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Abstract. An important approach to modeling tolerance and adaptation employs feedback mechanisms in
which the response to the drug generates a counter-regulating action which affects the response. In this
paper we analyze a family of nonlinear feedback models which has recently proved effective in modeling
tolerance phenomena such as have been observed with SSRI’s. We use dynamical systems methods to
exhibit typical properties of the response-time course of these nonlinear models, such as overshoot and
rebound, establish quantitive bounds and explore how these properties depend on the system and drug
parameters. Our analysis is anchored in three specific in vivo data sets which involve different levels of
pharmacokinetic complexity. Initial estimates for system (kin, kout, ktol ) and drug (EC50/IC50, Emax/Imax, n )
parameters are obtained on the basis of specific properties of the response-time course, identified in the
context of exploratory (graphical) data analysis. Our analysis and the application of its results to the three
concrete examples demonstrates the flexibility and potential of this family of feedback models.

KEY WORDS: adaptation; feedback; pharmacokinetic-pharmacodynamic modeling; rebound; system
biology; system dynamics; tolerance.

INTRODUCTION

Clinical tolerance may be associated with the effects of
many drugs especially opioids, various central nervous
stimulants, and organic nitrates (cf. Goodman and Gilman
1996 (1)). Acute tolerance is also seen in an experimental
setting in laboratory animals. Factors like dose rates and
frequencies, and diurnal oscillations (Sällström et al. 2005 (2)
and Visser et al. 2006 (3)) often manifest themselves as
tolerance to the pharmacological activity of the test com-
pound. In our own experience we then see how the rate and
extent of an intravenous infusion may impact the onset,
intensity and duration of e.g., a cardiovascular response.
Therefore, we believe that a parametric characterization of
the rate and extent of tolerance development has a practical
bearing on design and analyses of pharmacodynamic studies.

Over the years there have been several different
approaches to modeling tolerance.Wemention time-dependent
attenuation of drug constants (cf. Colburn et al. 1994 (4)), effect
compartment models (Porchet et al. 1988 (5) and Ouellet and
Pollack 1997 (6)), systems analysis (Urquhart and Li 1968 (7)
and 1969 (8), Veng-Pedersen et al. 1993 (9)), pool/precursor

models (Licko and Ekblad 1992 (10), Bauer and Fung 1994
(11) and Sharma et al. 1998 (12), and feedback turnover
models (Ackerman et al. 1964 (13), Resigno and Segre 1961,
1966 (14), Holford et al. 1990 (15), Wakelkamp et al. 1996 (16),
Agersø et al. 2001 (17), Zuideveld et al. 2001 (18), Lima et al.
2004 (19), Sällström et al. 2005 (2), Visser et al. 2006 (3), and
de Winter et al. 2006 (20)).

In the present paper we focus on the latter and discuss in
detail a family of nonlinear feedback models involving the
response R, as well as a Moderator M. One such model has
recently been successfully used to model tolerance phenom-
ena in SSRI’s (Bundgaard 2006 (21)). These models are
based on the classic turnover Indirect Response models.
However, tolerance is modeled through the intervention of a
moderator, which acts to diminish the response created by the
drug and which is generated by the response (cf. Gabrielsson
and Peletier 2007 (22)). The structure of one such model
system is sketched in Fig. 1.

The class of feedback models we discuss here is
nonlinear in that an increase in M will reduce the production
of R by a factor 1/M. Thus, the dynamic properties of these
models, such as overshoot, rebound and presence of oscilla-
tory behavior, depend on the state of the system, and so
change when the system is taken by the drug from the
baseline state R0 to a higher or a lower pharmacodynamic
steady state Rss. Specifically, this class of models is designed
to have the following properties:

& Rapid drug induced changes in the pharmacodynamic
steady state yield pronounced overshoot and rebound.
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& Inhibition of the loss term which raises the steady
state Rss, causes an overshoot which is larger than the
rebound upon the return to the baseline after washout.

& Stimulation of the loss term which lowers the steady
state Rss, causes an overshoot which is smaller than the
rebound upon the return to the baseline after washout.

Similar behavior is found when the production term is
stimulated or inhibited.

It is the characteristic shape of these response curves: a
large overshoot with respect to the new pharmacodynamic
steady state when Rss > R0 and a large rebound upon return to
the baseline when Rss < R0, and the difference in magnitude of
these two, which we want to study in this paper. An important
factor in determining the size of overshoot or rebound is the
rate of input or removal of the drug in relation to the intrinsic
rates of the system. We show how a rapid input or removal
tends to cause a large overshoot or rebound, whilst a gradual
input or removal tends to suppress overshoot or rebound.

We demonstrate the effectiveness of this class of models
by fitting system and drug parameters to data sets obtained
for three in vivo experiments (see also Fig. 2).

(a) A data set displaying a pronounced rebound effect of
the response when the exposure to the test compound
is abruptly terminated. The pharmacokinetics of this
test compound has a 1–3 min half-life (Example I).

(b) A pharmacodynamic data set derived from constant
rate intravenous infusion of an experimental com-
pound displaying both tolerance, drift in the base-
line, and no rebound upon return towards baseline
(Example II).

(c) A recently applied in vivo model for serotonin (5-
HT) turnover in rat brains during intravenous
administration of selective serotonin reuptake inhib-
itors (SSRI’s) (Bundgaard et al. (21)) (Example III).

It will prove very illuminating to study the evolution of
the turnover feedback sytem in State Space, which for these
models is two-dimensional, the dimensions being the response
R and the moderator M. Viewing the evolution of the system
as an Orbit in the (R, M)-plane gives valuable insight into the
properties of the response versus time curve. Also, we shall
see that the structure of the state space immediately reveals
some of these properties, such as the tendency of the system

Fig. 2. Response versus time courses of the three examples that anchor the analysis. Example I is derived from a compound A that inhibits the
production of response of which data were gathered after a regimen of multiple intravenous infusions. Example II represents a test compound
X acting via inhibition of kout after a short constant rate infusion of X followed by washout. Example III represents our extended model fitted
to the Bundgaard et. al. (21) data set, where escitalopram acts via inhibition of the loss of R and the moderator compartment is split into two
transduction compartments

Fig. 1. Sketch of the basic feedback model and a typical response versus time course. The
response R is governed by the zero-order turnover rate kin and the first-order fractional
turnover rate kout, and then indirectly also controlled by a separate moderator M. The
turnover of the moderator is governed by a single first-order rate constant ktol. The build-
up of the moderator is ktol·R and loss is ktol·M. The moderator acts via inhibition of kin on
the production of response (as in the scheme above) or via stimulation of kout (negative
feedback). The solid lines denote flows and the dashed lines denote control action. In the
response versus time course we note substantial overshoot and rebound
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towards overshoot when the response jumps to a higher
value, whether at onset, when Rss > R0 or at washout when
Rss < R0.

The plan of the paper is the following. We begin with an
analysis of the main class of feedback models and exhibit a
series of characteristic properties such as bounds for Rmax, for
overshoot and for rebound, and analyze how these charac-
teristic properties depend on the different pharmacodynamic
rate constants in the model (system properties). Important
mathematical ingredients here will be (i) comparison with
simpler systems and (ii) asymptotic methods. Then we use
these results to discuss successively the data of the three
examples exhibited in Fig. 2. We also apply them to the data
of Example II to demonstrate how the pharmacodynamic and
kinetic constants in the model can be estimated from the
response versus time course. In order to gain a deeper
understanding of the system, we then return to the feedback
model and present a geometric analysis of the dynamics in
state space. We conclude with a discussion of the main results
we obtain and the methods we use.

METHODS

In this section we introduce the class of feedback systems
and derive analytically a series of characteristic properties of
its response versus time curves. In particular we discuss the
propensity of these models to show overshoot and rebound.
We first give a detailed description of the class of models.
Then we analyze the onset and termination of a constant rate
infusion with fast kinetics.

Introduction of the Models

We focus on the class of feedback systems sketched in
Fig. 1, i.e., systems in which the response generates a
moderator, which in turn inhibits the production of the
response. They are based on the following system of two
coupled differential equations:

dR
dt

¼ kin � 1
M

� kout � R
dM
dt

¼ ktol � R�Mð Þ
ð1Þ

Thus, the production of the response R is here inversely
proportional to the strength M of the moderator. In addition,
production of response tends to infinity when M drops down
to zero and tends to zero when M tends to infinity.

As in the classical four indirect response models (23), the
drug may have an impact on the system through either the
production term or through the loss term, i.e.,

dR
dt

¼ kin � 1
M

�H1 Cð Þ � kout �H2 Cð Þ � R

dM
dt

¼ ktol � R�Mð Þ

ð2Þ

where C denotes the plasma concentration of the drug and
H1(C) and H2(C) are drug mechanism functions. Also, the
drug may act in fixing a setpoint, as in Zuideveld et al. (18).

Since the effect of the drug may be to inhibit or to stimulate
the response, H1(C) and H2(C) may be given by either a
stimulatory drug mechanism function such as,

S Cð Þ ¼ 1þ Smax
Cn

SCn
50 þ Cn

ð3Þ

or by an inhibitory drug mechanism function such as,

I Cð Þ ¼ 1� Imax
Cn

ICn
50 þ Cn

ð4Þ

Thus, we end up with four models.
In Bundgaard et al. (21) and in the study of Compound

X (cf. Example II) this model was used to fit the data while
the drug was assumed to inhibit the loss term (H1=1 and H2=
I). And in Gabrielsson and Peletier (22) this model was fitted
to the data from Urquhart and Li (7), also assuming that loss
was inhibited by the drug (H1=1 and H2=I).

If no drug is present, i.e., when C(t) ≡ 0, then, since
Hi(0) = 1 for i=1, 2, the baseline values R0 and M0 of,
respectively, R and M are given by

R0 ¼ M0 ¼
ffiffiffiffiffiffiffiffiffi
kin
kout

s
ð5Þ

IfC(t) ≡ Css, then the pharmacodynamic steady state (Rss, Mss)
of the system 2 is given by

Rss ¼ Mss ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 Cssð Þ
H2 Cssð Þ

s
ð6Þ

It can be shown that the pharmacodynamic steady state is a
global attractor (22), i.e., whatever the initial values of the
response and the moderator, response and moderator will
eventually converge towards the pharmacodynamic steady
state i.e.,

R tð Þ ! Rss and M tð Þ ! Mss as t ! 1 ð7Þ

The main capability of this family of feedback models is their
ability to model substantial overshoot and rebound. In addition,
they possess the following general properties and features:

(a) Overshoot and rebound are biased towards larger
response values in that when a drug raises the
pharmacodynamic steady state response Rss, then
the overshoot tends to be larger than when the drug
depresses the steady state response Rss. Similarly,
when a return to baseline causes the steady state
response Rss to rise, then the overshoot will be larger
than when it drops. We shall see that this property
can be traced back to the nonlinearity of the system,
i.e., to the fact that the moderator acts nonlinearly on
the production term. We shall return to this impor-
tant issue when we give a geometric analysis of the
system at the end of the paper.

(b) It is possible to obtain precise bounds and estimates
for overshoot and rebound. In particular the accura-
cy of these bounds increases as the dimensionless
ratio κ=ktol/kout tends to zero.

(2)

72 Gabrielsson and Peletier



Let the departure of the response from the baseline value R0

reach its maximum value Rmax at Tmax, i.e., Rmax = R(Tmax).
Then we show that

(c) Rmax is either a decreasing or an increasing function
of κ. Specifically:
& If Rmax > R0 then Rmax decreases as κ increases.
& If Rmax < R0 then Rmax increases as κ increases.

Since the main characteristics of these four feedback
models are similar, we focus here on just one of them in
detail, the one in which the loss term is inhibited, i.e., H1(C) =
1 and H2(C) = I(C), where I(C) is given in Eq. 4. The system
2 then becomes

dR
dt

¼ kin � 1
M

� kout � R � I Cð Þ
dM
dt

¼ ktol � R�Mð Þ
ð8Þ

and Rss ¼ Mss ¼ R0
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

I Cssð Þp
(see Eq. 6).

In this section, we wish to bring out the characteristic
properties of the dynamics of the system 8. We therefore
assume that the system is subjected to a very simple drug
regimen: we assume that at t=0 a constant rate infusion is
initiated and that it is terminated at t = t1. We also assume that
the pharmacokinetic time scale is short. This will then result
in a plasma concentration C(t) given by a step-function:

C tð Þ ¼ Css Heav tð Þ �Heav t � t1ð Þf g; t1 > 0; Css > 0 ð9Þ

where Heav(t) denotes the Heaviside function (Heav(t) =1
if t>0 and Heav(t) = 0 if t≤0). With such rapid pharmacoki-
netics, the turnover of the pharmacodynamical system
becomes the rate limiting step. In contrast, slow pharmaco-
kinetics may confound the true system (response) behavior in
that turnover of the drug now becomes the rate limiting step.

In the sections which deal with the three examples, the
drug regimen and the pharmacokinetics are much more
complex, and we shall see how the properties found for the
simple plasma concentration profile given by Eq. 9 can still be
identified and help in fitting the model to the data.

In the following two subsections we study the impact of
the above drug regimen and discuss in succession: (i) onset of
a constant rate infusion, assuming that t1 = ∞, and (ii)
washout at t1<∞.

Onset of Test Compound

We assume that initially, the system is at baseline, i.e.,
R(0) = R0 and M(0) = M0, and we follow the response R and
the moderator M as they evolve with time.

In order to demonstrate the effect of feedback we follow
the response versus time profile as ktol increases from ktol=0
(no feedback) to values of ktol which are large compared to
kout (strong feedback).

If ktol=0, the second equation of the system 8 implies
that M(t) ≡ M0, and hence the first equation of the system
8 becomes

dR
dt

¼ kin � 1
M0

� kout � R � I Cð Þ for t > 0 ð10Þ

This is the well-known Indirect Response Model; its solution,
starting from the baseline R0, which we denote by R tð Þ , can
readily be found to be

R tð Þ ¼ R0

I Cssð Þ � 1� 1� I Cssð Þ½ � � e�koutI Cssð Þt
n o

ð11Þ

Plainly

R tð Þ ! Rtop¼def R0

I Cssð Þ as t ! 1 ð12Þ

and R tð Þ is an increasing function, so that there is no
tolerance. It is shown as the top curve in Fig. 3.

If ktol>0, however small, then by Eq. 7,

R tð Þ ! Rss ¼ Ro

. ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

p
as t ! 1

Since, by a well-known property of ordinary differential
equations (24), for any given t>0

R tð Þ � R tð Þ�� �� ! 0 as ktol ! 1

it follows that Rmax → Rtop as ktol→0. Thus, for small values
of ktol, we have

$Rjovershoot¼
def

Rmax � Rss � Rtop � Rss

¼ R0

IðCssÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

ph i ð13Þ

and the relative overshoot is approximately given by

Rtop � R0

Rss � R0
¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

I Cssð Þp ð14Þ

As ktol increases, one can show that Rmax decreases (22),
and hence, since Rss remains the same, the overshoot also
decreases and eventually disappears for large values of ktol. In
Figs. 3 and 4 we show response and moderator versus time
graphs for different values of ktol whilst kout remains fixed.

Fig. 3. Simulations of response and moderator versus time for onset of
a constant long-lasting infusion (t1=∞) for ktol=0, 0.001, 0.005, 0.01.
The other parameter values are kin=0.23, kout=0.23 (R0=1), and Imax=
0.8, Css » IC50. Solid lines represent the response-time courses and the
dashed lines the moderator-time courses
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We study two extreme cases: (i) ktol is small and (ii) ktol is
large.

Case (i) ktol « kout : In this case the moderator changes
slowly compared to the response. Thus for an
initial period M(t) ≈ M0 and hence R tð Þ � R tð Þ .
This means that the response quickly rises to a
level that is almost equal to Rtop, which is defined
as the root of the equation

kin � 1
M0

� kout � R � I Cssð Þ ¼ 0

Then, as time progresses,M(t) increases because R >
M. However, because of the relatively fast dynamics
of the response, any departures from the equality

kin � 1
M tð Þ � kout � R tð Þ � I Cssð Þ ¼ 0 ð15Þ

are quickly corrected. Thus, we may assume that
Eq. 15 holds approximately once R has reached its
maximum value Rmax at time Tmax. When we use
this relation to eliminate R from the equation for M
in Eq. 8 we obtain

dM
dt

¼ ktol � R2
0

I Cssð Þ �
1
M

�M

� �
ð16Þ

Since the time of maximal response Tmax is small
and ktol is small, it follows that approximately
M(Tmax) = M0. The solution of equation Eq. 16
with this value at t = Tmax is given by

M tð Þ ¼ Mss

� 1� 1� I Cssð Þ½ � � e�2ktol t�Tmaxð Þ
n o1=2

t > Tmax

ð17Þ

so that we obtain for the response,

R tð Þ ¼ Rss

� 1� 1� I Cssð Þ½ � � e�2ktol t�Tmaxð Þ
n o�1=2

t > Tmax

ð18Þ

Therefore,

R tð Þ � Rssj j ¼ O e�2ktol t
� �

as t ! 1

i.e., in this extreme case, t1/2 = ln 2/(2 ktol). Thus, as
ktol→0 it takes longer for the response to settle on
its final value Rss. In Fig. 3 this gradual descent is
clearly manifest.

Case (ii) ktol » kout : Now, the dynamics of the moderator
is relatively fast and any departures from the equality

ktol R tð Þ �M tð Þf g ¼ 0 ð19Þ

have soon disappeared. Since R(0) = M(0), we may
now assume that Eq. 19 holds approximately for all
t≥0. Using Eq. 19 to eliminate M, we find that the
equation for R becomes, approximately,

dR
dt

¼ kin
1
R
� koutR � I Cssð Þ

¼ koutI Cssð Þ � R2
0

I Cssð Þ �
1
R
� R

� �
ð20Þ

This equation is of the same form as Eq. 16; its
solution, starting from the baseline R0, is given by

R tð Þ ¼ Rss � 1� 1� I Cssð Þ½ � � e�2koutI Cssð Þt
n o1=2

ð21Þ

Note that R(t) is now a strictly increasing function.
Hence, in the limit as ktol→∞, there is no tolerance.

We see this behavior demonstrated in Fig. 4.
We also see that

R tð Þ � Rssj j ¼ O e�2koutI Cssð Þt
� 	

as t ! 1

i.e., in this extreme case, t1/2 = ln 2/(2 kout I(Css)).
It is interesting to note that since R(t) - M(t) →

0 as ktol→∞, the graph of M(t) is also increasing in
the limit as ktol→∞. However, we see clearly in
Fig. 4 that M overshoots its limiting value Mss for
ktol=0.1. In Gabrielsson and Peletier (22) it is
shown that there is a range of values of ktol for
which R(t) and M(t) tend to, respectively, Rss and
Mss through a damped oscillation, whilst outside
this range, the approach to Rss and Mss is
monotone.

Washout of Test Compound

We assume that just prior to washout at t = t1, the system
is in the pharmacodynamic steady state, i.e., R(t1) = Rss and

Fig. 4. Simulations of response and moderator versus time for onset
of a constant long-lasting infusion (t1=∞) for ktol=0.1, 0.2, 0.5, 2.0
(right). The other parameter values are kin=0.23, kout=0.23 (R0=1),
and Imax=0.8, Css » IC50. Solid lines represent the response-time
courses and the dashed lines the moderator-time courses
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M(t1) = Mss. If ktol=0, then M(t) = Mss for t > t1, and the
equation for R becomes

dR
dt

¼ kin � 1
Mss

� kout � R for t > t1 ð22Þ

The solution of this equation, which starts at time t1 at Rss is
given by

R tð Þ ¼ R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

p
1þ I�1 Cssð Þ � 1


 � � e�ktol t�t1ð Þ
n o

ð23Þ

We see that R(t) is decreasing and that

R tð Þ ! Rbottom¼defR0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

p
as t ! 1 ð24Þ

In Fig. 5 we show two sets of response andmoderator versus
time curves of the same system as shown in Figs. 3 and 4 but
now with rapid washout after t1=500 min, respectively 100 min.

If ktol>0 one can show that the state returns to baseline
(22) i.e., in particular,

R tð Þ ! R0 as t ! 1 ð25Þ
Thus, writing Rmin = min{R(t): t > t1}, we obtain – as with
onset – that Rmin → Rbottom as ktol→0, so that for small ktol,

$Rjrebound¼ R0 � Rmin � R0 � Rbottom

¼ R0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

ph i
ð26Þ

It follows from Eqs. 13 and 26 that

$Rjovershoot�
1

I Cssð Þ $Rjrebound ð27Þ

This equality implies that when ktol is small compared to
kout, then overshoot is much larger than rebound.

As with the overshoot at onset, we find that at washout,
rebound diminishes monotonically as κ=ktol/kout increases
and eventually disappears when κ is large enough.

Conclusion. We have demonstrated the following char-
acteristic properties of the main model, Eq. 8, in which the
loss term is inhibited:

1. Uniform upper and lower bounds for the response: If
ktol > 0, then

R0 < R tð Þ < Rtop after onset

Rbottom < R tð Þ < Rss _after washout
ð28Þ

2. Bounds for overshoot and rebound of the response: If
ktol > 0, then

$Rjovershoot <
R0

IðCssÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

ph i
and

$Rjrebound< R0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þ

ph i ð29Þ

so that for κ small,

$Rjovershoot�
1

I Cssð Þ �$Rjrebound ð30Þ

3. Pharmacodynamic steady state and baseline are
“global attractors”: If ktol>0 and the infusion is
constant for all time, then R(t) → Rss as t→∞.
Similarly, after washout when C=0 for all time, then
R(t) → R0 as t→∞.

4. Influence of the ratio κ = ktol/kout : We have exhibited
the pivotal importance of the ratio κ of the rate constants
of the two equations: ktol and kout. For instance,
(a) Overshoot and rebound are greatest when κ is
small.
(b) As κ increases, both overshoot and rebound
become smaller and eventually disappear.

For further properties we refer to Gabrielsson and
Peletier (22).

GENERALIZATIONS

The analysis we have presented for the feedback system
8 in which the loss term is inhibited by the drug, and the results
we have obtained for that system, easily carry over to the other

Fig. 5. Simulations of response and moderator versus time during
constant infusion, and subsequent washout for ktol=0.001, 0.005, 0.01
(a) and for ktol=0.03, 0.1, 0.3, 1.0 (b). The other parameter values are
kin=0.23, kout=0.23 (R0=1), and Imax=0.8, Css » IC50
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three types of systems defined in Eq. 2, i.e., the systems in
which the loss term is stimulated (H1 = 1 and H2 = S) or the
production term is either stimulated (H1 = S and H2=1) or
inhibited (H1=I and H2=1).

For instance, as another example, if the production term
is stimulated, we find that if C = Css, then

Rss ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S Cssð Þ

p
; Rtop ¼ R0S Cssð Þ and

Rbottom ¼ R0ffiffiffiffiffiffiffiffiffiffiffiffiffi
S Cssð Þp

and

$Rjovershoot < R0 S Cssð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
S Cssð Þp
 �

$Rjrebound< R0 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
S Cssð Þp

" #
ð31Þ

so that for small values of κ

$Rjovershoot� S Cssð Þ � $Rjrebound ð32Þ

Since S(Css) > 1 we find again that for small values of κ,
overshoot is larger than rebound.

A nonlinear feedback system that is closely related to the
one we have studied above is

dR
dt ¼ kin � kout � R �M

dM
dt ¼ ktol � R�Mð Þ

ð33Þ

i.e., the system in which the moderator does not inhibit the
production term but instead stimulates the loss term if the
drug causes the response rise. When we incorporate the drug
mechanism functions H1(C) and H2(C) as in Eq. 2, we see
that the pharmacodynamic steady state is also given by Eq. 6.
An analysis along the lines of the one given above now yields
results which are very similar, and in some instances even
identical, to results we have obtained for the systems 1 and 2.
This applies in particular to such results as large time
behavior, global bounds, and a bias towards overshoot when
Rss > R0 and towards rebound when Rss < R0.

Many of the properties of the response versus time
curves which we have sketched above can be explained in a
geometrical way by viewing the state (R,M) of the system as
moving along a trajectory in state space. We present such an
explanation in a special section towards the end of the paper.

EXAMPLE I: INHIBITION OF PRODUCTION
OF RESPONSE

Example I is based on an experimental compound Awith
fast plasma kinetics (t1/2=1–2 min and an elimination rate
constant k=0.22 min−1 ) and a pharmacological response with
high kout (t1/2=3 min) that also displays tolerance and
rebound. The data are shown in Fig. 6.

Typical features of this data set are (i) overshoot at every
sudden increase of the plasma concentration and (ii) a

seizable rebound at washout. The dynamics of compound A
was characterized by a nonlinear feedback system of the type
introduced in Eq. 1, in which the production term is
mechanistically inhibited by means of a nonlinear drug
mechanism function I(C) of the form given in Eq. 4, however
assuming at the outset that Imax=1 :

dR
dt ¼ kin � 1

M � I Cð Þ � kout � R
dM
dt ¼ ktol � R�Mð Þ

ð34Þ

Fitting the model to the data set yields the values given in
Table I in which the first order rate constants kout and ktol are
measured in min−1. In Table I, R0 denotes the baseline of
the response, kin = R0

2 kout, and κ = ktol/kout. The model
prediction for these values is also shown in Fig. 6 (solid line).

The exact start and stop of drug input (infusions) and the
exact sampling times of the pharmacological response are
particularly important for this system with rapid turnover of
both test compound and response. Since the half life of
kinetics falls in the range of 1–2 min and half life of response
is about 1 min, a 15–30 sec error in sampling times at pivotal
occasions will not only impact parameter estimates (accuracy)
but also their precision. We will expand on this particular
system (response) and test compound in a subsequent series
of papers.

EXAMPLE II: INHIBITION OF LOSS
OR STIMULATION OF PRODUCTION OF RESPONSE

Example II is based on a test compound X given as a
10 min constant rate intravenous infusion. It displays two-
compartment disposition kinetics with a terminal half life of
17 min. Disposition of the test compound is relatively slow in
comparison to the system (t1/2kout=2–4 min) and becomes the
rate limiting step. The data are shown in Fig. 7.

Typical features of this data set are (i) a strong overshoot
at onset of the infusion and (ii) no rebound upon washout and

Fig. 6. Response versus time data after a multiple intravenous
infusion regimen of compound A, followed by washout. Note the
substantial rebound effect shortly after the infusion has been
terminated at about 200 min. The infusion pump stopped for a brief
period at about 90 min until the next syringe had been loaded. Then
there is a rapid return of response towards the baseline and past the
baseline. The six gray bars represent six different infusion rates.
Response denotes concentration of fatty acids in plasma

(31)
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(iii) a substantial drift in the baseline response. The slow
washout confounds rebound (22), as is seen from the
simulation shown in Fig. 8 of the same system 35 but with
rapid onset at t=50 min and washout at t=200 min, and no
baseline drift.

The drug mechanism of the test compound X in this
example acts through inhibition of the kout parameter (I(C) ×
kout × R ), as shown in Eq. 35:

Að Þ
dR
dt ¼ kin 1

M � kout � R � I Cð Þ
dM
dt ¼ ktol � R�Mð Þ

�
ð35Þ

Interestingly, a stimulatory function on the turnover rate
(S(C) × kin ) as shown in Eq. 36:

Bð Þ
dR
dt ¼ kin � 1

M � S Cð Þ � kout � R
dM
dt ¼ ktol � R�Mð Þ

�
ð36Þ

gave as good a fit as the mechanistically correct inhibition of
loss, including high parameter precision in all parameters
(Table II). The functions I(C) and S(C) in the systems (A)
and (B) are given by, respectively, Eqs. 4 and 3. In both
models, baseline drift was described by the linear function

R0 tð Þ ¼ R0 0ð Þ 1þ �tð Þ ð37Þ

Assuming that kout remains constant, this means that kin(t) =
kin(0)(1 + αt)2.

This suggests that more doses and eventually an extend-
ed input (infusion) period are necessary challenges for model

discrimination. It was necessary to model the drift in baseline
as a linear function, as part of the full model. We would not
advocate modeling baseline subtracted response data because
the meaning of different parameters would become less
transparent.

In future experiments we would suggest a separate
control group that captures the unperturbed baseline drift.

An ordinary turnover model (by inhibition of loss), or a
pool/precursor model (Stimulation of the loss from the pool
compartment) did not adequately capture the upswing,
overshoot, roof and decline to the baseline of this data set.
For the turnover model, this can be explained by analytical
arguments (cf. (25)).

EXAMPLE III: INHIBITION OF LOSS OF RESPONSE

Example III is based on data obtained by Bundgaard et
al. (21). Three intravenous infusions lasting for 60 min were
given to three different groups of rats. The response
corresponds to the change in 5-HT in rat hippocampal brain
regions (Fig. 9).

Fig. 7. Response versus time courses of Example II which represents
test compound X acting via inhibition of kout after a 10 min constant
rate intravenous infusion of X followed by washout. Note the drift of
the baseline over the 260 min observation period. Response denotes
EEG effects in experimental animals

Fig. 8. Simulation of response versus time course based on the final
parameter estimates in Table 2 (model A) where the exposure profile
was given as a square-wave (gray horizontal bar) and no baseline drift
was assumed to occur. R0, Rmax and Rss denote the baseline value,
peak-response in overshoot and steady-state response, respectively

Table I. Parameter estimates for Example I

R0 kout ktol n IC50 κ

0.58 0.59 0.058 1.4 0.13 0.1
3% 36% 25% 7% 26% –

Table II. Parameter estimates for models (A) and (B)

Estimate
(A)

CV %
(A)

Estimate
(B)

CV %
(B)

ktol 0.057 10 0.055 10
kout 0.26 5 0.13 6
IC50/SC50 9.1 6 15 6
Imax/Smax 0.51 2 1.0 3
n 1.5 6 1.5 6
kin(0) 5,773 5 2200 5
α 0.00039 17 0.00040 13
κ 0.22 – 0.42 –
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In a previous study (22) this process was modeled by
means of a generalization of the nonlinear feedback system
introduced in the “Introduction” section, which involves a
sequence of two moderators, M1 and M2, as shown in Fig. 10.

The feedback system described in Fig. 10 leads to the
following system of three coupled differential equations:

dR
dt

¼ kin
M2

� kout � R � I Cð Þ
dM1

dt
¼ ktol � R�M1ð Þ

dM2

dt
¼ ktol � M1 �M2ð Þ

ð38Þ

Fitting this model to the data we obtain the parameter values
listed in Table III:

By extending the original Bundgaard et al. (21) analysis
to also include a transduction step for the moderator
compartment, the parameter precision of ktol was improved.
Increasing ktol also resulted in a shortening of its
corresponding half-life (ln 2/ktol). All other parameters and
their precision remained the same.

This demonstrated the flexibility of this feedback turnover
model without increasing the number of model parameters. We
will expand on this topic in a subsequent series of papers.

It is not surprising that the model predicts an uptake half-life
(t1/2kout ) of about 3–4 min in light of the rate limiting distribution
across the dialysis probe membrane. The true uptake half-life
into pre-synaptic vesicles does probably lie in the microsecond to
second range, but the equilibrium process across the dialysis
probe confounds the more rapid reuptake process.

INITIAL PARAMETER ESTIMATES

To successfully model biological systems, one also needs
to be able to derive the initial parameter estimates graphically,
directly from the experimental data, and not only via indirect
estimation during regression. As an example of how this may
be done, we use the data set of Example II shown in Fig. 11.

The system we will derive initial estimates for is

dR
dt ¼ kin

M � kout � R � I Cð Þ
dM
dt ¼ ktol � R�M

� �
with

kin tð Þ ¼ kin 0ð Þ 1þ �tð Þ2

ð39Þ

where we assume that the drug mechanism function I(C) is
given by Eq. 4:

I Cð Þ ¼ 1� Imax
Cn

ICn
50 þ Cn

Throughout we assume that Css » IC50. Then I(Css) ≈ 1 −
Imax, and we need to determine the initial estimates for

kin 0ð Þ; kout ; ktol; �; and Imax

We shall do this by using the following geometric properties
of the response versus time graph given in Fig. 11:

(a) The evolution of the baseline over time, modeled by

R0 tð Þ ¼ R0 0ð Þ 1þ �tð Þ; R0 0ð Þ ¼ 149;

R0 250ð Þ ¼ 162
ð40Þ

(b) The evolution of the pharmacodynamic steady state
modeled by

Rss tð Þ ¼ Rss 0ð Þ 1þ �tð Þ; Rss 0ð Þ ¼ 220 ð41Þ

(c) The slope at onset of infusion (t = t0=32):

slope ¼def dR
dt

����
t¼t0

¼ 17 ð42Þ

Fig. 9. Response versus time (left) and response versus concentration (right) courses of Example III which
represent escitalopram acting via inhibition of kout after a 60 min constant rate intravenous infusion followed
by washout. Symbols represent experimental data and solid lines model fits. The three 60 min constant rate
intravenous infusions were 2.5 (filled circles), 5 (filled squares) and 10 (open squares) mg/kg. The small
arrows on the right hand plot show the time order of the data. Note how the middle and upper
concentration-response curves cut through the lower and middle concentration-response curves, respectively
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As a first step we compute Imax from the values of R0(0) and
Rss(0) given in (a) and (b). From Eq. 6 we know that

Rss 0ð Þ ¼ R0 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
I Cssð Þ

s
¼ R0 0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� Imax

s

Hence,

Imax ¼ 1� R0 0ð Þ
Rss 0ð Þ

� �2

� 0:54 ð43Þ

where we have used Eqs. 40 and 41.
Next, we compute the slope α from the values of R0(t) at

t=0 and t=250. Rewriting the equation for R0(t) in Eq. 40 and
evaluating the right hand side at t=250, we obtain

� ¼ 1
t

R0 tð Þ
R0 0ð Þ � 1

� �����
t¼250

� 0:0004 ð44Þ

We now use the slope of the response versus time curve at
onset of the infusion to compute estimates for kin(0) and kout.
We deduce from the differential equation for R that

dR
dt

����
t¼t0

¼ kin t0ð Þ
M0 t0ð Þ � kout 1� Imaxð ÞR0 t0ð Þ ð45Þ

Since, R0 tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kin tð Þ=kout

p
; we can write koutR0(t) = kin(t)/

R0(t). Hence, because R0(t) = M0(t), we can write Eq. 45 as

dR
dt

����
t¼t0

¼ kin t0ð Þ
R0 t0ð Þ � 1� 1� Imaxð Þf g ¼ kin t0ð Þ

R0 t0ð Þ � Imax ð46Þ

Because both kin and R0(t) vary very slowly and t0=32 is
small, we may approximate Eq. 46 by

dR
dt

����
t¼t0

¼ kin 0ð Þ
R0 0ð Þ � Imax ð47Þ

Thus, an estimate for kin(0) can be obtained from the
expression

kin 0ð Þ ¼ R0 0ð Þ
Imax

� dR
dt

����
t¼t0

� 4700 ð48Þ

Therefore,

kout ¼ kin 0ð Þ
R0 0ð Þf g2 � 0:2 ð49Þ

where we have used the values for kin(0) and R0(0) obtained
in Eqs. 48 and 40.

From the start of infusion to the pharmacodynamic
steady state takes about 40 min. If we assume that it takes
about 4× t1/2ktol for equilibrium to be established we expect
ktol to be given by approximately

ktol ¼ ln 2
t1=2ktol

¼ ln 2
10

� 0:07 min
�1

We assume the value of n to be in the neighborhood of 2. This
is a valid assumption because in our own experience, n
seldom falls outside the range of 1–4. Also, two or more dose
levels will further strengthen the estimation of, particularly,
the drug parameters IC50, Imax and n. Obtaining good initial
estimates not only shortens the regression time, but also
avoids the potential risk of ending up in a local minimum
resulting in biased and imprecise parameter estimates.

For convenience we collect some pertinent formulae in
Table IV.

THE STATE SPACE—A GEOMETRIC DESCRIPTION
OF THE DYNAMICS

The observations made in the “Methods” section can be
illustrated and illuminated by a geometrical representation of
the dynamics of the system.

dR
dt

¼ kin � 1
M

� kout � R � I Cssð Þ
dM
dt

¼ ktol � R�Mð Þ
ð50Þ

The underlying idea is that the state of the system is
completely determined by the values of R and M and can
be represented by a point in the (R,M) -plane. As the system
evolves, the point will trace out an orbit in the (R,M) -plane.
It will do so with a speed ν= (dR/dt,dM/dt) which is given in
terms of R and M by the system of differential equations.

Fig. 10. Sketch of the extended feedback model involving two
moderators M1 and M2 in sequence. The solid lines denote flows
and the dashed lines denote control action

Table III. Parameter estimates for the model Eq. 38

R0 kout ktol Imax IC50 n κ

105 0.18 0.003 0.84 4.1 0.87 0.02
5% 11% 18% 2% 25% 11% —

Table IV. Critical response levels in Examples I–III

Example R0 Rss Rtop Rbottom

I
ffiffiffiffiffiffi
kin
kout

q
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þp

R0ffiffiffiffiffiffiffiffiffi
I Cssð Þ

p R0I Cssð Þ
II(A)

ffiffiffiffiffiffi
kin
kout

q
R0ffiffiffiffiffiffiffiffiffi
I Cssð Þ

p R0
I Cssð Þ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þp

II(B)
ffiffiffiffiffiffi
kin
kout

q
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S Cssð Þp

R0S Cssð Þ
R0ffiffiffiffiffiffiffiffiffiffi
S Cssð Þ

p
III

ffiffiffiffiffiffi
kin
kout

q
R0ffiffiffiffiffiffiffiffiffi
I Cssð Þ

p R0
I Cssð Þ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I Cssð Þp
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We point out two important curves in the (R,M) -plane.
They are the curve ΓR on which the tangent to the orbit is
parallel to the M -axis, and ΓM on which the tangent to the
orbit is parallel to the R-axis:

*R ¼ R;Mð Þ : dR=dt ¼ 0f g and

*M ¼ R;Mð Þ : dM=dt ¼ 0f g

These curves are called the Null Clines of the system. Thus,
by Eq. 50

*R : R ¼ R2
0

I Cssð Þ
1
M

a hyperbole *M : R ¼ M a straight line

Points where ΓR and ΓM intersect correspond to equilibrium
states. If C=0, the unique point of intersection is the baseline
(R0,M0), whilst if C = Css, the null clines intersect at the
pharmacodynamic steady state (Rss,Mss).

In Fig. 12 we show two sets of such orbits. In one set (left)
we show orbits that correspond to the onset of an infusion, and
in the other set we show orbits that correspond to washout. We
do this for four values of ktol keeping kout fixed. Specifically, we
choose ktol such that κ = ktol/kout=0, 0.01, 0.1 and 1.0.

Below we list a few observations about these orbits.

Onset of response. Since I(Css) < 1, the null cline ΓR

shifts upward.
ktol=0: Since M(t) = M0 along this orbit, it traces out a

vertical line until it reaches ΓR at R=Rtop.
ktol << kout: Here M(t) grows slowly and the orbit is

almost vertical until it reaches ΓR, crosses it at time Tmax,
where the response reaches its maximal value Rmax. The orbit
then follows ΓR down until it reaches the pharmacodynamic
steady state (Rss, Mss). Note that Rmax ≈ Rtop.

ktol ≈ kout: Here R(t) and M(t) develop more in tandem
and the overshoot is much diminished, i.e. Rmax is much
lower. Notice the spiral-type behavior near (Rss,Mss).

Washout of response. Since I(0) = 1, the null cline ΓR

drops back to the starting position.

ktol=0: Since M(t) = Mss along this orbit, it traces out a
vertical line until it reaches ΓR at R = Rbottom

ktol << kout: The orbit drops down and quickly reaches
ΓR. Thereafter, it slowly follows ΓR back towards the baseline
(R0,M0).

ktol ≈ kout: The rebound is now less pronounced and the
baseline point (R0,M0) is approached via a small spiral.

It is evident from the way the orbits must cross the null
clines in the phase plane that

(i) Rmax cannot exceed Rtop and that Rmin cannot drop
below Rbottom.

(ii) Overshoot (Rmax - Rss) as well as rebound (R0 - Rmin)
become smaller as the ratio κ = ktol/ kout becomes
larger.

It is interesting to compare the nonlinear feedback
system 8 with the linear system (19, 26),

dR
dt

¼ kin � koutM � I Cð Þ
dM
dt

¼ ktol � R�Mð Þ
ð51Þ

Fig. 11. Schematic illustration of deriving the initial parameter
estimates based on the response-time course of Example II obtained
after a 15 min constant rate intravenous infusion of test compound X
followed by washout. The slope is mathematically defined by Eq. 42,
and Δ=Rss(t) − R0(t) = Rss(0) − R0(0)

Fig. 12. Orbits in the (R, M)-plane for onset of infusion (a) and for
washout (b). The constants are κ = ktol/kout=0, 0.01, 0.1, 1 and kin=
0.23, kout=0.23 (R0=1), and Imax=0.8, Css » IC50. The dashed lines are
the null clines through (R0,M0) and through (Rss,Mss)
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Plainly, here the baseline is given by R0 = M0 = kin/kout and
the pharmacodynamic steady state is Rss = Mss = kin/{koutI
(Css)}. As in the nonlinear model, if ktol>0, then

R tð Þ ! Rss as t ! 1 after onset t1 ¼ 1ð Þ

R tð Þ ! R0 as t ! 1 after washout
ð52Þ

In Fig. 13a, we show a response versus time course following
onset and subsequent washout after t1 = 10 minutes. Below, in
Fig. 13b, we also show the corresponding orbit in the (R,M)-
plane.

The null clines in the (R,M) -plane are now given by

*R ¼ R;Mð Þ : M ¼ M0=I Cssð Þf g and *M ¼ R;Mð Þ : R ¼ Mf g

After onset, ΓR shifts to the right since I(Css) < 1 if Css > 0,
and it shifts back at washout. We see how the orbit, which
starts at the baseline (R0, M0) = (1,1) spirals towards (Rss, Mss) =
(2, 2), as predicted by Eq. 52 and after washout spirals back to
the baseline.

If ktol=0, then M(t) ≡ M0 and the equation for R becomes

dR
dt

¼ kin � koutM0 � I Cssð Þ ¼ kin 1� I Cssð Þf g ð53Þ
Therefore

R tð Þ ¼ R0 þ kin 1� I Cssð Þf gt ð54Þ
Thus, if t1=∞, then, in contrast to the nonlinear model 8, in the
linear model R(t) becomes unbounded, i.e., exceeds any value
for t large enough.

If ktol>0 the limiting behavior for large time shown in
Eq. 52 implies that Rmax<∞. As in system 8, we find that Rmax

decreases as ktol/kout increases. In addition, we conclude from
Eq. 54 and an asymptotic analysis that

Rmax ! 1 as ktol ! 0
Rmax ¼ Rss if ktol � 4koutI Cssð Þ

Therefore, unlike in the nonlinear model, there is no upper
bound for Rmax, which is independent of ktol. Similarly, there

Fig. 13. Response versus time plot (a) and the corresponding orbit in the (R,M) -
plane for onset (b) of infusion and washout after 10 min. The constants are
ktol=1, kin=10, kout=10 and Imax=0.5 and Css » IC50. The dashed lines are the null
clines through, respectively, (R0,M0) and (Rss,Mss)
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is no lower bound for R(t) which is independent of ktol and
Rmin → - ∞ as ktol → 0. Therefore, R(t) may become negative
for some time interval when ktol is small enough. We see this
happening in Fig. 13a. In the nonlinear model 8, the response
is always positive, regardless of the values of the system and
drug parameters.

DISCUSSION

Background. From a drug discovery point of view many
biological variables including the ones affected by drugs, are
subject to adaptation and tolerance. In the description of the
time course of the response to drugs, it may therefore be
necessary to consider the endogenous feedback control as an
intrinsic part of the pharmacodynamics. With still the same
system parameters and properties, different drug parameters
will result in different response-time courses and consequent-
ly different levels of onset, intensity, duration and adaptation.

Does tolerance confound the estimability of system and
drug parameters? Yes, particularly with slow drug kinetics
relative to kinetics of response, and with a substantial baseline
drift, unless data are rich and well-spaced such as in Examples II
and III. Since tolerance/adaptation may develop on a totally
different (slower) time scale than the primary response (kout),
this may result in unexpected (and unpredictable from acute
dosing) responses at pharmacodynamic steady-state. We be-
lieve that not only tolerance per se, but tolerance coupled to a
substantial rebound effect may jeopardize the clinical outcome
of unscheduled drug holidays (missed doses) and temporarily
result in clinically harmful rebound effects. Therefore, multiple
dosing and continuous tracking of the pharmacodynamic effect
will be necessary at two or more dose levels. The kappa
parameter (ktol/kout) may also serve as an early indicator
variable of how slow tolerance develops and therefore how
long extended exposure is needed.

In quantitative pharmacology, the physiology and the
system need to be (i) condensed into a conceptual (picture)
model that captures the main features, including rate limiting
step(s). When the mechanism of action has been presented as
a conceptual model, the latter then needs to be translated into
(ii) equations, i.e., the mathematical model, e.g., of the rate
process (quantitative pharmacological), which is implemented
into the regression software package. This is the second
condensation, because model parameters also need to be
identifiable and estimable.

The next step (iii) will be to add the statistical model
(error and/or covariate models) to the regression model. This
is, of course, of importance in most instances, but it also needs
to be balanced against mechanism of action (including the
mathematical structure) and supported by a thorough exper-
imental design. We envision more of a focus on mechanistic/
mathematical model building including emphasis on experi-
mental design. However, pattern recognition and exploratory
data analysis are more related to the art of successful model
building than the pure mathematical/statistical regression.

Examples. The analysis in this paper has been anchored
in data sets obtained from three examples.

Example I covers rapid test compound kinetics, multiple
provocations, washout dynamics, and a value of κ = ktol/kout
which is less than 1. These combinations reveal the system
properties and result in accurate and precise system and drug
parameters. The pharmacological response exhibits adapta-
tion and particularly extensive rebound.

Example II covers rapid system kinetics, relatively slow
washout of test compound and a substantial drift in the
baseline. Again, the value of κ is less than 1. The pharmaco-
logical response shows a pronounced overshoot, adaptation
and a slow return towards baseline without any indication of
a rebound. However, simulations also demonstrate rebound
of this system provided rapid kinetics and stable baseline.

Example III covers intravenous infusion at a 4-fold dose
(exposure) range, slow washout of test compound and a
stable baseline. The pharmacological response shows a rapid
onset, superimposing response-time courses for the two
highest doses and lack of rebound upon return towards the
baseline. This time the value of κ was much less than 1, but
the slow pharmacokinetics of the test compound confounded
the possibility of a rebound.

The intravenous way of administration avoids confound-
ing absorption processes and first-pass phenomena. In neither
of the three examples, pharmacologically active metabolites
are known to be involved.

Initial Estimates. Using the data set of Example II we
have shown how initial estimates for system and drug
parameters can be obtained from just a few critical properties
of the response versus time curve, such as baseline, pharma-
codynamic steady state and initial slope.

Qualitative Analysis of the Model. Using qualitative
methods we have obtained a-priori estimates for the response
versus time course, such as upper and lower bounds, rate of
convergence to the pharmacodynamic steady state, and to the
baseline and insight into the crucial importance of the ratio κ
of the rate constants for the moderator ktol and the response
kout. Viewing the dynamics of the system as an orbit in the state
space represented by the (R, M)—plane has yielded valuable
insight into the specific properties of the feedback model such
as a tendency towards overshoot and rebound, and an “upward
bias” in that the tendency towards overshoot tends to be larger
if the response jumps up than when it jumps down.

With the a-priori knowledge we have obtained for this
class of feedback models it will be easier to assess before
hand whether or not a given data set can be fruitfully
modeled by a model of this type.

Design. What are study designs generally lacking in
situations where we also have feedback, tolerance and
adaptation? We advocate several dose levels coupled to
different routes and rates of input, multiple dosing, re-dosing
during overshoot, pharmacodynamic steady-state or during
rebound. Multiple consecutive intravenous infusions were
given to the system presented in Example I. This is an
example of multiple perturbations of a system, which reveals
the system properties nicely. Since adaptation is a time-
phenomenon, experimental design also requires repeated
provocations (repeated dosing, different rates and routes of
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administration) of the system that is being studied. There is
no generic schedule for this, but multiple provocations for at
least 3–4 t1/2ktol, coupled to washout dynamics with sufficient
baseline data, are probably informative. In a subsequent
series of papers we will demonstrate how multiple rates and
durations of intravenous dosing, coupled to observations of
pharmacology during and after the provocations (washout),
may help to elucidate the rate limiting steps behind a
physiological turnover system exhibiting rapid adaptation.

We also advocate ex vivo plasma protein binding of the
test compound for appropriate estimation of unbound expo-
sure, since changes in plasma protein binding have been shown
to affect the exponent (Hill coefficient) in the sigmoid Emax

model when converting total to unbound concentrations. Ex
vivo plasma protein binding has, in our experience, given
different results compared to pooled in vitro plasma protein
binding experiments. One may also need to consider dosing
(infuse) potentially active metabolites if their potencies and/or
exposure levels fall in the neighborhood of parent compound.
Making model simulations prior to executing the full experi-
ment also helps to set up a strategy for experimental design.

A constant (stable) drug input is probably the least
satisfactory design for a feedback experiment. For tolerant
physiological systems we believe that the constant 24 hr exposure
paradigm may be deleterious in that most physiological systems
need to be reset to some extent at some point during each dosing
interval for the system to be susceptible to a new dose.

Final Conclusion. We have demonstrated the flexibility
of a class of turnover models in their ability to mimic
overshoot, pharmacodynamic steady state, return to baseline
and rebound. We anchored this analysis to three experimental
data sets of varying complexity. Finally, we discuss analytical
tools such as phase plane plots and show a strategy as to how
to derive initial parameter estimates.
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