
Introduction

Th ere is a lack of true stem cell therapies and applications 

[1] in both civilian and military medical populations. 

Some commercially available bone treatments utilize 

components of mesenchymal stem cells (MSCs; Cellect 

[2] and Trinity [3]), and a small number of applications 

apply hematopoietic stem cells (HSCs) typically har-

vested from umbilical cord blood [4], but no pure Food 

and Drug Administration (FDA)-approved stem cell 

therapies are presently employed [1]. Since there is no 

large-scale stem cell usage, much of the excitement 

surrounding stem cell therapies still lies within the 

promise that these cells hold. Th is is particularly true for 

the military, where stem cells have the capacity to revolu-

tionize the therapeutic approach and degree of recovery 

for soldiers both on and off  the battlefi eld. Th is review 

highlights the disparity between military and civilian 

injuries, with a focus on how stem cells may be utilized in 

both a regenerative and supportive role. Since stem cell 

applications are still in such early stages, the majority of 

work presented projects forward, anticipating how stem 

cells may help alleviate issues specifi c to soldiers in 

modern combat.

Stem cells: defi nitions and sources

A stem cell is an extraordinary kind of cell that has a 

unique ability to renew itself indefi nitely while retaining 

the capacity to diff erentiate into any cell type in the body 

[5]. Th is cellular plasticity makes them a promising cell 

source for replacing and/or regenerating destroyed tissue. 

Th ere are predominantly three classes of stem cells: adult 

stem cells (ASCs), embryonic stem cells (ESCs) and 

induced pluripotent stem cells (iPSCs) [6], each with its 

own advantages and disadvantages (Figure 1). Th e thera-

peutic merits of each cell type are widely debated among 

experts; ASCs are the point of focus here, but likely all 

stem cell sources will be of future benefi t.

Military versus civilian perspective

In peacetime there are few, if any, diff erences between 

military and civilian medical populations; however, war-

time combat injuries introduce a novel set of trauma 

patients into the military medical system, stressing the 

current treatment paradigms for acute trauma. Th ese 

injuries - particularly in the modern era of insurgency 

and improvised explosive devices (IEDs) [7] - are of 

unusually high energy and they occur in a relatively 

young, healthy patient population [8]. Although civilian 

blast injuries are more infrequent, they are occurring at 

an increasing rate - particularly worldwide, in cases of 

domestic terrorism - allowing for selective overlap of 
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both research and treatment models typically focused on 

military casualties [9,10]. Th e high degree of tissue loss 

and destruction associated with these injuries is one of 

the defi ning characteristics of modern combat and 

presents the biggest clinical treatment dilemma. Th e 

customary priorities of skeletal stabilization and tissue 

repair have been replaced with provisional skeletal 

stabilization and tissue replacement or regeneration. 

Cell-based treatment options are most desirable, with an 

end goal of restoring full or partial tissue structure and 

function. Unfortunately, there are currently no eff ective 

options available, primarily due to the limited healing 

capacity of native (adult) cells.

Because of this, stem cells possess high value as a tissue 

regenerative source for combat injury applications, 

particularly ASCs, as age concerns of the native cells are 

mitigated [11] in a young, healthy patient population. 

Some of the supportive (trophic) properties of stem cells 

are also highly desirable, allowing for proper wound 

healing and recovery without requiring en masse 

Figure 1. Stem cell sources and defi nitions. A stem cell is a cell capable of proliferating for long periods and diff erentiating into specialized cells 

that make up the tissues and organs of the body. A single pluripotent stem cell can give rise to cells that develop all three germ layers (mesoderm, 

endoderm, ectoderm) that constitute the body. There are three general classifi cations of stem cells: adult stem cells (ASCs), embryonic stem cells 

(ESCs), and induced pluripotent stem cells (iPSCs). An ASC is an undiff erentiated (unspecialized) cell that occurs in a diff erentiated (specialized) 

tissue, renews itself, and becomes specialized to yield all of the cell types of the tissue from which it originated. ASCs usually divide to generate 

progenitor or precursor cells, which then diff erentiate or develop into ‘mature’ cell types that have characteristic shapes and specialized functions. 

They have a more limited diff erentiation profi le (termed ‘multipotent’) than pluripotent ESCs/iPSCs, but are non-tumorigenic, and can be isolated 

and/or mobilized from many tissue sources, likely making them the most readily adapted cell source for regenerative medicine. The most well 

researched ASCs are mesenchymal and hematopoietic stem cells, originally isolated from bone marrow. An ESC is derived from a group of cells 

called the inner cell mass, which is part of the early (4- to 5-day) embryo called the blastocyst. Once removed from the blastocyst, the cells of the 

inner cell mass can be cultured into ESCs. ESCs have nearly unlimited proliferation and diff erentiation potential, but there are intrinsic tumor and 

ethical concerns, and diff erentiation pathways are poorly understood/controlled currently. An iPSC is a stem cell that has been created from an 

adult cell - such as skin or blood - through the introduction of genes that reprogram it into a cell with the characteristics of an ESC. iPSCs have the 

advantage of not having to be derived from human embryos, a major ethical consideration. Another critical advantage of iPSC technology is that, in 

theory, it allows for the creation of cell lines that are genetically customized to a patient, bypassing issues of immune rejection. Retroviral induction 

is currently required to reprogram adult cells, which is problematic. It also remains to be seen whether reprogrammed skin cells diff er in signifi cant 

ways from ESCs, but in early studies they appear to exhibit the same key features: the ability to diff erentiate to any of the 220 types of cells in the 

human body, and the ability to reproduce indefi nitely in culture. Readers interested in more general information about stem cells are referred to the 

NIH Stem Cell Information web site [109]. Servier Medical Art (Servier, Suresnes, France) was used in assembling Figure 1.
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replace ment of severely injured tissue, making stem cells 

increasingly valuable for both in vitro and in vivo appli-

cations in regenerative medicine [12]. Stem cells also play 

a powerful role aside from tissue regeneration, holding 

promise in alternative applications: emergency/front-line 

blood supplies; drug/vaccine screening for biowarfare; 

and immunomodulation to alleviate rejection of trans-

planted tissues.

We will briefl y discuss stem cell potential in both a 

regenerative and auxiliary capacity here, highlighting the 

most promising current directions. Emphasis is given to 

the most-current review literature for reader reference.

Applications in trauma and regenerative medicine

Th ere are promising in vitro and in vivo approaches for 

utilizing stem cells in regenerative medicine, defi ned by 

the National Institutes of Health as ‘the process of 

creating living, functional tissues to repair or replace 

tissue or organ function lost due to age, disease, damage, 

or congenital defects’ [5]. Nearly all tissues are of military 

interest, due to the diverse nature of injuries associated 

with war trauma (Figure  2). Th e increase in explosive 

attacks in current confl icts often results in massive 

wounds involving multiple organs [13], making all realms 

of tissue reconstitution a primary goal of military stem 

cell applications. To properly engineer complex tissues, 

stem cells will likely need to be augmented by 

biomaterials, which are not discussed in detail here (the 

authors recommend the following reviews: opinion on 

importance of synthetic biomaterials in tissue engineer-

ing [14]; current commercial biomaterials and future 

perspectives [15]; nerve guides [16]). It is rare to have 

localized, singular tissue damage from combat injuries, 

and there is always a mix of integrated cell types; but for 

simplicity of presentation to the reader, individual cell 

types are discussed here.

Sensory tissues

Th e use of polycarbonate eye armor has acted to reduce 

the number of eye injuries from historic rates, but the 

current reliance on high explosive fragmentary munitions 

has actually led to a higher rate of severe ocular injuries 

with unique patterns [17]. Photoreceptors and retinal 

neurons do not spontaneously regenerate, making vision 

loss a permanent proposition in most instances. In rare 

cases eye transplants are viable, but it is thought that 

relatively immature (non-cadaver) cell sources have the 

best chance of host-integration [18]. Recently, retinal 

cells have been produced from embryonic sources [19] 

and ASC sources are showing progress towards creating 

an ocular stem cell [20], creating optimism that sub stan-

tial strides can be made in vision restoration.

Auditory loss is one of the more common sensory 

losses from blast trauma. Supersonic blasts from military 

explosives and armament lead to biochemical and 

mecha nical injury to the inner and outer ear, usually in 

the form of sensory hair loss. Damage to even a marginal 

portion of the non-regenerative cochlear hair cells can 

result in terminal hearing loss and issues of vertigo [21]. 

Stem cell transplantation of a variety of sources has only 

been partially successful in animal models [22]. Neural 

stem cells have shown similar characteristics to the inner 

ear hair cells and the ability to reestablish some auditory 

contacts, generating a possible tool for studying more 

suitable future replacements [23], either by diff erentiation 

of MSCs, or identifi cation of stem cells that potentially 

reside in the cochlea and/or inner ear [24]. In the event 

that hair cells can be produced, issues of nervous 

reintegration will still need to be overcome to have any 

restoration of hearing and balance [21].

Nervous tissue

Injuries to the central and peripheral nervous systems are 

dually damaging, resulting in impairment of proper 

physical and psychological function. Th e focus in this 

section is applying stem cells for structural regeneration 

of damaged neural tissues; psychological factors are 

discussed later. In regards to physical damage, there is 

unfortunately no readily available statistic for nerve 

injuries resulting from recent military campaigns, but 

peripheral nerve injuries occurred in approximately 25% 

of extremity war wounds during the Vietnam confl ict 

Figure 2. Adult stem cell sources for tissues of interest. Stem 

cells serve as the building blocks for regenerative medicine, but 

adult stem cells are not easily characterized and have a native 

plasticity, so there is considerable crossover between cell sources 

and possible tissue applications. The most useful sources will likely 

off er a combination of restored tissue functionality and ease-of-use, 

and are liable to be harvested from the organ(s) of interest or the 

surrounding region.
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[25]. With an increasing number of casualties resulting 

from explosive mechanisms (77 to 84% during Iraq and 

Afghanistan) [26], that number is likely much higher in 

modern combat, particularly the component of concus-

sive blast damage infl icted on the central nervous system, 

which is diffi  cult to ascertain. Some experts posit that 

nearly any high energy injury will have resulting nervous 

tissue damage, making this a large area of military concern.

Generally speaking, there are three types of nervous 

tissue injuries: brain, spinal cord and peripheral nerves. 

At this time, damage to brain tissue is irreversible, with 

very limited understanding of how to structurally repair 

such a complex organ; any realistic discussion of recon-

structing brain tissue is far reaching and beyond the 

scope of this review. Spinal cord damage is physically 

devastating, involving the loss of sensory and motor 

function below the level of injury, with further secondary 

damage caused by infl ammation and other local mecha-

nisms [27]. Th is environment destroys local healthy 

cells  - primarily neurons and the oligodendrocytes that 

myelinate them - and prevents axonal regeneration. 

Peripheral nerves are the most commonly injured in 

combat, resulting from high-velocity gunshot wounds 

and explosive fragments [28]. In some cases peripheral 

nerves are lacerated and are amenable to direct repair, 

but most involve a zone of injury that requires complex 

strategies to facilitate end organ re-innervation. Fracture 

stabilization, repair of vascular injury and tissue debride-

ment often take precedence over nerve repair, and may 

lead to delays in addressing damaged nerves, further 

complicating peripheral nerve treatment [28]. In any type 

of nervous tissue injury, there is typically neuropathic 

pain, experienced as sharp, burning or stabbing sensa-

tions, which combined with limited motor recovery and 

subsequently limited functional recovery makes even 

partial restoration a clear goal [13].

As with the majority of available literature regarding 

stem cells, little direct work has been done with stem 

cells specifi cally for military applications, but there is a 

direct correlation that can be drawn from research done 

for diseases aff ecting the general population. In this case, 

there is a large collection of stem cell-based neural 

research [29] that is targeted at providing novel strategies 

to treat the debilitating eff ects of neurodegenerative 

diseases. So far these strategies have been met with 

modest and temporary gains as treatment options in both 

the central [30] and peripheral nervous systems [31]. 

Spinal cord and peripheral nerve injuries may benefi t 

directly from multiple strategies applied towards neuro-

genesis and remyelination, primarily with neural stem 

cells and/or oligoprogenitors [30-32]. As alluded to earlier, 

artifi cial nerve guides may greatly improve recovery, and 

are an area of eminent interest [16]. Like many stem cell 

discussions, there is split opinion whether adult, 

embryonic or induced-pluripotent stem cells hold the 

most potential going forward [33]. Despite so much work 

being done in the central and peripheral nervous system 

research arenas, no clinical applications are yet available, 

particularly for cases of trauma. Th e more substantial 

impact has been made in mechanistic understanding of 

cells, injuries and their microenvironment, allowing for 

better future strategies [34].

Musculoskeletal tissues

Nearly all modern combat injuries have some degree of 

musculoskeletal damage (bone, fat, muscle, connective 

tissues, and so on), making it a prioritized area of military 

research [35]. Better body armor, trained combat medics, 

point of injury care, rapid evacuation and forward-

operating surgical assets have all greatly increased soldier 

survival, but the percentage of injuries that are ortho-

pedic in nature has remained remarkably steady at around 

65% of total casualties [36]. Musculoskeletal injuries 

greatly limit patient mobility, and commonly have a high 

rate of pain, due to penetrating fragment injuries and 

secondary strains/sprains caused by the severe force 

associated with blast-type weapons [13]. Th ere is also a 

high incidence of ectopic bone formation (heterotopic 

ossifi cation), typically associated with blast injuries [37], 

which can cause considerable pain, poor prosthesis fi t-

ting, limit joint mobility and require secondary surgeries 

for removal. Th e causes of heterotopic ossifi cation are 

still unknown and are under investigation, but are 

believed to result from local stem cell confusion [38].

New stem/progenitor cell sources within the musculo-

skeletal tissue are constantly being discovered (wholly 

labeled here as MSCs), with their availability and diff er-

en tiation profi le making them an extensively examined 

stem cell source, and a most promising cell group for 

future therapies [39]. MSCs were fi rst isolated from bone 

marrow, and gained a widespread connotation as being 

mesenchymal, but recent isolation of cells with similar 

characteristics from various other tissues has led to more 

defi ned descriptors - bone marrow stromal cells, adipose-

derived stem cells [40], and mesenchymal progenitor 

cells [41] or muscle-derived stem cells [42] - all of which 

have been shown to be capable of diff erentiating into the 

principle cell types within the musculoskeletal system 

(osteoblasts, adipocytes, chondrocytes) as well as cardiac 

and neural lineages. Bone marrow stromal cells are the 

most well-characterized of these MSC stem/progenitor 

sources (and it has been argued that other forms are less 

primitive MSCs), but multiple sources are currently in a 

wide range of clinical trials dealing with cardiac, 

osteogenic and neurological diseases [43], with potential 

applications in urological diseases [44]. Expert opinions 

supporting the most promising cell type are widely varied 

[45-49], with the area of regeneration possibly playing a 
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key role in cell choice, as well as ease of isolation. Th ere is 

a prevailing thought that for any structural support 

tissues, a mixture of cells and scaff olding is required [50], 

in which biomaterials selection will be critical - and likely 

complicated [51].

Circulatory-pulmonary tissues

Pulmonary injuries are one of the most obvious examples 

of how war-trauma and associated treatments custom-

arily diff er from their civilian equivalents. Civilian pulmo-

nary trauma is uncommon, so except in select incidences 

[52] most medical research is based around the model of 

lung cancer. Th ere are a variety of lung injuries that aff ect 

soldiers in combat, with many sequelae. Most blast-

related injuries include penetrating trauma (for example, 

shrapnel - although often mitigated by body armor), but 

an entire series of additional injuries are infl icted by blast 

overpressure (known as blast lung [53]), ranging from 

arterial air emboli to pulmonary hemorrhage to lung 

contusions [10,54]. Injuries are extensive (up to 70% of 

critically injured soldiers have some level of pulmonary 

injury) and diagnosis can be complicated by temporal 

variability in clinical presentation [54].

Pulmonary stem cells have been extensively studied in 

the civilian population with respect to their involvement 

in lung cancer [55]. Th e consensus view is that location-

specifi c stem cell zones exist in the lung in lieu of a single 

multipotential stem cell typical of other tissues [55]. Th e 

mechanistic role these cells play in cancer is under close 

examination, but there are few studies testing their 

regenerative capabilities or the role that they may play in 

post-traumatic injury, such as war-time trauma. Th erapies 

directed towards pulmonary fi brosis or acute lung 

injuries utilizing MSCs or ESCs will likely have the most 

immediate benefi t [56-58]. Emerging technologies are 

allowing for isolation and culture of certain lung 

progenitor cells [59], which may prove to be benefi cial for 

combat pulmonary injuries in the distant future.

Cardiovascular trauma encompasses injury to both the 

heart and systemic vasculature. Th e high incidence of 

injuries to extremities makes peripheral vascular damage 

more common, but both heart and vessel wounds are 

suitable areas of stem cell application. Vessel damage 

from gunshot and blast shrapnel wounds is frequently 

complicated by skeletal fracture and soft tissue damage, 

and common emergency treatment methods - such as 

application of tourniquets - often result in iatrogenic 

injury, aggravating ischemia, increasing the chance of 

peripheral nerve injury and furthering tissue necrosis 

[60].

In massive soft tissue injuries there is a wide zone of 

injury involving veins, arteries and their collateral channels, 

making re-anastomosis particularly diffi  cult. Soft tissue 

coverage (muscle fl aps) and/or microvascular repair may 

be required, increasing surgical complexity. While not a 

direct case of vasculature regrowth, soft tissues that can 

be engineered from stem cells would be of great benefi t 

in supporting vasculature treatment and repair.

Th e idea of using stem cells to reconstruct blood vessels 

appears to be a realistic near-term endeavor, as they can 

be readily diff erentiated into the endothelial and smooth 

muscle cells comprising native vasculature [61]. MSCs 

[62] and adipose-derived stem cells [63] both appear to 

have replacement potential as well as trophic stabilization 

for angiogenesis, and vascular progenitor cells derived 

from ESCs have formed microvessels with a degree of 

functional integration in mouse models [64]. Blood vessel 

engineering may be a particularly suitable area for 

biomaterials [61,65].

Compared to vasculature, advances made in stem cell 

biology for cardiac repair are less applicable for war 

trauma since most therapy centers on cardiovascular 

disease instead of functional replacement. Th ere is reason 

for optimism, however, as a wide variety of cell types have 

shown potential for regeneration of cardiac tissues, 

including MSCs, HSCs, cardiac stem cells and ESC/iPSC 

derivatives [66,67]. Additionally, there has been a variety 

of benefi ts in preliminary clinical trials (improved 

ejection fraction and myocardial perfusion) for multiple 

cell types of intra-cardiac and extra-cardiac origin [67], 

seeming to indicate that at least low levels of cardiac 

integration may be more readily achieved than for some 

of the other more complex tissues. Much of the favorable 

results may be due in large part to protective eff ects of 

transplanted stem cells instead of newly generated 

cardiac tissue [66].

Other tissues

Skin is destroyed in nearly every combat injury, with 

deep skin injuries generating large amounts of scar tissue. 

Whether due to penetrating or chemical injury, skin 

cover age is essential for proper wound healing, particu-

larly in large burn injuries, where infection and dehydra-

tion are a constant concern. Fortunately, skin has a large 

reservoir of various stem/progenitor cells inclined to 

produce new epidermis [68], and is rather resilient and 

undergoes continuous regeneration. Ideally, skin would 

be similar to blood vessels, in that stem cells could be 

used to engineer tissue in vitro for subsequent surgical 

grafting, especially in major wounds where there are a 

lack of allograft sites available. Having a ‘young’ tissue 

(particularly if autologous stem cells can be employed) 

increases the odds of healthy integration with native 

organs, and bypasses rejection concerns associated with 

cadaver grafts. Current clinical results utilizing skin stem 

cells are unsatisfactory - usually due to poor long-term 

functionality - seeming to underscore the importance of 

combining skin stem cells with other stem cell sources to 
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generate the complex tissue [69]. Despite no current 

clinical uses, skin stem cells remain a promising source 

for understanding the mechanisms of skin regeneration 

[70], which may help to accelerate recovery, and an active 

biomaterials presence [71] is helping bridge the gap until 

true deep-skin grafts are available in the future.

Closely associated with skin replacement is the issue of 

scarless healing. Although often thought of as a cosmetic 

improvement - which is of obvious importance to mental 

health and everyday recovery - scarless healing has much 

deeper implications. Scarifi cation of tendons, corneal 

scarring, and fi brosis around medical implants/grafts are 

all functional concerns for both the surgeon and the 

patient [72]. Scar tissue is functionally, mechanically and 

structurally inferior to native tissue, and is often asso-

ciated with pain [72]. Additionally, scar tissue formation 

has been implicated in certain disease pathogenesis, such 

as heterotopic ossifi cation [73]. A great deal of eff ort has 

been put towards unraveling the mechanisms of scarless 

healing, generally associated with healing in utero [72]. 

Despite extensive investigation, the specifi cs of fetal 

wound healing remain a mystery, although it is believed 

fetal healing may rely on a diff erent cellular signaling 

cascade than adults, possibly involving HSCs and 

epidermal stem cells [74,75]. It is not surprising that stem 

cells may be implicated; although at this point there is no 

understanding of how they may help to alleviate scar 

formation, they remain an intense area of interest moving 

forward.

Renal injuries are typically fatal in combat [76]. Fortu-

nately, in the case of acute kidney injury, soldier compli-

cations are often similar to those of civilian and non-

wartime patients who require transplantation, so many of 

the advancements and treatment protocols developed 

during peacetime carry over to soldier care. Renal 

progenitor cells have been isolated from the kidney, and 

MSCs appear to be a likely candidate for kidney recon-

stitution, although not in the near future [77].

Trophic/modulating properties

Much of the original excitement surrounding stem cells 

centered on their potential to directly restore and replace 

dysfunctional tissue; however, this may be a simplistic 

and limited view of their true potential. Many of these 

cells off er a protective and/or directive potential at 

sources of injury, initially seen in MSCs [12,78], but now 

characterized across a series of cell types [78,79]. Th ese 

trophic characteristics have been shown to help direct 

healing by secreting a variety of bioactive molecules and 

preparing a functionally desirable extracellular matrix - a 

prerequisite to proper cellular growth and integration. 

Th e carefully orchestrated production of growth factors 

and cytokines helps eff ect a therapeutic outcome, likely 

by inhibiting cell apoptosis and scar formation while 

stimulating angiogenesis and cell mitosis [78]. Th ese 

supportive and directive characteristics of stem cells are 

not completely understood and are far from being fully 

characterized, but it is likely that as their supportive role 

in tissue genesis and repair unfolds it may prove to be 

their most valuable quality. Any method for heightening 

the healing response is of great interest for military 

medicine; this guiding capability of stem cells adds a new 

wrinkle to their application in tissue engineering and 

regenerative medicine, whose potential is just now being 

unraveled.

Auxiliary applications

To this point, our commentary has focused almost 

exclusively on the application of stem cells in regenerative 

medicine, and this is the most promising aspect of stem 

cells for military medical purposes; however, a series of 

other applications harness their unique properties in 

alternative ways. Th ese are briefl y described, to give a 

more inclusive view of stem cell capabilities.

Blood pharming

Th e military has historically sought after a synthetic or 

readily obtainable in vitro source of red blood cells and 

platelets. Blood shortages are common, especially in far 

forward positions during mass casualty events, and there 

are safety and cost concerns associated with disease 

screen ing and storage. Th e Defense Advanced Research 

Projects Agency (DARPA) is actively funding projects to 

develop ‘novel technologies to enable in vitro production 

of red blood cells that are untainted, readily available, and 

free of storage lesions’ [80]. It has long been recognized 

that stem cells (HSCs in particular) could potentially 

remove the burden associated with blood supplies both 

at home and abroad, but progress has been slow, despite 

the high demand. Bottlenecks currently exist in diff eren-

tiating pure populations of red blood cells from a stem 

cell source, as well as creating a bioreactor capable of 

producing the large volumes required for viable applica-

tions [81].

Immunobiology

Th e use of HSCs and/or MSCs in immunosuppression 

and immunomodulation is an area of active and exciting 

research. Infl ammation and the resulting infl ammatory 

cascade resulting from acute injury or infection is the 

necessary ‘fi rst step’ in mounting an immune response or 

initiating tissue repair, but often times the body’s overly 

robust response to insult has signifi cant detrimental 

eff ects. Stem cells may off er a new strategy to modulate, 

or control, this systemic response.

Infection can pose a signifi cant problem to soldiers 

who sustain combat wounds. Environmental contami na-

tion, the reduced catecholic state of soldiers in extended 
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confl ict and the uneven or uncertain level of medical care 

from time of injury may all contribute to the compli ca-

tions that arise from an infected war wound, but the 

body’s ability to respond to and control the infection 

while maintaining the ability to repair the damaged tissue 

will ultimately determine the overall outcome for the 

soldier. In certain instances an infection may overwhelm 

the native defense mechanisms, leading to overwhelming 

sepsis and death, while in other instances the patient may 

be able to mount an appropriate response and heal 

uneventfully. More often than not, the ultimate result is 

somewhere between those two extremes. Long-term 

sequelae resulting from infection are common and wide 

in scope. For example, it has been reported that up to 

15% of combat-related extremity injuries develop osteo-

myelitis [36], a chronic infection of the bone. Th is condi-

tion has a protracted course, often requiring multiple 

surgical procedures over many years and can ultimately 

result in amputation or death. Stem cells may prove 

useful in augmenting the body’s initial response to infec-

tion as well as improving the ability to treat long-term 

sequelae such as osteomyelitis [82-86].

Stem cell-based immunomodulation of tissue allotrans-

plan tation is also starting to show promise. Stem cells are 

valuable in immunobiology, as a means of both 

examining and potentially controlling immune responses 

[87]. Allo genic HSC transplantation has become a 

common proce dure for treating immunodefi ciency 

disorder by redirect ing the immune system, but often 

with severe reactions [88]. MSCs show large potential as 

immunomodulators by skewing the immune response 

towards more tolerant phenotypes, reducing the genera-

tion of dendritic cells and suppressing eff ector T cells 

[87]. Although the mechanisms are still unclear, 

immuno suppression path ways are diligently being 

unraveled [89], with increased benefi ts being seen when 

MSCs and HSCs are applied in conjunction [90]. Th ese 

results make immunosuppressive drug-free allotrans-

plan tation a real possibility, a concept that may have 

enormous impact for the fi eld of composite tissue allo-

transplantation (that is, hand transplantation, face trans-

plantation, and so on). Currently, composite tissue allo-

trans plantation treatment options for non-fatal condi-

tions have not received widespread acceptance because 

of the requirement for lifelong immuno sup pres sive 

treatment, negatively impacting many disfi gured and 

dysfunctional soldiers as they reintegrate into society.

Role of neural stem cells in cognitive behavior

Traumatic brain injury has been one of the hallmark 

injuries associated with the wars in Iraq and Afghanistan 

[91]. Because there is a lack of concrete evidence, 

opinions are divided on the role and possible mechanisms 

of blast waves in causing neurotrauma, and the resultant 

eff ects on the central and peripheral nervous systems 

[91]. What is not debated is the eff ect traumatic brain 

injury can have psychologically, resulting in depression, 

substance abuse, personality disorder and sharing many 

of the same clinical features as post-traumatic stress 

disorder [92,93]. Th e current role of neural stem cells in 

dictating cognitive behavior is unclear, but they are a key 

component of neurogenesis and have been linked to 

post-traumatic stress disorder [94], stress-triggered de-

pres sion [95] and other common aspects of mental health 

[96]. It is of utmost importance that soldiers be able to 

seamlessly incorporate back into society and retain a 

quality of life both physically and psychologically after 

serving. A better understanding of stem cell impact on 

thinking and reasoning - however complex - has obvious 

implications for how to best train and treat soldiers 

experiencing stressful situations during and following 

combat.

Drug/vaccine screening, biosensors

Th e increasing use of chemicals in blast weapons [8] 

underscores the importance of understanding chemical 

eff ects on tissues. In modern warfare, radiation and bio-

weapons are also major concerns. Th e primary impact 

that stem cells may eventually have in diminishing these 

concerns revolves around their regenerative eff ects, as 

previously described. Th ere is also a role for stem cells in 

screening and preventative measures. Computer model-

ing has shown the eff ect high radiation may have on HSC 

populations and leukemia [97], allowing us to infer what 

impact it may have on tissue regeneration. In more direct 

experimentation, mustard gas damage to eyes [98] and 

skin [99] has been evaluated, allowing for initial estima-

tions to be made for how stem cells may speed the 

healing process; similar corollaries have been made for 

brain and bone marrow damage from soman exposure 

[100]. With stem cells being so key to many ongoing 

regenerative processes in the body, it will be important to 

determine how they are aff ected by various weapons of a 

non-physical nature, to better understand short- and 

long-term consequences of soldier health following 

exposure. Th is area of research has been scantly covered.

Stem cells can also function as detection and screening 

agents. Currently, B cells have been employed as cell-based 

biosensors [101] for certain pathogens, and attempts are 

being made to alter them for use in explosive and 

chemical detection; due to their plasticity, there is hope 

that stem cells may be tailored to make biosensors with 

greater sensitivity or specifi city [102]. Additional work is 

being done to utilize stem cells in early stage drug and 

vaccine screening [103]; currently in nascent stages, there 

are a series of obstacles to overcome, but - like most stem 

cells applications - it has the potential to revolutionize 

the drug discovery process.
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Stem cell banking

One issue that has not been addressed is the source of 

stem cells that can be tapped for regenerative and 

auxiliary applications. Th is is partly because each stem 

cell type has its own distinct advantages and disadvan-

tages, with the best candidate for each procedure likely 

winning out in time. General early consensus is that auto-

lo gous sources (ASCs or iPSCs) may hold the greatest 

potential, due to a lack of immune rejection, but allo-

geneic sources have been successfully used previously, 

and ESC-derived tissues may very well not elicit an 

immune response, either naturally or by biological pro-

gram ming. In the case of ASCs and/or iPSCs, one 

proposed idea is to create a biobank of tissues for active 

military personnel, whereby prior to deployment soldiers 

will provide tissue biopsies for long-term storage and 

eventual self-treatment in the event of injury. Biobanks 

are commonly utilized for infant cord blood [104], and 

act as tissue and/or cell repositories, holding an imme-

diate and safe reservoir of cells that can be therapeutically 

applied.

While certainly a promising concept, biobanks have 

serious limitations. Th ere are a myriad of legal and tech-

nical issues, many of which are similar to commercial 

stem cell banking initiatives [105]. Additionally, some 

cells cannot be readily isolated (neural stem cells), and 

others require invasive procedures (bone marrow and 

adipose aspirates). It is also likely cost prohibitive to stem 

cell bank the entire active military for the small fraction 

that will experience a traumatic injury, as well as arrange 

for off -site cell expansion and delivery. Moreover, in the 

event of traumatic injury some previously nonexistent 

stem cells are ‘activated’ and found in large concen-

trations in the wounded tissue [106]; when taken in 

consideration with advances that have been made in 

isolating stem cells during surgical operations, there is 

debate as to the eff ectiveness of using frozen tissue versus 

fresh isolates. Despite these limitations, the intrinsic 

value of readily available, autologous, non-immuno com-

pro mised tissue makes biobanks a signifi cant concept 

worth careful evaluation. Regardless of what is deter-

mined to be the best direction, decisions will have to be 

made concerning how best to harvest stem cells for 

eventual military application, likely based on the most 

promising emerging research.

Conclusion

Th e vast majority of stem cell excitement has yet to be 

realized clinically, but the potential impact on regenera-

tive medicine and auxiliary applications, such as blood 

pharming and immunomodulation, make stem cells an 

area of great interest to the military. Historically, the 

most signifi cant advances in military medical research 

have arisen from investigative eff orts focused on problems 

facing a deployed military force, and many of these 

advances have led to direct applications in civilian 

medical care [107,108]. Medical problems facing the 

deployed forces in the recent confl icts in Iraq and 

Afghanistan have spurred a new wave of military medical 

research, much of which will benefi t from stem cell 

therapies. Only time will tell whether or not researchers 

are able to capitalize on advancements targeted for 

diseases in the general population and apply those for 

purposes benefi cial to those in uniform.
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