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Abstract. A popular approach for improving transdermal drug delivery involves the use of penetration
enhancers (sorption promoters or accelerants) which penetrate into skin to reversibly reduce the barrier
resistance. The potential mechanisms of action of penetration enhancers include disruption of
intercellular lipid and/or keratin domains and tight junctions. This results in enhanced drug partitioning
into tissue, altered thermodynamic activity/solubility of drug etc. Synthetic chemicals (solvents, azones,
pyrrolidones, surfactants etc.) generally used for this purpose are rapidly losing their value in transdermal
patches due to reports of their absorption into the systemic circulation and subsequent possible toxic
effect upon long term application. Terpenes are included in the list of Generally Recognized As Safe
(GRAS) substances and have low irritancy potential. Their mechanism of percutaneous permeation
enhancement involves increasing the solubility of drugs in skin lipids, disruption of lipid/protein
organization and/or extraction of skin micro constituents that are responsible for maintenance of barrier
status. Hence, they appear to offer great promise for use in transdermal formulations. This article is
aimed at reviewing the mechanisms responsible for percutaneous permeation enhancement activity of
terpenes, which shall foster their rational use in transdermal formulations.
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INTRODUCTION

The skin acts as a barrier for diffusion of substances into
the body. The main barrier for most substances is located in
upper layer of skin, the stratum corneum (SC). The SC
consists of keratin enriched dead cells, surrounded by
crystalline intercellular lipid domains. These domains are
continuous structures in the SC and are required for
competent skin barrier function (1). To achieve and to
maintain effective therapeutic plasma drug concentrations,
the barrier properties of skin sometimes have to be overcome
to enable successful delivery. Both physical approaches
(stratum corneum stripping, stratum corneum hydration,
electrically assisted transdermal drug delivery) and chemical
approaches (synthesis of lipophilic analogue, delipidization of
SC, coadministration of penetration enhancers) have been
investigated for accomplishing this goal. Extensive research
during the past two decades has revealed considerable
information on several classes of penetration enhancers,
including surfactants (e.g. tween; 2), fatty acids/esters (e.g.
oleic acid; 3), solvents (e.g. dimethylsulfoxide, ethanol; 4) and
terpenes (e.g. limonene; 5). Despite their fairly satisfactory
performance in enhancing the permeation of drug molecule
across the skin, chemical enhancers are viewed with suspicion

in transdermal formulations due to their irritancy potential
when employed at concentrations necessary for achieving
useful levels of penetration enhancement (6).

Efforts have been directed at identifying safe and
effective enhancers from both natural products and synthetic
chemicals. In particular, terpenes from natural sources and
laboratory designed terpenoids have attracted great interest
(7–9). Terpenes are generally considered to be less toxic with
low irritancy potential compared to surfactants and other
synthetic skin penetration enhancers. Further, quite a few
terpenes are included in the list of Generally Recognized As
Safe (GRAS) agents issued by US FDA (9,10).

Terpenes can increase skin permeation by one or more
of the mechanisms (Table I): interacting with SC lipids and/or
keratin, and increasing the solubility of drug into SC lipids
(9). However, the interaction of terpenes with SC in presence
of various solvents may not be similar due to differences in
the physico-chemical properties of these solvents and their
interactions with SC. These interactions can be determined by
instrumental methods, such as, differential scanning calorim-
etry (DSC) and Fourier transform infrared spectroscopy
(FTIR). Table II summarizes the effect of several terpenes
on thermotropic behaviour of skin. DSC thermograms of skin
treated with permeation enhancers can be evaluated by
comparing the endotherms and exotherms for mean transi-
tion temperature (Tm), cooperativity and their enthalpies
(ΔH). Shifting of Tm of both lipid transitions T2 and T3 to
lower temperature is generally ascribed to the disruption of
lipid bilayer while the reduction in ΔH is associated with
fluidization of lipid bilayers of SC (28,29). Table III summa-
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rizes the effects of several terpenes on the FTIR spectrum of
skin. FTIR analysis provides information about the molecular
and conformational changes in SC lipids and proteins. The
asymmetric and symmetric C–H vibrations obtained at 2,920
and 2,850 cm−1, respectively, have been ascribed to
hydrocarbon lipid chains of SC. The height and area of
these two peaks have been found to be proportional to the
amount of lipids present in SC (32). The C=O stretching
vibration of lipid polar head groups produce a band near
1,740 cm−1. In addition, strong amide and water absorbance
bands are found in region of 1,500–1,700 and 3,000–
3,600 cm−1, respectively. The bands at 1,650 and 1,550 cm−1

have been suggested to arise from amide I and amide II
stretching vibrations, respectively, of the SC proteins. The
frequencies of these two bands, especially amide I band, are
sensitive and shift to higher or lower frequencies according to
the change in protein conformation (33). Therefore, both
methods provide independent but complementary data about
the interaction of terpenes with SC in the presence of
different solvents.

These techniques can further be complemented with
microscopic studies in order to assess the effect of terpenes on
various domains of skin. Further, application of quantitative
correlation between permeation effects and physicochemical
descriptors of terpenes by QSAR models can provide insights
into the possible mechanisms responsible for skin permeation
enhancement activity.

In view of the renewed interest in herbal components,
this article is aimed at reviewing the use of terpenes as drug
penetration enhancers in transdermal drug delivery and to
discuss the possible mechanisms for this activity.

TERPENES AND TERPENOIDS

Terpenes and terpenoids are usually the constituents of
volatile oil. Several natural sources and their major terpene
content are summarized in Table IV. The basic chemical
structure consists of a number of repeated isoprene (C5H8)
units, which is used to classify terpenes. Thus, monoterpenes
have two isoprene units (C10), sesquiterpenes have three
(C15), and diterpenes have four (C20), etc. Terpenes may also
be classified as acyclic/linear, monocyclic and bicyclic.

Numerous terpenes have been used as antispasmodics,
carminatives, flavoring agents, perfumes etc. For example,
menthol is traditionally used in inhalation pharmaceuticals
and has a mild antipruritic effect when incorporated into
emollient preparations. However, the potential of terpenes as
percutaneous absorption enhancer was suggested (5). Several
cyclic terpenes like cineole, d-limonene, and α-pinene have
been intensively investigated as penetration enhancers.

d-Limonene

Okabe et al. reported the effect of ethanolic solution of
d-limonene on percutaneous absorption of indomethacin and
ketoprofen. Limonene was found to be essential for increas-
ing the penetration of poorly permeable drugs. However,
enhanced permeability of drugs cannot be easily maintained
due to difficulty in sustaining high activity of enhancers
during the applied period (36,37). In order to maintain theC
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activity of the enhancer, Okabe et al. (5) employed a rate
limiting membrane to control the permeation of ethanol used
along with d-limonene. The cooperative effect of ethanol and
d-limonene was reported to be an effective binary enhancer
system (5,37,38). The enhancement of ethanol released on
addition of d-limonene was found to be due to a change in
structure of the adhesive layer of the transdermal patch
because of its high affinity for d-limonene. The formulated
system yielded high steady state permeation of drugs for a
long period. The enhancement action was mainly attributed
to the improved diffusivity of indomethacin in skin because
the lag time for permeation was greatly shortened (5).

Ohara et al. evaluated the combined effect of d-limonene
and temperature on the skin permeation of ketoprofen across
rat skin. The apparent penetration rate (Rp) increased
sigmoidally with increase in the temperature, and at lower

temperature Rp was almost constant. A linear relationship
was observed when the skin was pretreated with 30% v/v
ethanol without d-limonene. However, Arrhenius plots of
permeability coefficient value obtained after skin pretreat-
ment with 1.5% w/v d-limonene in 30% v/v ethanol exhibited
a convex curvature, suggesting that skin structure was altered
with increase in temperature (39).

Krishnaiah et al. evaluated a limonene-based transder-
mal therapeutic system for its ability to provide the desired
steady state plasma concentration of nicorandil in human
volunteers. The flux of nicorandil from the limonene-based
hydroxy propyl methyl cellulose drug reservoir across EVA
2825 (Ethylene vinyl acetate coated with 28% copolymers)
membrane decreased to 216±10 μg/cm2/h as compared to
control (371±4 μg/cm2/h) indicating that EVA 2825
effectively functioned as a rate controlling membrane. The

Table II. Influence of Terpene Treatment on Thermotropic Attributes of Drugs

Terpene Vehicle Drug Tm (°C)

Thermotropic Attributes

Proposed Mechanism Ref.

T2 T3 T4

% ΔH (J/g) Tm (°C) % ΔH (J/g) Tm (°C)

d-limonene Neat liquid 5-FU −23 NS −16 NS Increased Lipid disruption (11)
PG/W (20:80) 5-FU −22 −13 Freezing point

depression
(12)

PG/W (50:50) 5-FU −23 −15 Freezing point
depression

(12)

PG/W (80:20) 5-FU −24 −15 Freezing point
depression

(12)

1,8-cineole Neat liquid 5-FU −23 50 −16 50 Increased Lipid disruption (11)
PG/W (20:80) 5-FU −24 18 −18 NS NS Lipid disruption (12)
PG/W (50:50) 5-FU −24 37 −17 NS NS Lipid disruption (12)
PG/W (80:20) 5-FU −28 60 −17 22 NS Lipid disruption (12)

Nerolidol Neat liquid 5-FU −4.2 Increased −4 Increased Absent Lipid disruption (11)
PG/W (20:80) 5-FU −3 6 −4 NS NS Lipid disruption (11)
PG/W (50:50) 5-FU −4 15 −4 NS NS Lipid disruption (12)
PG/W (80:20) 5-FU −6 30 −8 NS NS Lipid disruption (12)

Menthone Neat liquid 5-FU −19.4 Increased −10 Increased Absent Lipid disruption (11)
PG/W (20:80) 5-FU −15 8 −14 NS NS Lipid disruption (11)
PG/W (50:50) 5-FU −15 17 −15 NS NS Lipid disruption (12)
PG/W (80:20) 5-FU −16 42 −15 NS NS Lipid disruption (12)

Menthol EtOHl (70% v/v) Nicardipine HCl NS Decreased Absent Absent Absent Lipid extraction (21)
Carvone EtOH (70% v/v) Nicardipine HCl NS Decreased Absent Absent Absent Lipid extraction (21)
Carvacrol EtOH (50% v/v) Haloperidol −16 Increased −12 Decreased +20 Lipid disruption

and extraction
(26)

PG −5 NS −7 Decreased Absent Lipid disruption
and extraction

(27)

Linalool EtOH (50% v/v) Haloperidol −32 Decreased −15 Decreased −5 Lipid disruption
and extraction

(26)

PG −5 NS −3.5 Decreased Absent Lipid disruption
and extraction

(27)

α-terpeniol EtOH (50% v/v) Haloperidol −32 Decreased −23 NS −12 Lipid disruption
and extraction

(26)

PG −5 NS −3.5 Decreased +10 Lipid disruption
and extraction

(27)

Limonene oxide EtOH (50% v/v) Haloperidol Coalescence Coalescence Absent Lipid disruption
and extraction

(17)

PG −2 NS −3 Absent Lipid disruption (17)
Pinene oxide EtOH (50% v/v) Haloperidol −26 Decreased −24 NS Absent Lipid disruption

and extraction
(17)

PG −5.5 Decreased −6 Decreased Absent Lipid fluidization (17)

NS Not significant, 5-FU 5-fluorouracil, PG propylene glycol, EtOH Ethanol, w water
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limonene-based drug reservoir was sandwiched between an
adhesive coated EVA 2825-release liner composite and a
backing membrane, and was heat-sealed to form a circular
patch (20 cm2). This patch yielded a steady state plasma
concentration of 21.3 ng/ml through 24 h in healthy human
volunteers (40). Hydrocarbon limonene was found to be
more effective as penetration enhancer as compared to
oxygenated linalool and cineole because it produced 26.5-
fold greater permeation than control. Incorporation of
limonene into an organogel-containing transdermal patch
was observed to successfully deliver haloperidol at a
sustained rate (14).

Limonene was reported to enhance the permeation of
nicardipine HCl (hydrophilic) and hydrocortisone (polar
steroid) significantly higher as compared to fenchone and
thymol. These findings conflicted with the results observed by
other researchers. It has been recognized that hydrophilic
terpenes capable of hydrogen bonding (such as fenchone and
thymol) actively promoted the permeation of hydrophilic
drugs, whereas, hydrocarbon terpenes (e.g. limonene) pro-
vided higher permeation for lipophilic drugs (41,42). It was
revealed that the lipophilicity of the permeant, as well as the
enhancer molecule played an important role in determining
the penetration promoting activity (13,41,43–50).

Cineole

The effects of propylene glycol (PG)/water co-solvent
systems and terpene penetration enhancers [1,8-cineole,
menthone, nerolidol and (+)-limonene] on the absorption
rate of 5-FU (a hydrophilic permeant) were investigated
using excised human skin. Co-application of each terpene in
PG co-solvent system significantly enhanced the permeation
of 5-FU. The penetration-enhancement activity of terpene
depended on the propylene glycol content in the vehicle.
Maximum permeation of 5-FU was obtained from formula-
tions containing terpenes dispersed in 80% PG, which when
normalized to the flux obtained using respective PG-water
mixture yielded enhancement ratios ranging from 24 to 4-
fold, respectively, for 1,8-cineole and (+)-limonene. The data
obtained from DSC analysis was analyzed to calculate the
entropy change in skin lipids after treatment with different
terpenes. The treatment with 1,8-cineole, menthone and
nerolidol was found to produce less change in the entropy
(as compared to control) of skin lipids than the treatment
with (+)-limonene. This indicated fluidization or reduction in
lipid order at normal skin temperature. However, the
observed higher entropy change of skin lipids after treatment
with (+)-limonene than the control was suggested to be
predominantly indicative of freezing point depression effect.
Therefore, the mild effect of freezing point depression of skin
lipids after treatment with (+)-limonene was able to enhance
the permeation of 5-FU only by 4-fold as compared to 24-fold
enhancement produced by 1,8-cineole (12).

The addition of cineole (3% w/v) to ethanol (47% v/v)
increased the penetration of thyrotropin releasing hormone
(TRH) across human epidermis to 0.92±0.03 μg/cm2/h from
0.27±0.01 μg/cm2/h. Although, carveol (3% w/v) and
menthone (3% w/v) in combination with ethanol (47% v/v)
increased the permeation of TRH to 1.07±0.02 μg/cm2/h and
1.05±0.03 μg/cm2/h, respectively, cineole showed most rapid

attainment of steady state flux. It was interesting to note that
neither ethanol alone nor the combination of any of the
terpene and ethanol had any significant effect on the flux of
TRH during a 2–4 h period. This suggested that the initial
binding and saturation of the epidermal membrane by TRH
was not affected by these materials (18).

Various oxygen-containing monoterpenes enhanced the
transdermal flux of zidovudine in the following order: cineole
> menthol > menthone ~ pulgeone ~ α-terpeniol > carvone.
SC or vehicle partition-coefficient of zidovudine was not
altered significantly (p>0.05) but the lag time required for
zidovudine permeation was significantly reduced by all these
terpenes. No significant difference in flux between vehicles,
1% or 2.5% w/v cineole was observed. As concentration of
cineole was further increased to 5% and 10% w/v in vehicle,
the flux was significantly enhanced by 56-fold and 65-fold,
respectively. The observed difference in permeation enhance-
ment activity was attributed to different thermodynamic
activity of terpenes in the vehicle (19). In another investiga-
tion, 1,8-cineole was found to increase the flux of zidovudine
18-fold but lag time also increased from 4.9 to 8.5 h (20).
Recent studies conducted by Heard revealed that enhance-
ment of mefenamic acid using 1,8-cineole was due to “drag”
or “pull” effect (51). However, another study suggested
intercalation of cineole into lipids and proteins by forming
hydrogen bonds thus, altering the organization of SC (52).

Carvone

The permeation of nicardipineHClwas observed to increase
markedly by incorporating carvone in hydroxypropylcellulose gel
and a maximum flux of 244±2 μg/cm2/h was observed with an
enhancement ratio of 7.9 when 12% w/w carvone was used as
enhancer. The enhancement was attributed to partial lipid
extraction of the SC (23). The transdermal permeation of
nimodipine across rat abdominal skin was found to increase
from 1.67±0.03 mg/cm2/24 h to 3.68±0.06 mg/cm2/24 h when
carvone (2% to 12% w/w) was used with HPMC gel. However,
no significant difference in the permeability coefficient of
nimodipine was observed by incorporating 12% w/w carvone
(10.9±0.08) as compared to that obtained with 10% w/w of
carvone (10.73±0.5 cm/h×103; 24).

Menthol

Menthol, a monocyclic monoterpene free from signifi-
cant toxic effects, has been approved as a penetration
enhancer in the transdermal delivery of several drugs (53–
55). Kabayashi et al. evaluated the combined effects of 1-
menthol and ethanol as skin permeation enhancer, and
derived two equations describing the permeability coefficient
through full-thickness skin (PFT) and the full-thickness skin/
vehicle concentration ratio (CFT/CV) of drugs as a function of
their octanol/vehicle partition coefficient (KOV). A two-layer
model was applied for skin. A nonlinear least-squares method
was employed to determine six coefficients (three diffusion
coefficients, the porosity of the SC, and two terms of the
linear free energy relationship) using the two equations and
experimentally obtained PFT and CFT/CV values. Addition of
l-menthol to water or ethanol (40%) improved the diffusion
coefficient of morphine hydrochloride, atenolol, nifedipine
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and vinpocetine in lipid and pore pathways of the SC,
whereas addition of ethanol to water and l-menthol (5%)
improved the solubility of drugs in the vehicle and increased
the contribution of the pore pathway towards whole skin
permeation (56).

The mechanism of l-menthol as an enhancer was
examined using diclofenac as a hydrophobic drug and
diclofenac sodium as a hydrophilic drug through ethanol-
treated and untreated silicone membranes. Results indicated
that l-menthol enhanced the permeation of both salts of drug
through both lipid as well as pore pathways (57).

Menthol has been shown to increase the skin absorption
of testosterone by forming a eutectic mixture, thereby
lowering its melting point drastically from 153.7°C to 39.9°
C, as reflected by DSC studies. Hence, the skin permeation
enhancement of testosterone by menthol was suggested to be
due to increase in the solubility of testosterone accompanied
with altered barrier properties of SC (53).

Hydrogel-based patches of propranolol hydrochloride
were formulated with and without (1%, 5%, 10% w/v)
menthol as an enhancer. Permeation of propranolol hydro-
chloride across hairless mouse skin was significantly higher (p
<0.05) from patches containing menthol. This observation
might be due to the preferential distribution of menthol into
the intercellular spaces of SC, which resulted in reversible
disruption of SC lipid domains (54).

In combination with 15% v/v ethanol, l-menthol (1% w/
v) increased the permeability coefficient of methyl paraben
about 16-fold, while it decreased the permeability coefficient
of butyl paraben to 20% of the control value through guinea
pig dorsal skin. A spin label study with SC showed that these
enhancers increased the lipid bilayer fluidity and led to
enhanced permeation of hydrophilic substances (55).

Krishnaiah et al. observed marked enhancement in
permeation of nicardipine hydrochloride from gel systems
containing menthol (1–12% w/w) through excised rat epider-
mis. The cumulative amounts of nicardipine hydrochloride
that permeated over 24 h increased from 1.74±0.13 to 5.03±
0.03 mg/cm2/24 h from the hydroxypropyl cellulose gels
containing menthol. However, a lag period of 2–3 h in the
permeation of the drug was observed. The flux remained
constant whenmenthol was employed at 2%w/w concentration.
However, when concentrations greater than 5% w/w were
used, there was a rapid increase in flux (21). In addition, the
study revealed that enhancement remained unaltered from
the gel containing more than 8% w/w of menthol. There was
a statistically insignificant (p>0.05) decrease in enhancement
of drug permeation with 10 or 12% w/w of menthol. Menthol
is reported to increase both the moisture uptake capacity as
well as release rate of propranolol hydrochloride from
polymeric films (21). Further l-menthol (5% w/v) was found
to significantly (p<0.05) enhance the pseudo steady state flux
of zidovudine across human cadaver skin with an
enhancement factor of 53. However, the lag time was
observed to increase. Partitioning of l-menthol into skin was
found to be poor thereby indicating that it might have lipid
fluidizing activity on SC lipids (20). Chang et al. evaluated a
series of terpenes as enhancers for meloxicam gel. Maximum
flux was obtained when menthol was used as permeation
enhancer and its enhancing activity was attributed to its
hydrogen bonding ability (58). However, the study conducted
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by Anjos and coworkers revealed that l-menthol stabilized
mainly in the central region of stratum corneum membranes,
which interacted with the membrane lipids and resulted in
disruption of hydrogen bonds in the polar membrane
interface (59). The combination of menthol and
iontophoresis was suggested to enhance the in vitro
permeation of methotrexate due to alteration of lipid-
protein domains of mice skin (60).

Few studies aimed at synthesizing o-alkyl and o-
acylmenthol derivatives for increasing the permeation of
drugs through skin. Among the synthesized compounds o-
ethylmenthol (MET) showed greatest drug penetration
activity and caused relatively little skin irritation (61). The
flux of ketoprofen was markedly increased by using small
amount of MET. It was concluded that MET increased
retention of drugs in the skin surface (62). Obata et al. (63)
evaluated MET for their structural activity relationships
employing an artificial neural network. Confocal scanning

laser microscopy revealed that MET contributed to enhance-
ment by lipid perturbation, thus enhancing drug diffusivity in
skin lipids (64).

Nerolidol

The effects of fenchone, thymol, d-limonene and ner-
olidol on the percutaneous permeation of gel formulations of
nicardipine hydrochloride, hydrocortisone, carbamazepine
and tamoxifen were studied across hairless mouse skin.
Nerolidol was found to be most effective in promoting
permeation of all drugs (13). The results were in accordance
with other studies conducted for 5-FU (65) and diclofenac
sodium (66). According to Cornwell and Barry, the effective
permeation promoting activity of nerolidol was due to its
amphiphilic structure that was suitable for alignment within
the lipid lamellae and also for disruption of the highly
organized packing of SC (67). Nerolidol, at 2% w/v concen-
tration was found to produce a 2-fold and 20-fold increase in
the permeation of enoxaparin sodium (68) and 5-FU (65),
respectively. An unsaturated sesquiterpene, α-bisabolol was
reported to enhance permeation of 5-FU and triamcinolone
acetonide by 17- and 73-fold across excised human skin due
to lipid fluidization of SC (69).

QUANTITATIVE STRUCTURAL ACTIVITY
RELATIONSHIP (QSAR)

QSAR has been explored for relating the skin perme-
ation of compounds to their physicochemical properties (70).
In 1990, Flynn compiled skin permeability coefficients across
human skin from different literature sources and identified
Log P as the most important factor for determining the

Table IV. Major Components of Terpenes From Natural Sources

Source Botanical Name Main Terpene Component Ref.

Angelica root Angelica archngelica β-Phellandrene, α-phellandrene, α-pinene (34)
Anisi stellati fructus Illicium verum Monoterpenoid hydrocarbon (limonene, α-pinene) (34)
Apti fructus Apium graveolens Limonene (34)
Basilici herba Osimum basilicum Linalool eugenol, scimene, cineole (34)
Cajuput Melaleuca leucadendron 1,8-cineole, α-terpineol, d-limonene (35)
Cardamom Elettaria cardamomum 1,8-Cineole, α-terpineol, α-terpinyl acetate (35)
Carvi fructus Carum carvi (S)-(+)-Carvone, ®-(+)-limonene, α-pinene,

cpinene, dihydrocarvone, dihydrocaveol
(34)

Caryophylli flos Eugenia caryophyllus,
Caryophyllus aromaticus

Eugenol, eugenol acetate, α-pinene,
β-caryophyllene and its oxide

(34)

Coriandri fructus Coriandrum sativum D-(+)-linalool, monoterpene hydrocarbons
(α-pinene, d-limonene, γ-terpinene, ρ-cymene

(34)

Eucaluptus folium Eucalyptus globulus 1,8-Cineole, eucalyptol, moderate amounts of monoterpenes
(ρ-cymene, α-pinene

(34)

Foeniculi fructus Foeniculum vulgare Trans-anethol, some terpenoid hydrocarbons (α-pinene,
α-phellandrene

(34)

Juniperi fructus Juniperus communis α-Pinene, β-pinene, limonene, terpinen-4-ol, α-terpineol,
borneol, geraniol

(34)

Melissa Melissa officinalis Geranial, neral (35)
Melissae folium Melissa officinalis Monoterpenes (citronellal, citral A, citral B),sesquiterpene

(β-caryophyllene, germacrene D)
(34)

Myrtle Myrtus communis 1,8-Cineole, α-pinene, myrtenyl acetate (35)
Niaouli Melaleuca virdiflora 1,8-Cineole, α-pinene, α-terpineol, d-limonene (35)
Orange Citrus aurantium d-Limonene (35)

Table V. Log p Values of Few Terpenes (85)

Terpene Log p Value Terpene Log p Value

Carveol 2.68 (S)-(−)-citronellal 3.48
(−) dihydro carveol 2.92 Carvacrol 3.28
(+)-dihydro carveol 2.92 Citral 3.17
(+)-dihydrocarvone 2.47 Menthone 2.63
(±)-linalool 3.28 Nerol 3.28
(R)-(−)-carvone 2.27 Thymol 3.28
(R)-(+)-pulgeone 2.56 β-cittronellal 3.38
Phytol retinol 8.66 β-carotene 15.51
Squalene 13.09 (±)-nerolidol 5.31
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permeability coefficients (71). The subsequent QSAR studies
raised interest in using QSAR for modeling skin permeation
(70,72–82). These QSAR models provide an insight into the
mechanism of skin penetration and guidance for predicting
permeability of new compounds.

Ghafourian et al. constructed QSAR models for 34
terpenes, 16 pyrrolidinone derivatives and seven N-acetyl-
prolinate esters with respect to several drugs (83). These
QSAR models were based on data of different sources and
skin types, including human, rats and hairless mouse skins.
However, the data needs more careful analysis when com-
bined into a single dataset as it is difficult to explain the large
variations, primarily due to inter-laboratory differences such
as skin sample types and sources, solvent systems for
enhancers and experimental protocols.

The Log p value of terpene (Table V) appears as a
predictor in many QSAR models (70,84). Kang et al.
determined permeability coefficient of different terpenes
experimentally using human skin and employed non-linear
regression model. Their results suggested that (1) liquid
terpenes tend to produce better enhancing effects than solid
terpenes; (2) triterpenes and tetraterpenes generally had poor
penetration effect than other terpenes; (3) terpenes with
larger Log p values were more effective enhancers than those
with smaller Log P as it was easier for lipophilic terpenes to
get mixed with SC intercellular lipids (for extraction or for
lipid phase transition; 19,83,85,86); (4) the liquid terpenes
could form more number of hydrogen bonds with intercellu-
lar lipids of SC (20,25,85); (5) terpenes with aldehyde and
ester functional groups were found to be better enhancers
(85). In addition, the size of a terpene also determined the
penetration ability. Smaller terpenes tended to be more active
than the larger terpenes (86). Furthermore, smaller alcoholic
terpenes with a higher degree of unsaturation appeared to be
good candidates for enhancing the permeation of hydrophilic
drugs (83). Cal and his coworkers investigated the absorption
and elimination of different terpenes from human skin layers
and observed terpinen-4-ol to accumulate in the skin to a
greater extent when compared to pinenes (α and β pinene)
and eucalyptol. This property was ascribed to the presence of
polar groups, which increased its affinity towards polar region
of SC and hydrophilic dermis. Almost negligible penetration
was observed for pinenes in spite of the same log p values
(87). Fang et al. concluded that oxygen containing terpenes
were more effective than hydrocarbon terpenes. In addition,
oxygen containing terpenes with a bicyclic structure displayed
a lesser permeation enhancing effect (88).

IN VITRO/IN VIVO CORRELATIONS

Though the ultimate goal of enhancing percutaneous
absorption relates to humans, in vivo studies are not always
possible, for various reasons. Although comparative studies
of in vitro and in vivo absorption through animal models or
human skin are limited, the existing data strongly support the
relevance of in vitro data.

The investigations of Karali et al. revealed azidothymi-
dine to be delivered systemically from transdermal gel for-
mulation containing carvone at rate of 0.9 mg/cm2/24 h in rats.
In order to achieve the minimum effective concentration of

azidothymidine in humans (0.27 μg/ml), a delivery rate of
1 mg/cm2/h from transdermal patch of 25 cm2 in size was
needed. Therefore, these studies demonstrated the inability
of carvacrol to achieve the required delivery rate of
azidothymidine in humans (22). Another investigation,
however, demonstrated in vitro flux ranging from 1.03 to
1.79 mg/cm2/h across rat skin by using hydro alcoholic
solutions of various terpenes as permeation enhancers. The
magnitude of permeation rates documented in this study
show a great promise of terpenes in achieving the required
systemic delivery rate of azidothymidine in humans (19).

In vitro permeation studies of nicorandil across rat
abdominal skin from transdermal formulations containing
carvone or limonene revealed, respectively, 1.6-fold and 1.7-
fold greater permeation than that required for achieving their
systemically effective concentration in rats. However, the
observed enhancement (1.6-fold) of permeation of nicorandil
across rat skin did not seem capable of providing effective
plasma concentration in humans due to the higher resistance
of human SC, which is three times less permeable than rat
skin (40,89). Nevertheless, using carvone as enhancer and
adhesive-coated EVA 2825 membrane, the average steady
state of 20.5 ng/ml in humans was maintained through 24 h
(89). The lag time was observed to reduce to 2.8 h and a
steady state plasma concentration of nicorandil was main-
tained at 21.3 ng/ml through 24 h when limonene was
employed as enhancer and adhesive-coated EVA 2825 as
rate controlling membrane (40).

The suitability of adhesive-coated EVA 2825 membrane
using limonene (90) or menthol (91) as enhancers for
nicardipine hydrochloride was tested by employing excised
rat skin. Limonene or menthol enhanced the in vitro
permeation of nicardipine hydrochloride, respectively, by
2.08-fold and 1.8-fold. The systemic delivery of nicardipine
hydrochloride in humans was maintained by limonene or
menthol, respectively, at 32.1 or 21.2 ng/ml. Limonene
maintained the plasma steady state concentration over 20 h,
while menthol maintained it over 26 h. Although, these
patches were not evaluated for their effectiveness from
pharmacodynamic view point, their ability to maintain
constant drug level in plasma of human volunteers suggested
sustained systemic drug delivery (90,91).

TERPENES AND THEIR DISPOSITION

Despite the ubiquitous occurrence and importance of
terpenes in food, little is known about their metabolic fate.
After ingestion, terpenes are well absorbed and metabolized
via hydroxylation or epoxidation by microsomal monooxi-
dases. The primary metabolites are further transformed into
more polar compounds and are excreted via urine. Most of
the data available pertains to rat (92–95) or rabbits (96,97)
which were fed with terpene rich diets. However, it is not
certain that these dispositional characteristics can be extrap-
olated to humans, particular in view of the relatively large
doses administered to animals. Terpene concentration might
affect the type of metabolite formed (98,99).

Studies on metabolism of monoterpenes, carvone and
pulgeon in humans using MICA (Metabolism of Ingestion
Correlated Amounts) approach have been carried out.
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Metabolites formed were identified as α,4-dimethyl-5-oxo-
3-cyclohexene-1-acetic acid (dihydrocarvonic acid),
α-methylene-4-methyl-5-oxo-3-cyclohexene-1-acetic acid
(carvonic acid), and 5-(1,2-dihydroxy-1-methylethyl)-2-
methyl-2-cyclohexen-1-one (uroterpenolone) on the basis
of mass spectral analysis in combination with synthesis
and NMR experiments of the acidic fraction. Minor
metabolites were identified as reduction products of
carvone, namely, the alcohols carveol and dihydrocarveol.
The previously identified major in vivo metabolite in
rabbits, 10-hydroxycarvone (97), could not be detected,
indicating either concentration dependent effect or interspe-
cies differences. No differences in metabolism between S-(+)-
and R-(−)-carvone were detected (100).

There have been several studies of (R)-(+)- and (S)-(−)-
pulegone metabolism in rats (99–103), ex vivo experiments
with rat liver microsomes (104–107) and human cytochrome
P450 enzymes (108). Engel identified 2-(2-hydroxy-1-
methylethyl)-5-methylcyclohexanone (8-hydroxymenthone),
3-hydroxy-3-methyl-6-(1-methylethyl)cyclohexanone (1-
hydroxymenthone), 3-methyl-6-(1- ethylethyl)cyclohexanol
(menthol), and E-2-(2-hydroxy- 1-methylethylidene)-5-
methylcyclohexanone (10-hydroxypulegone) as the four
major metabolites of pulegone. 10-hydroxypulegone was
identified as a minor metabolite of (S)-(−)-pulegone. How-
ever, it was one of the major metabolites of (R)-(+)-pulegone.
In addition, 3-methyl-6-(1-methylethyl)-2-cyclohexenone
(piperitone,) and R,R,4-trimethyl-1- cyclohexene-1-methanol
(3-p-menthen-8-ol) were identified as minor metabolites
(109). Menthofuran was identified early as a metabolite of
pulegone formed after ingestion of large amounts of penny-
royal oil (110), however it was later found that menthofuran
was most probably an artifactual product formed during
workup from known (10-hydroxypulegone) and/or unknown
precursors. The reaction of 10-hydroxypulegone forming
menthofuran is considerably faster in aqueous solution at
room temperature at any pH, leading to complete transfor-
mation of 10-hydroxypulegone to menthofuran, usually
within hours. Therefore, this reaction was considered as a
major source of menthofuran. As a consequence, the amount
of menthofuran detected in metabolism experiments was
strongly dependent on the workup method. The precursor,
10-acetoxypulegone, was also unstable and it slowly isomer-
ized to form 9-acetoxypulegone (111). Engel was not able to
clarify that p-cresol was a major metabolite of menthofuran
and, therefore, whether it was responsible for the toxic effects
associated with pulegone ingestion. The difference in toxicity
between (S)-(−)- and (R)-(+)-pulegone could be explained by
the strongly diminished ability for enzymatic reduction of the
double bond in (R)-(+)-pulegone, which might lead to further
oxidative metabolism of 10-hydroxypulegone and the forma-
tion of currently undetected metabolites. These metabolites
could possibly account for the observed hepatotoxic and
pneumotoxic activity observed in humans (109).

CONCLUSION

Terpenes, the naturally occurring volatile oils, appear to
be clinically acceptable penetration enhancers as indicated by
high percutaneous enhancement ability, reversible effect on

the lipids of SC, minimal percutaneous irritancy at low
concentration (1–5%) and good evidence of freedom from
toxicity. Moreover, a variety of terpenes have been shown to
increase percutaneous absorption of both hydrophilic and
lipophilic drugs when judiciously selected and combined with
solvents. Hence, use of terpenes can be expected to yield
satisfactory permeation of drugs across skin from transdermal
formulations. However, proper selection of terpenes based on
the functional groups, log p values, metabolic disposition
would be important. However, it seems more rationale and
essential to actually test the terpene containing formulations
in humans in order to arrive at a reliable conclusion regarding
systemic efficacy of the transdermal patches.
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