruvate 1.8–2.5 Quercetin n.a.
Acetoacetate 5.5 CHC 425a

α-Ketoisovalerate 1.3 pCMBS n.a.
α-oxoisohexanoate 0.67 XP13512 0.620b

α-oxoisovalerate 1.25
Butyrate 9
XP13512 0.22

MCT2 Xenopus oocytes Pyruvate 0.025 CHC n.a. (53)
L-Lactate n.a.
GHB n.a.

MCT3 ARPE-19 cells Lactate n.a. (21)
MCT4 Xenopus oocytes L-lactate 28 pCMBS 21a (64,65)

D-lactate 519 CHC 991a

Pyruvate 153 Phloretin 41a

D-β-hydroxybutyrate 130 NPPB 240a

Acetoacetate 216 Fluvastatin 32b

α-ketobutyrate 57 Atorvastatin 32b

α-ketoisocaproate 95 Lovastatin 44b

α-ketoisovalerate 113 Simvastatin 79b

MCT6 Xenopus oocytes Bumetanide 0.084 Furosemide 46b (3)
Nateglinide n.a. Azosemide 21b

Prostaglandin F2α n.a.
MCT8 COS1 and JEG3 cells T3 n.a. (72)

T4 n.a.
Rat MCT1 Xenopus oocytes Lactate 3.5 Phloretin 28b (12,35,58)

GHB 4.6 Quercetin 14b

Benzbromaron 22b

CHC 425b

MDA-MB231 γ-hydroxybutyrate 4.6 (12)
MCT2 Xenopus oocytes Lactate 0.74 Phloretin 14b (58)

Pyruvate n.a. Quercetin 5b

Benzbromaron 9b

CHC 24b

MCT4 Xenopus oocytes L-lactate 34 CHC 350b (104)
Pyruvate 36.3 pCMBS n.a.
2-oxoisohexanoate 13
Acetoacetate 31
β-hydroxybutyrate 65

MCT8 Xenopus oocytes T3 n.a. N-bromoacetyl-T3 n.a. (71)
T4 n.a. Bromosulfophthalein n.a.

MCT10 Xenopus oocytes L-Tryptophan 3.8 (70)
L-Tyrosine 2.6
L-Phenylalanine 7.0
L-DOPA 6.4

CHC α-Cyano-4-hydroxycinnamate, NPPB 5-nitro-2-(3-phenylpropylamino)benzoate, pCMBS p-chloromercuribenzenesulphonic acid, n.a.
transporter kinetic parameters were not determined
The superscripts are used with the data in the same column of the table to indicate if the values are IC50 or Ki values

314 Morris and Felmlee



dimerization with another MCT1/CD147 pair.(49). The initial
association of CD147 and MCT1 is required for the translo-
cation of MCT1 to the plasma membrane (48). Furthermore,
studies indicate that covalent modification of CD147 results
in inhibition of lactate transport as is seen with pCMBS-
mediated inhibition of transport (48,50). In addition to
MCT1, CD147 functions as an ancillary protein for MCT4
but not MCT2 (48).

MCT2

MCT2 was initially isolated and functionally character-
ized from a Syrian hamster liver library (51) with subsequent
identification of homologues in rat (52) and human (53). In
humans, expression of MCT2 is more restricted than MCT1
(Table I), with the greatest expression observed in the testis
(53). In addition, species differences have been observed in
the tissue distribution of MCT2. For example, rodents express
higher levels of MCT2 in the liver, while MCT2 protein
expression is not detectable in human liver (53). Brain MCT2
expression and cellular localization also appears to be highly
species dependent (53–55). This variability in tissue expres-
sion may be a result of species differences in gene regulation.
In both rodents and humans, MCT2 splice variants have been
detected in a species and tissue-dependent manner suggesting
that transcriptional and post-transcriptional regulation path-
ways play an important role in the tissue specificity of this
isoform (52,53,55,56). Similar to MCT1, MCT2 requires an
accessory protein for translocation to the plasma membrane.
However, MCT2 requires gp70 (EMBIGIN), not CD147 (29).
In addition, tissue specific post-translational regulation of
MCT2 has recently been demonstrated in the mouse brain
with the association of MCT2 and the scaffolding protein
Delphilin which results in colocalization of MCT2 with δ-
glutamate receptors (30,57). Further studies on the species-
and tissue-specific regulation are required to identify the
complex pathways involved in MCT2 regulation.

MCT2 has remarkably similar substrate specificity to
MCT1. However, in contrast to the observed substrate
affinities of MCT1, MCT2 was demonstrated to be a high
affinity pyruvate transporter in humans (Km=25 μM) which
concurs with results obtained using hamster and rat MCT2
(Table II) (51,58). Furthermore, MCT2 is inhibited by
phloretin and CHC, but not by the organomercurial thiol
reagent pCMBS, which distinguishes it from MCT1 (4). It is
thought that this difference in inhibitor sensitivity results from
the requirement of MCT1 and MCT2 for different accessory
proteins (4).

MCT3

MCT3 is believed to have the most restricted distribution
of any MCT with expression in the basolateral membrane of
the RPE and the choroid plexus in humans, rodents and
chickens (21,59,60). However, recent studies demonstrated
MCT3 expression in vascular smooth muscle cell lines (61),
human aorta (61), human kidney (62) and human intestinal
Caco-2 cells (unpublished), suggesting that MCT3 mRNA
may be more widely distributed than originally thought.
Furthermore, decreased MCT3 mRNA and protein expres-
sion was observed with increasing severity of atherosclerosis

which concurs with changes in smooth muscle cells charac-
teristic of this disease state (61). The authors further
demonstrated that DNA methylation of the MCT3 gene
likely contributed to the observed expression changes (61).

Chicken MCT3 has been demonstrated to transport
lactate in a yeast expression system (Km=6 mM) and
demonstrates a profound resistance to prototypical MCT
inhibitors (60). Additional information on human MCT3
substrates or inhibitors is not present in the literature nor is
there detailed information regarding the regulation of MCT3.

MCT4

MCT4 demonstrates remarkable similarities to MCT1
with respect to tissue distribution, regulation and substrate/
inhibitor specificity (Tables I and II). The principal difference
between these isoforms lies in their tissue specific localization
and substrate affinities. In contrast to MCT1, MCT4 is
predominantly expressed in highly glycolytic cells such as
white muscle and white blood cells suggesting that its
physiological function is lactate efflux (17,63). MCT4 and
CD147 expression were induced in MDA-MB231 cells (a
highly invasive breast cancer cell line) supporting the
metabolic switch to highly glycolytic cells in metastasis and
the corresponding increase in lactate efflux (42). MCT4
localization at the plasma membrane was dependent on
CD147 expression, which is consistent with results obtained
for MCT1 (42). The role of MCT4 in lactate efflux is further
supported by its high expression in the placenta where it is
involved in the transfer of lactate into the maternal circula-
tion (4). While there is a great degree of overlap in the
substrate specificity of MCT1 and MCT4, these two isoforms
differ in their substrate affinities with MCT4 having lower
affinities for a range of monocarboxylates (64). In contrast to
other MCTs, lactate transport via MCT4 is inhibited by a
range of statin drugs which may play a role in cytotoxicities
observed with statin administration (65).

MCT6

MCT6 was first identified by Price et al. in 1998 (66)
through genomic and EST database screening. Northern blot
analysis was used to determine the tissue distribution of
MCT6 (Table I) with expression being predominantly in the
kidneys (66).

In contrast to other members of the MCT family, MCT6
does not transport short-chain monocarboxylates or amino
acids; rather, all substrates identified to date are pharmaceu-
tical agents (Table II) (3). Murakami et al. (3) demonstrated
that bumetanide uptake is mediated by MCT6 in a pH- and
membrane potential-, but not proton-dependent manner
suggesting that it may be net charge dependent. Furthermore,
uptake of bumetanide was inhibited by probenecid and
several thiazides, but not inhibited by lactate or succinic acid
(3). This suggests that a carboxylic moiety is not essential for
MCT6 affinity, as was anticipated based on results obtained
with other MCT isoforms (3). MCT6 mRNA expression has
been demonstrated along the entire length of the human
intestine with the highest expression levels observed in the
stomach (66,67). This expression pattern suggests that MCT6
may play an important role in the intestinal absorption of
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xenobiotics. Further studies are required to determine the
physiological role of MCT6 as well as its role in drug
disposition.

MCT8 and MCT10

MCT8 was identified during studies on X-chromosome
inactivation, and was previously known as X-linked PEST-
containing transporter due to the presence of a PEST domain
in the N-terminus of the protein (2,68). The gene encoding
human MCT8 (hSLC16A2) contains two translation start
sites either of which would result in a functional protein; it is
currently unknown if these sites encode different MCT8
isoforms, and whether this would alter the isoforms function
or regulation (69). Interestingly, in other species studied,
SLC16A2 contains only a single start site that corresponds to
the second site in the human gene (69). Further genomic
analyses revealed a remarkable homology (52% amino acid
sequence identity) (69) between MCT8 and the T-type amino
acid transporter-1, now known as MCT10. MCT10 contains a
PEST domain within its N-terminus, a structural feature that
is present in only MCT8 and MCT10, which is thought to
result in rapid protein degradation (69).

Both MCT8 and MCT10 demonstrate a wide tissue
distribution (Table I). The recent functional characterization
of MCT8 and MCT10 revealed that monocarboxylates,
including lactate and pyruvate, were not substrates for these
transporters (69–71). MCT8 was demonstrated to actively
transport the thyroid hormones, T3 and T4 (71,72), while
MCT10 is involved in the transport of aromatic amines (70).
The substrate specificity of MCT8 has further been confirmed
by a linkage between mutations in MCT8 and Allan–
Herndon–Dudley Syndrome which is associated with abnor-
mally high levels of circulating T3 (73). Both isoforms have
been demonstrated to transport their respective substrates in
a proton- andNa+-independent manner (70), which is in contrast
to other members of MCT family. Interestingly, MCT10-
mediated transport of aromatic amines in the kidney has been
demonstrated to occur in both directions thereby equalizing
intra- and extracellular amino acid concentrations (69).

Orphan MCTs

Seven additional members of the MCT family (MCT5,
MCT7, MCT9, AND MCT11–14) have been identified
through searches of the human genomic and EST databases
(4,66). Table I details the human tissue distribution of these
MCT isoforms as determined by Northern blot analyses
(4,66); limited data is available on the tissue-dependent
protein expression of these isoforms (17). MCT5 protein
expression has been demonstrated in the basolateral mem-
brane of human colon and ileum with the greatest expression
observed in the distal colon (19). It remains unclear whether
monocarboxylates are substrates for these transporters.
Riboflavin has been suggested as a substrate for MCT12
based on its sequence homology to Mch5p, which is
responsible for plasma membrane uptake of riboflavin in
Saccharomyces cerevisiae (74). However, functional character-
izations of the orphan MCTs have yet to be completed. Until
recently, no information was available regarding the regula-

tion of the orphan MCTs. Hirai et al. (75) demonstrated that
MCT13 was induced by PPAR-α agonists in mouse liver and
small intestine suggesting that this transporter may be
involved in nutrient uptake. Further studies are required to
elucidate the exact mechanism of induction via this pathway
and the role of PPAR-α in the overall regulation of MCT13.

ROLE OF MCTS IN DRUG DISPOSITION

Studies examining MCTs have focused primarily on their
identification and understanding their physiological role in
lactate homeostasis as well as the transport of additional
endogenous substances; however, emerging evidence sup-
ports the further investigation of the impact of MCTs on drug
disposition. For example, functional characterization of MCT6
indicated that it was involved in the transport of bumetanide,
and not endogenous monocarboxylates (3). Furthermore,
GHB has been demonstrated to be both a substrate and
inhibitor for a number of MCT isoforms (10–12,53).

MCTs are expressed in a wide range of tissues, including
the liver, kidney, intestine and brain (4). This localization has
the potential to impact a number of processes contributing to
the overall pharmacokinetics and distribution of therapeutic
agents. Specifically, inhibition of renal reabsorption via MCTs
results in increased renal clearance and decreased drug
exposure. In addition, inhibition of MCT-mediated intestinal
absorption may substantially decrease drug bioavailability.
These alterations have the potential to adversely affect
patient exposure and subsequent therapeutic outcomes. Few
studies have been conducted assessing the contribution of
MCT isoforms to overall drug disposition and the impact of
MCT modulation on drug pharmacokinetics and disposition.
The impact of MCT function on drug pharmacokinetics has
been most extensively characterized for GHB (5,76). The aim
of this section is to summarize work assessing the impact of
MCTs on drug disposition specifically focusing on the role of
MCTs in the renal clearance of GHB. Current studies on the
impact of MCTs on the disposition of additional drugs will
also be summarized.

GHB

GHB is a naturally occurring short-chain fatty acid
formed from γ-aminobutyric acid (GABA) that is found in
the mammalian brain, heart, liver and kidney (77). It acts
potentially as a neuromodulator through binding to the
GABA(B) receptor (78). In addition, GHB is formed from
the precursors γ-butyrolactone and 1,4-butanediol (79).
Therapeutically, GHB is approved in the US to treat
narcolepsy (marketed as Xyrem®) (80) and in Europe for
the treatment of alcohol withdrawal (81). However, abuse of
GHB is widespread; it is used by body builders for its growth
hormone releasing properties (82), by drug abusers as a
recreational drug for its euphoric effects (83), and in drug-
facilitated sexual assault due to its sedative/hypnotic effects
(84). The increased abuse of GHB has lead to a rise in
associated overdoses and fatalities (82). Adverse events
associated with GHB overdose are principally characterized
by central nervous system and respiratory depression as well
as cardiovascular and gastrointestinal effects with symptoms
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including seizures, dizziness, nausea, vomiting and uncon-
sciousness potentially leading to coma and death. (82)
Currently, the treatment of GHB overdose is limited to
supportive care; physostigmine and naloxone have been tried
as antidotes with minimal success (79).

GHB pharmacokinetics have been demonstrated to be
nonlinear in humans (85–88) and rats (89,90), with total
clearance decreasing as a function of increasing dose. Several
mechanisms contribute to the observed nonlinear pharmaco-
kinetics including capacity-limited metabolism (85,87,89,90),
saturable absorption (91), and nonlinear renal clearance (6).
While metabolic clearance represents the predominant elim-
ination pathway for GHB (77), renal clearance becomes
increasingly important in overdose situations with high
urinary concentrations reported in humans (92,93). In con-
trast to the observed changes in total clearance with
increasing dose, renal clearance increases in a dose-depen-
dent manner in rats (6). Furthermore, the fraction of GHB
excreted in urine increases tenfold (3% to 30%) over the
dose range of 108–208 mg/h per kilogram (6). These dose-
dependent increases suggest the involvement of active renal
reabsorption which is saturated at high concentrations.

In vitro studies have characterized the renal transport
mechanisms of GHB and elucidated the MCT isoforms
contributing to GHB reuptake. Studies were conducted in
rat kidney membrane vesicles, a human kidney cell line (HK-
2 cells) and rat MCT1 transfected MDA-MB231 cells. Studies
conducted in rat brush border (BBM) and basolateral (BLM)
membrane vesicles isolated from rat kidney cortex character-
ized the renal transport mechanism (12). GHB and L-lactate
both undergo pH- and sodium-dependent uptake in BBM
vesicles and pH-dependent uptake in BLM vesicles, suggest-
ing the involvements of proton-dependent and sodium-
dependent MCTs (12). MCT1 is expressed at both mem-
branes, although there is greater expression at the BLM;
MCT2 is expressed only at the BLM (12). HK-2 cells express
MCT1, MCT2 and MCT4 at both the mRNA and protein
level, which agrees with expression patterns in the human
kidney cortex (62). GHB uptake in HK-2 cells was driven by
a pH-gradient, and was inhibited by CHC suggesting that
MCTs, but not SMCTs, were responsible for its uptake in HK-
2 cells (11). Similar uptake parameters and similar inhibitory
effects were observed for GHB and lactate suggesting
transport by the same or similar transporters (11). Addition-
ally, GHB uptake was inhibited by pCMB indicating that
MCT2 may not be an important transporter in GHB uptake
(11). Silencing RNA for MCT1, 2 and 4 in HK-2 cell studies
suggested that GHB is predominantly transported by MCT1
(10,11), among the proton-dependent MCTs. Further studies,
conducted in MDA-MB231 cells (endogenous expression of
MCT2 and MCT4) and MDA-MB231 cells transfected with
rat MCT1, provided further evidence regarding the specific
MCT isoforms involved in GHB renal uptake (10,12). GHB
was found to be a substrate for MCT1, 2 and 4 (10,11).
However, based on the expression patterns of MCTs in the
kidney, MCT1 is likely the primary isoform responsible for
GHB renal uptake.

To further explore the influence of MCT1 on GHB renal
reabsorption, studies were conducted to assess the modula-
tion of MCT1-mediated GHB transport through the evalua-
tion of potential inhibitors. Uptake of GHB in MDA-MB231

cells was inhibited by the classic MCT inhibitors CHC,
phloretin and pCMB with uptake being approximately 60%
of control cells (10). In rat MCT1-transfected MDA-MB231
cells, GHB uptake was inhibited by phloretin, CHC and D-
lactate (12). GHB uptake was also inhibited to a large extent
by L-lactate in rat BBM and BLM vesicles (12). As the
inhibition of MCTs results in altered GHB uptake in kidney
cells, further studies investigated potential strategies for
increasing the renal elimination of GHB by administrating
the MCT substrates L-lactate and pyruvate (6). The adminis-
tration of L-lactate resulted in an approximately twofold
increase in renal clearance (63 to 118 ml/h per kilogram) with
a concomitant increase in total clearance and decrease in
steady-state plasma concentrations (6). These results suggest
that administration of MCT inhibitors presents a possible
clinical strategy for increasing GHB elimination in overdose
cases. Furthermore, administration of L-lactate was well
tolerated and with no or minimal changes in blood electro-
lytes indicating a lack of toxicity (unpublished data). Addi-
tional in vitro and in vivo studies were conducted to evaluate
novel MCT inhibitors and their potential to increase GHB
renal clearance and overall pharmacokinetics. Quercetin, a
naturally occurring flavonoid, has been demonstrated to
inhibit MCT1 and MCT2-mediated L-lactate uptake (58),
therefore, we assessed the inhibitory potential of a range of
flavonoid compounds. All flavonoid aglycones that were
evaluated inhibited GHB uptake in MCT1-transfected cells,
with luteolin, morin, and phloretin resulting in the greatest
reduction in GHB uptake (IC50 values of 0.41, 6.21 and
2.57 μM, respectively) (94). In contrast, the flavonoid glyco-
sides had minimal effects on GHB uptake (94). The high
potency of luteolin for inhibiting GHB uptake suggested that
this compound may be effective at increasing the renal
clearance of GHB. Co-administration with luteolin (10 mg/
kg) significantly altered the pharmacokinetic profile of GHB
(1 g/kg) in rats; renal clearance of GHB increased more than
threefold (1.36 to 4.28 ml/min per kilogram) with a concom-
itant decrease in the pharmacodynamic effect, return of
righting reflex (94). These data suggest that flavonoids such
as luteolin are potent MCT inhibitors both in vitro and in
vivo.

Additional studies have demonstrated that GHB trans-
port occurs via a carrier-mediated processes in the intestine
(91), brain (95), and at the blood–brain barrier (5). MCT
expression has been demonstrated along the length of the
intestine with MCT1 being the predominant isoform (19).
Protein expression of MCT1, MCT2 and MCT4 has been
demonstrated in human intestinal Caco-2 cells (unpublished
data). Transport studies conducted in Caco-2 cells showed
that GHB and D-lactate uptake occurred in a pH- and
proton-dependent manner and similar uptake parameters
were observed for GHB and D-lactate which could be
inhibited by MCT substrates and inhibitors (unpublished
data). These results suggest that GHB’s absorption is
mediated, at least in part, by MCTs in the human intestine.
In situ brain perfusion experiments conducted in rats
demonstrated saturable uptake of GHB into various brain
regions (5). Furthermore, GHB uptake was inhibited by
known MCT inhibitors including lactate and pyruvate,
suggesting that GHB is a substrate for MCTs expressed at
the blood–brain barrier (5).
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Influence of MCTs on the Disposition of Other Drugs

While GHB represents the best studied drug substrate of
MCTs, a number of other drugs have been demonstrated to be
MCT substrates or inhibitors in various in vitro systems.
Interestingly, the recent characterization of MCT6 showed that
this isoform was involved in the transport of diuretics, such as
bumetanide, and did not transport monocarboxylates (3).

Investigations into MCT drug substrates have typically
been conducted in tissue specific cell lines and membrane
vesicles, including Caco-2 cells, NBL-2 cells, and MDCK cells
as well as in vivo. Caco-2 cells and intestinal membrane
vesicles represent effective models to assess transporter-
mediated intestinal absorption. Caco-2 cells have been
demonstrated to express MCT1, 2 and 4 protein (unpublished
data from our lab) with MCT1 expression being the
predominant form consistent with expression in the human
intestine (19). MCT1 is expressed on brush border (apical)
membrane of intestinal cells and thereby facilitates the
intestinal cell uptake of its substrates. In these systems, MCTs
have been demonstrated to transport the β-lactam antibiotics
cefdinir (96) and carindacillin (97,98), salicylic acid (99),
pravastatin (100) and atorvastatin (101). Furthermore, the
role of MCT1 in the intestinal uptake of the β-lactam
antibiotic prodrug, carindacillin, has been confirmed in rat
intestinal brush border membrane vesicles. It is thought that
the MCT-mediated uptake of carindacillin contributes to the
improved exposure to carbenicillin (97). This concept has also
been employed in the design of a gabapentin prodrug,
XP13512, which was designed to be a substrate for MCT1,
specifically to overcome the poor intestinal absorption of
gabapentin. Uptake of XP13512 was demonstrated to be
MCT1-mediated in Caco-2, HEK-derived and MDCK cell
monolayers (38). In vivo studies on XP13512 demonstrated
increased oral absorption and bioavailability in rats and
monkeys when compared to gabapentin suggesting that
exploitation of MCT-mediated uptake may provide a novel
strategy for improving intestinal drug absorption (39).

MCT-mediated uptake of drugs, including statins, pro-
benecid and GHB, has also been demonstrated at the blood-
brain barrier. Tsuji et al. (1993) (102) demonstrated that the
uptake of simvastatin acid in bovine brain capillary endothe-
lial cells occurred via a pH-dependent carrier-mediated
process. Furthermore, the authors showed that pravastatin
had a lower affinity for the same transport process and in
addition was able to inhibit the uptake of simvastatin acid
(102). Statins were recently identified to be inhibitors of
MCT4 with the lipophilic statins (fluvastatin, atorvastatin,
lovastatin acid, simvastatin acid and cerivastatin) demonstrat-
ing the greatest inhibitory potency (65). Further studies need
to be conducted to determine the influence of brain MCT
expression on the overall disposition of MCT substrates and
the potential therapeutic implications.

CONCLUSIONS

MCTs represent an important family of transport pro-
teins involved in the transport of endogenous and exogenous
compounds. Tissue localization of MCT expression suggests
the potential for a large impact on the oral absorption, brain
uptake and renal clearance of MCT substrates. The inhibition

of the transport of GHB by MCT1 provides a novel strategy
for GHB detoxification through increasing renal and total
clearance. Further investigations are required to more clearly
understand the role of MCTs in drug disposition for a wider
range of drug substrates.
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