Skip to main content

Advertisement

Log in

The Melanogenesis-Inhibitory Effect and the Percutaneous Formulation of Ginsenoside Rb1

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ginsenoside Rb1 (Rb1) is the most predominant ginsenoside isolated from the roots of ginseng (Panax ginseng C. A. Meyer). This compound is active in various human biological pathways that are involved in human collagen synthesis and inhibition of cell apoptosis. In this study, the skin-whitening effects of Rb1 were investigated in B16 melanoma cells. Our results showed that Rb1 inhibited melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 cells in a dose-dependent manner, which collectively indicated that Rb1 may have skin-whitening effects and may be formulated into skin-whitening products for skin care. Accordingly, a ginsenoside collagen transdermal patch was developed as a vehicle to topically deliver Rb1 into pig skin. The percutaneous permeation, retention within skin, and release in vitro of Rb1 from seven transdermal patch formulas were studied. It was determined that the best formula for ginsenoside collagen transdermal patch is made of protein collagen hydrolysate powder (PCHP) 2.0% (w/w), methyl cellulose (MC) 0.5% (w/w), polyethyleneglycol 6000 (PEG6000) 0.5% (w/w), ginsenoside 0.036% (w/w), azone 0.4% (v/w), menthol 0.20% (w/w), and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Martinez-Esparza M, Jimenez-Cervantes C, Solano F, Lozano JA, Garcia-Borron JC. Mechanisms of melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10 mouse melanoma cells. Eur J Biochem. 1998;255(1):139–46.

    Article  PubMed  CAS  Google Scholar 

  2. Leyden JJ, Shergill B, Micali G, Downie J, Wallo W. Natural options for the management of hyperpigmentation. J Eur Acad Dermatol Venereol. 2011;25(10):1140–5.

    Article  PubMed  CAS  Google Scholar 

  3. Callender VD, St Surin-Lord S, Davis EC, Maclin M. Postinflammatory hyperpigmentation: etiologic and therapeutic considerations. Am J Clin Dermatol. 2011;12(2):87–99.

    Article  PubMed  Google Scholar 

  4. Cai BX, Jin SL, Luo D, Lin XF, Gao J. Ginsenoside Rb1 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Biol Pharm Bull. 2009;32(5):837–41.

    Article  PubMed  CAS  Google Scholar 

  5. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, et al. Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol. 2009;123(3):446–51.

    Article  PubMed  CAS  Google Scholar 

  6. Lee J, Jung E, Lee J, Huh S, Kim J, Park M, et al. Panax ginseng induces human type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol. 2007;109(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  7. Hoi-Hin K, Ying-Kit YP, Nai-Ki M, Ngok-Shun WR. Ginsenoside Rb1 induces type I collagen expression through peroxisome proliferator-activated receptor-delta. Biochem Pharmacol. 2012;84:532–9.

    Article  Google Scholar 

  8. Longo C, Galimberti M, De Pace B, Pellacani G, Bencini PL. Laser skin rejuvenation: epidermal changes and collagen remodeling evaluated by in vivo confocal microscopy. Laser Med Sci. 2013;28(3):769–76.

    Article  Google Scholar 

  9. Mizuta S, Nishizawa M, Sekiguchi F, Matsuo K, Yokoyama Y, Yoshinaka R. Enzymatic solubilization of collagen in the skin of diamond squid Thysanoteuthis rhombus: application of a fungal acid protease. Fish Sci. 2013;79(5):841–8.

    Article  CAS  Google Scholar 

  10. Han M, Sha X, Wu Y, Fang X. Oral absorption of ginsenoside Rb1 using in vitro and in vivo models. Planta Med. 2006;72(5):398–404.

    Article  PubMed  CAS  Google Scholar 

  11. Moghimi HR, Williams AC, Barry BW. A lamellar matrix model for stratum corneum intercellular lipids. 5. Effects of terpene penetration enhancers on the structure and thermal behaviour of the matrix. Int J Pharm. 1997;146(1):41–54.

    Article  CAS  Google Scholar 

  12. Chang TS, Chen CT. Inhibitory effect of homochlorcyclizine on melanogenesis in alpha-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Arch Pharm Res. 2012;35(1):119–27.

    Article  PubMed  CAS  Google Scholar 

  13. Lee JH, Jang JY, Park C, Kim BW, Choi YH, Choi BT. Curcumin suppresses alpha-melanocyte stimulating hormone-stimulated melanogenesis in B16F10 cells. Int J Mol Med. 2010;26(1):101–6.

    Article  PubMed  Google Scholar 

  14. Ye Y, Chou GX, Wang H, Chu JH, Yu ZL. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine. 2010;18(1):32–5.

    Article  PubMed  CAS  Google Scholar 

  15. Yun CY, Kim D, Lee WH, Park YM, Lee SH, Na M, et al. Torilin from torilis japonica inhibits melanin production in alpha-melanocyte stimulating hormone-activated B16 melanoma cells. Planta Med. 2009;75(14):1505–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hunt G, Todd C, Cresswell JE, Thody AJ. Alpha-melanocyte-stimulating hormone and its analog Nle(4)Dphe(7)alpha-Msh affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sci. 1994;107:205–11.

    PubMed  CAS  Google Scholar 

  17. Liu X, Chen T, Liu XS, Chen Y, Wang LH. Penetration effect of ostrich oil as a promising vehicle on transdermal delivery of sinomenine. J Oleo Sci. 2013;62(9):657–64.

    Article  PubMed  CAS  Google Scholar 

  18. TangJun W-b W. A rapid method for the simultaneous determination of five saponins in Xueshuaotong injection with ultra performance liquid chromatography. Chin J Pharm Anal. 2008;28(1):97–9.

    Google Scholar 

  19. Yao-xuan X, Ya-zhu L. UPLC determination of ginsenoside Rg1, ginsenoside Rb1and notoginsenoside R1 in Panax Notoginseng. J Guangdong Pharmaceutical Univ. 2011;27(5):489–92.

    Google Scholar 

  20. Yang Z, Gao S, Wang JR, Yin TJ, Teng Y, Wu BJ, et al. Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab Dispos. 2011;39(10):1866–72.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang JH, Liu M, Jin HJ, Deng LD, Xing JF, Dong AJ. In vitro enhancement of lactate esters on the percutaneous penetration of drugs with different lipophilicity. AAPS PharmSciTech. 2010;11(2):894–903.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Wang T, Gu XC. In vitro percutaneous permeation of the repellent DEET and the sunscreen oxybenzone across human skin. J Pharm Pharm Sci. 2007;10(1):17–25.

    PubMed  CAS  Google Scholar 

  23. Yao-Dong Y. Design and development of sustained-released preparation and controlled-released preparation (Huan shi kong shi zhi ji de she ji yu kai fa). Beijing: China Medical Science and Technology Press; 2006.

    Google Scholar 

  24. Monti D, Tampucci S, Chetoni P, Burgalassi S, Saino V, Centini M, et al. Permeation and distribution of ferulic acid and its alpha-cyclodextrin complex from different formulations in hairless rat skin. Aaps Pharmscitech. 2011;12(2):514–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Stahl J, Braun M, Siebert J, Kietzmann M. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept (R)) through skin of different species in vitro. BMC Vet Res. 2011;7.

  26. Fares H, Zatz J. Measurement of drug release from topical gels using two types of apparatus. J Pharm Technol. 1995;1:52–6.

    Google Scholar 

  27. Bunge AL. Release rates from topical formulations containing drugs in suspension. J Control Release. 1998;52(1–2):141–8.

    Article  PubMed  CAS  Google Scholar 

  28. Schweikardt T, Olivares C, Solano F, Jaenicke E, Garcia-Borron JC, Decker H. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Pigment Cell Res. 2007;20(5):394–401.

    Article  PubMed  CAS  Google Scholar 

  29. Bos JD, Meinardi MMHM. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    Article  PubMed  CAS  Google Scholar 

  30. Riviere JE, Brooks JD. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci. 2011;119(1):224–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Forster M, Bolzinger MA, Fessi H, Briancon S. Topical delivery of cosmetics and drugs. Molecular aspects of percutaneous absorption and delivery. Eur J Dermatol. 2009;19(4):309–23.

    PubMed  CAS  Google Scholar 

  32. Sanghvi P, Collins C. Comparison of diffusion studies of hydrocortisone between the Franz cell and the enhancer cell. Drug Dev Ind Pharm. 1993;19(13):1573–85.

    Article  CAS  Google Scholar 

  33. Corbo M, Schultz T, Wong G, Buskirk GV. Development and validation of in vitro release testing methods for semisolid formulations. Pharm Technol. 1993;17(9):112–28.

    Google Scholar 

  34. Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N. Mechanism of solute release from porous hydro-matrices and other factors may be responsible. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  35. Crank J. The mathematics of diffusion. London: Oxford University Press; 1979.

    Google Scholar 

  36. Ling Z, Zi-ping Y, Li Z, Li C, Yu-jing F. Effects of different penetration enhancers on transdermal behavior of L-carnitine in vitro. Chin J New Drugs. 2012;21(5):559–62.

    Google Scholar 

  37. Cornwell PA, Barry BW, Bouwstra JA, Gooris GS. Modes of action of terpene penetration enhancers in human skin differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int J Pharm. 1996;127(1):9–26.

    Article  CAS  Google Scholar 

  38. Ongpipattanakul B, Burnette R, Potts R, Francoeur M. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm Res. 1991;8:350–4.

    Article  PubMed  CAS  Google Scholar 

  39. Bouwstra J, Peschier L, Brussee J, Bodde H. Effect of nalkyl-azocycloheptan-2-ones including azone on the thermal behaviour of human stratum corneum. Int J Pharm. 1989;52:47–54.

    Article  CAS  Google Scholar 

  40. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents sponsored by Jiangsu Provincial Department of Education, and also by Hong Kong Baptist University FRG2/08-09/089. The authors also would like to greatly thank Mulin Yang for his proof reading and English correction and Dr. Yu Hua and Yuen Tsz-kin from the Center for Cancer and Inflammation Research of Hong Kong Baptist University for their patient technical guidance in B16 cell culture test.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lu, AP., Yu, ZL. et al. The Melanogenesis-Inhibitory Effect and the Percutaneous Formulation of Ginsenoside Rb1. AAPS PharmSciTech 15, 1252–1262 (2014). https://doi.org/10.1208/s12249-014-0138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0138-3

KEY WORDS

Navigation