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Abstract

Introduction: The transplantation of genetically modified progenitor cells such as bone marrow-derived mesenchymal
stem cells (MSCs) is an attractive strategy to improve the natural healing of articular cartilage defects. In the present
study, we examined the potential benefits of sustained overexpression of the mitogenic and pro-anabolic insulin-like
growth factor I (IGF-I) via gene transfer upon the biological activities of human MSCs (hMSCs).

Methods: Recombinant adeno-associated vectors (rAAV) were used to deliver a human IGF-I coding sequence in
undifferentiated and chondrogenically-induced primary hMSCs in order to determine the efficacy and duration of
transgene expression and the subsequent effects of the genetic modification upon the chondrogenic versus osteogenic
differentiation profiles of the cells relative to control (lacZ) treatment after 21 days in vitro.

Results: Significant and prolonged expression of IGF-I was evidenced in undifferentiated and most importantly in
chondrogenically-induced hMSCs transduced with the candidate rAAV-hIGF-I vector for up to 21 days, leading to
enhanced proliferative, biosynthetic, and chondrogenic activities compared with rAAV-lacZ treatment. Overexpression
of IGF-I as achieved in the conditions applied here also increased the expression of hypertrophic and osteogenic
markers in the treated cells.

Conclusions: These results suggest that a tight regulation of rAAV expression may be necessary for further translation
of the approach in clinically relevant animal models in vivo. However, the current findings support the concept of using
this type of vector as an effective tool to treat articular cartilage defects via gene- and stem cell-based procedures.
Introduction
Injured adult articular cartilage, the tissue that allows for
smooth gliding and weight bearing on articulating sur-
faces, does not heal effectively by itself [1]. Due to its
aneural and avascular nature and in the absence of lymph-
atic drainage, the articular cartilage does not have access
to reparative cells that are potentially brought into nearly
all other tissues in response to injury. Lesions such as
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those resulting from acute trauma or degenerative osteo-
arthritis become persistent and progress over time [1,2].
Hyaline cartilage is formed by chondrocytes surrounded
by a dense network of extracellular matrix composed of
proteoglycans bound to 70 to 80% water and type II colla-
gen and other molecules (type IX, type XI, type VI, and
type XIV collagen, cartilage oligomeric matrix protein, link
protein, decorin, fibromodulin, fibronectin, tenascin). Des-
pite the availability of various pharmacological treatments
and surgical interventions, reproduction of the native
organization and activities in injured cartilage remains
problematic [3-6] because such options promote mostly
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the appearance of a fibrocartilaginous repair tissue con-
sisting of type I collagen that does not integrate well with
the surrounding cartilage and poorly withstands mechan-
ical stress [1,6-8].
Large efforts have been made to overcome these diffi-

culties, and the concept of treating cartilage lesions by
stem cell-based therapy became an important focus of
experimental and clinical research for cartilage repair –
taking advantage of the chondrogenic differentiation
potential and regenerative properties of such cells, in-
cluding bone marrow-derived mesenchymal stem cells
(MSCs) [9-13]. Important limitations still hinder the use
of MSCs in patients, including the large amounts of
cells required for application in vivo and the age-related
decline in lifespan, proliferation, and potency [14-17].
Gene delivery approaches offer strong tools to optimize
the use of human bone marrow-derived mesenchymal
stem cells (hMSCs) for cartilage repair purposes. Vari-
ous therapeutic candidate sequences have been reported
for their effects upon the chondrogenic differentiation
of such cells, among which are cartilage oligomeric matrix
protein [18], transforming growth factor beta (TGFβ)
[19-21], bone morphogenetic proteins [21-23], basic fibro-
blast growth factor (FGF-2) [24], Indian hedgehog [21],
human telomerase alone [25,26] or combined with a small
interfering RNA against p53 [27], the specific transcription
factors of the SOX family alone [28-33] or combined with
an anti-Runx2/Cbfa1 small interfering RNA [34], or the
zinc-finger protein 145 [35]. Most of these studies, how-
ever, focused on the use of gene transfer vectors with rela-
tively low or short-term efficiencies (nonviral vectors,
adenoviral vectors) [18,19,21-23,28-31,33,34] or on con-
structs carrying the risk of insertional mutagenesis (retro-
viral vectors, lentiviral vectors) [25-27,35].
Recombinant adeno-associated virus (rAAV) vectors

emerged instead as more advantageous gene vehicles
because they are less toxic and immunogenic due to
complete removal of the adeno-associated viral vector
coding sequences while allowing for very high and per-
sistent levels of transgene expression in hMSCs by main-
tenance of the sequences delivered mostly under the
form of stable episomes, without impairment of the dif-
ferentiation potential [20,24,32]. Genetic modification of
hMSCs via rAAV has so far been performed to deliver
various therapeutic candidates including TGFβ [20],
FGF-2 [24], and SOX9 [32], but little is known about
the effects of applying insulin-like growth factor I (IGF-I)
via rAAV in this clinically relevant population of regen-
erative cells. In the present study, we also focused on
this particular growth factor in light of our previous
work showing the benefits of overexpressing IGF-I via
rAAV upon the remodeling of human osteoarthritic
cartilage by activation of the anabolic and proliferative
processes in damaged chondrocytes in situ [36]. Our
results demonstrate – for the first time, to our best
knowledge – that chondrogenic differentiation of hMSCs
can be enhanced by treatment with IGF-I, specifically
when overexpressing the factor via rAAV gene transfer
possibly due to the high and prolonged levels of transgene
expression achieved with this class of vector compared
with other less efficient gene delivery systems. Yet treat-
ment with the current IGF-I candidate vector also led to
an increased expression of hypertrophic and osteogenic
markers, so tight regulation of IGF-I expression via rAAV
will be critical to achieve an optimized stem cell-based,
rAAV-human insulin-like growth factor I (hIGF-I)-medi-
ated approach to treat articular cartilage defects in vivo.

Methods
Reagents
Reagents were obtained from Sigma (Munich, Germany)
unless otherwise indicated. Recombinant FGF-2 and
TGFβ3 were purchased from Peprotech (Hamburg,
Germany). The dimethylmethylene blue dye was from
Serva (Heidelberg, Germany). The anti-IGF-I (AF-291-
NA) antibody was from R&D Systems (Wiesbaden-
Nordenstadt, Germany), the anti-type-II collagen (II-II6B3)
antibody from the NIH Hybridoma Bank (University of
Iowa, Ames, IO, USA), the anti-type-I (AF-5610) anti-
body from Acris (Hiddenhausen, Germany), the anti-
bromodeoxyuridine (BrdU; BU-33) and anti-type X
collagen (COL-10) antibodies from Sigma, and the anti-
SOX9 (C-20), anti-CD34 (C-18), anti-CD71 (C-20), and
anti-CD105 (T-20) antibodies from Santa Cruz Biotech-
nology (Heidelberg, Germany). Biotinylated secondary
antibodies and ABC reagent were obtained from Vector
Laboratories (Alexis Deutschland GmbH, Grünberg,
Germany). The IGF-I enzyme-linked immunosorbent assay
(ELISA) (hIGF-I Quantikine ELISA) was from R&D
Systems, the type II and type I collagen ELISAs (Arthrogen-
CIA Capture ELISA Kit) from Chondrex (Redmond, WA,
USA), and the type X collagen ELISA from Antibodies-
online GmbH (Aachen, Germany). The Cell Prolifera-
tion reagent WST-1 was from Roche Applied Science
(Mannheim, Germany) and the alkaline phosphatase
(ALP) staining kit was from Sigma.

Cell culture
Bone marrow aspirates (~15 ml) were obtained from the
distal femurs of patients undergoing total knee arthro-
plasty (n = 26). The study was approved by the Ethics
Committee of the Saarland Physicians Council. All pa-
tients provided informed consent before inclusion in the
study and all procedures were in accordance with the
Helsinki Declaration. The hMSCs were isolated and ex-
panded in culture using standard protocols [24,32].
Briefly, aspirates were washed in Dulbecco’s modified
Eagle’s medium (DMEM), centrifuged, and the pellet
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was resuspended in Red Blood Cell Lysing Buffer (Sigma)
in DMEM (1:1). The resulting fraction was washed, pel-
leted, and resuspended in DMEM containing 10% fetal
bovine serum with penicillin (100 U/ml)/streptomycin
(100 μl/ml) (growth medium). Cells were plated in T75
flasks and maintained at 37°C in a humidified atmosphere
with 5% carbon dioxide. The medium was exchanged after
24 hours and every 2 to 3 days thereafter using growth
medium with recombinant FGF-2 (1 ng/ml). The cells
were detached and replated for further experiments at
appropriate densities. The hMSCs were analyzed with
flow cytometry for expression of stem-cell surface
markers (CD71+, CD105+, CD34−). All experiments were
performed with cells at no more than passage two.

Plasmids and recombinant adeno-associated virus vectors
The constructs were all derived from the same parental
adeno-associated vector-2 genomic clone, pSSV9 [37,38].
rAAV-lacZ carries the lacZ gene encoding Escherichia
coli β-galactosidase and rAAV-hIGF-I carries a 536 base
pair hIGF-I cDNA fragment [36], both under the con-
trol of the cytomegalovirus immediate-early promoter
[24,32,36]. rAAV vectors were packaged as conventional
(not self-complementary) vectors in the 293 adenovirus-
transformed embryonic kidney cell line, using Adenovirus
5 to provide helper functions in combination with the
pAd8 helper plasmid as described previously [24,32,36].
Purification, dialysis, and titration of the vectors by
real-time polymerase chain reaction (PCR) were per-
formed as described previously [24,32,36], averaging 1010

transgene copies/ml (ratio virus particles to functional
vectors = 500/1).

Recombinant adeno-associated virus-mediated gene
transfer
Monolayer cultures of undifferentiated hMSCs (2 × 104

cells) were transduced with rAAV (20 μl vector; that is,
4 × 105 functional recombinant viral particles or multi-
plicity of infection (MOI) = 20) and kept in growth
medium for up to 21 days [24,32]. The hMSC aggregate
cultures (2 × 105 cells) were prepared and kept in defined
chondrogenic medium (high-glucose DMEM 4.5 g/l, peni-
cillin/streptomycin, 6.25 μg/ml insulin, 6.25 μg/ml trans-
ferrin, 6.25 μg/ml selenous acid, 5.35 μg/ml linoleic acid,
1.25 μg/ml bovine serum albumin, 1 mM sodium pyru-
vate, 37.5 μg/ml ascorbate 2-phosphate, 10−7 M dexa-
methasone, 10 ng/ml TGFβ3) for transduction (or not)
with rAAV (40 μl vector; that is, 8 × 105 functional re-
combinant viral particles or MOI = 4) over a period of
21 days [24,32]. For osteogenic and adipogenic differen-
tiation, hMSCs in monolayer cultures (105 cells) were
transduced with rAAV (40 μl vector; that is, 8 × 105

functional recombinant viral particles or MOI = 8) and in-
duced toward osteogenic differentiation using the StemPro
Osteogenesis Differentiation kit or toward adipogenic dif-
ferentiation using the StemPro Adipogenesis Differenti-
ation kit (both from Life Technologies GmbH, Darmstadt,
Germany) [32].

Transgene expression
To assess IGF-I secretion, samples were washed twice and
placed for 24 hours in serum-free medium. Supernatants
were collected at the denoted time points and centrifuged
to remove debris, and IGF-I production was measured
by ELISA [36]. Quantitative measurements were per-
formed on a GENios spectrophotometer/fluorometer
(Tecan, Crailsheim, Germany). Transgene expression
was also monitored by immunocytochemical and im-
munohistochemical analyses using a specific primary
antibody [24,32,36].

Biochemical assays
Cultures were harvested and aggregates were digested
with papain [24,32]. Cell proliferation was assessed
with the Cell Proliferation reagent WST-1, with optical
density proportional to the cell numbers [24,32,36],
and by immunolabeling following BrdU incorporation
(3 μg/ml for 24 hours) [36]. The DNA and proteoglycan
contents were determined with a fluorimetric assay
using Hoechst 22358 and by binding to dimethylmethy-
lene blue dye, respectively [24,32,36]. Analysis of the
type II, type I, and type X collagen contents was per-
formed by respective ELISAs [24,32,36]. Data were nor-
malized to total cellular proteins using a protein assay
(Pierce Thermo Scientific, Fisher Scientific, Schwerte,
Germany). All measurements were performed on a GENios
spectrophotometer/fluorometer (Tecan).

Histological, immunocytochemical, and
immunohistochemical analyses
Monolayer and aggregate cultures were harvested and
fixed in 4% formalin. Aggregates were further dehydrated
in graded alcohols, embedded in paraffin, and sectioned
(3 μm). Sections were stained with hematoxylin and eosin
(cellularity), toluidine blue (matrix proteoglycans), and ali-
zarin red (matrix mineralization) as described previously
[24,32]. Expression of SOX9, type II, type I, and type X
collagen was detected by immunohistochemistry using
specific primary antibodies, biotinylated secondary anti-
bodies, and the ABC method with diaminobenzidine as
the chromogen [24,32]. Samples were also tested for trans-
gene (IGF-I) expression and BrdU incorporation using
specific primary antibodies. To control for secondary im-
munoglobulins, sections were processed with omission
of the primary antibody. Osteogenically induced cultures
were stained for ALP activity and adipogenically differ-
entiated cultures were stained with Oil Red O to detect
intracellular lipid droplets [32]. Samples were examined
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under light microscopy (Olympus BX 45; Olympus,
Hamburg, Germany).

Histomorphometry
The transduction efficiencies, the percentage of cells posi-
tive for BrdU uptake and for SOX9 expression, the cell
densities on hematoxylin and eosin-stained sections, the
aggregate diameters, the intensities of toluidine blue and
alizarin red staining and those of type II, type I, and type
X collagen immunostaining (all in pixels per standardized
area) were measured at three random standardized sites
or using 10 serial histologic and immunohistochemical
sections for each parameter, test, and replicate condi-
tion using the SIS analySIS program (Olympus), Adobe
Photoshop (Adobe Systems, Unterschleissheim, Germany),
and Scion Image (Scion Corporation, Frederick, MD, USA)
[24,32]. The percentages of areas stained for ALP or Oil
Red O were calculated as being the ratios of positively
stained surface to the total surface evaluated [32]. The
ALP and Oil red O staining intensities were measured
in pixels per standardized area [32].

Real-time reverse transcription polymerase chain reaction
analyses
Total cellular RNA was extracted from the cultures
using the RNeasy Protect Mini Kit with an on-column
RNase-free DNase treatment (Qiagen, Hilden, Germany).
RNA was eluted in 30 μl RNase-free water. Reverse tran-
scription was carried out with 8 μl eluate using the 1st
Strand cDNA Synthesis kit for RT-PCR (AMV; Roche Ap-
plied Science). An aliquot of the cDNA product (2 μl) was
amplified with real-time PCR using the Brilliant SYBR
Green QPCR Master Mix (Stratagene, Agilent Technolo-
gies, Waldbronn, Germany) on an Mx3000P QPCR oper-
ator system (Stratagene) as follows: initial incubation (95°C,
10 minutes), amplification for 55 cycles (denaturation at
95°C, 30 seconds; annealing at 55°C, 1 minute; extension at
72°C, 30 seconds), denaturation (95°C, 1 minute), and final
incubation (55°C, 30 seconds). The primers (Invitrogen,
Darmstadt, Germany) used were SOX9 (chondrogenic
marker) (forward, 5′-ACACACAGCTCACTCGACCTTG-3′;
reverse, 5′-GGGAATTCTGGTTGGTCCTCT-3′), type II
collagen (COL2A1; chondrogenic marker) (forward, 5′-
GGACTTTTCTCCCCTCTCT-3′; reverse, 5′-GACCCGA
AGGTCTTACAGGA-3′), type I collagen (COL1A1; osteo-
genic marker) (forward, 5′-ACGTCCTGGTGAAGTTGG
TC-3′; reverse, 5′-ACCAGGGAAGCCTCTCTCTC-3′),
type X collagen (COL10A1; marker of hypertrophy)
(forward, 5′-CCCTCTTGTTAGTGCCAACC-3′; reverse,
5′-AGATTCCAGTCCTTGGGTCA-3′), matrix metallo-
proteinase 13 (MMP13; marker of terminal differentiation)
(forward, 5′-AATTTTCACTTTTGGCAATGA-3′; reverse,
5′-CAAATAATTTATGAAAAAGGGATGC-3′), runt-related
transcription factor 2 (RUNX2; osteogenic marker) (forward,
5′-GCAGTTCCCAAGCATTTCAT-3′; reverse, 5′-CACT
CTGGCTTTGGGAAGAG-3′), ALP (osteogenic marker)
(forward, 5′-TGGAGCTTCAGAAGCTCAACACCA-3′;
reverse, 5′-ATCTCGTTGTCTGAGTACCAGTCC-3′),
β-catenin (mediator of the Wnt signaling pathway for
osteoblast lineage differentiation) (forward, 5′-CAAGT
GGGTGGTATAGAGG-3′; reverse, 5′-GCGGGACAAAG
GGCAAGA-3′), and glyceraldehyde-3-phosphate dehydro-
genase (housekeeping gene and internal control) (forward,
5′-GAAGGTGAAGGTCGGAGTC-3′; reverse, 5′-GAAG
ATGGTGATGGGATTTC-3′) (all 150 nM final concen-
tration) [24,32]. Control conditions included reactions
using water and nonreverse-transcribed mRNA. Specificity
of the products was confirmed by melting curve analysis
and agarose gel electrophoresis. The threshold cycle (Ct)
value for each gene of interest was measured for each amp-
lified sample using MxPro QPCR software (Stratagene),
and values were normalized to glyceraldehyde-3-phosphate
dehydrogenase expression by using the 2–ΔΔCt method,
as described previously [24,32].

Statistical analyses
Each treatment condition was performed in triplicate in
three independent experiments for each patient. Data
are expressed as the mean ± standard deviation of separate
experiments. The t test and the Mann–Whitney rank-sum
test were used where appropriate. P < 0.05 was considered
statistically significant.

Results
Sustained expression of IGF-I in undifferentiated hMSCs
via rAAV gene transfer
hMSCs were first transduced with the candidate rAAV-
hIGF-I vector in undifferentiated monolayer cultures com-
pared with a control condition (application of a reporter
rAAV-lacZ gene vector) [24,32] to examine the ability of
rAAV to mediate overexpression of the growth factor over
time in these cells in vitro at an undifferentiated stage. Sus-
tained, intense immunoreactivity to IGF-I was detected in
cells transduced with rAAV-hIGF-I compared with the con-
trol treatment after 5 days (data not shown) and for up
to 21 days, with transduction efficiencies of 76 to 84%
(Figure 1A). This finding was corroborated by an analysis
of the IGF-I production levels in IGF-I-transduced cells
(1.2 ± 0.2 vs. 0.3 ± 0.1 ng/ml/24 hours in lacZ-treated cells
on day 14, and 2.9 ± 0.4 vs. 0.8 ± 0.2 ng/ml/24 hours on day
21; an up to fourfold difference, always P ≤ 0.001) (Figure 1A).

Effects of rAAV-hIGF-I transduction on the biological
activities of undifferentiated hMSCs
The candidate rAAV-hIGF-I vector was next applied to un-
differentiated monolayer cultures of hMSCs to investigate
the effects of IGF-I treatment on the biological activities
of the cells (proliferation, matrix synthesis) compared with



Figure 1 Recombinant adeno-associated virus-mediated IGF-I gene transfer in undifferentiated monolayer cultures of human bone
marrow-derived mesenchymal stem cells. Cells were transduced with rAAV-hIGF-I or rAAV-lacZ (20 μl each vector) as described in Methods
and histologically processed after 21 days to monitor (A) transgene (insulin-like growth factor I) expression by immunocytochemical analysis
and enzyme-linked immunosorbent assay, (B) levels of cell proliferation by immunocytochemical detection of bromodeoxyuridine (BrdU)
incorporation and histomorphometry, by WST-1 assay, and by detection of the DNA contents, and (C) levels of proteoglycan synthesis
(magnification × 4). *Statistically significant compared with rAAV-lacZ. hIGF-I, human insulin-like growth factor I; OD, optical density;
rAAV, recombinant adeno-associated virus.
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control lacZ treatment. Immunodetection of BrdU incorp-
oration in transduced cells revealed significantly increased
levels of proliferation mediated by rAAV-hIGF-I compared
with rAAV-lacZ (82 to 93% vs. ≤9% BrdU+ cells on day 21;
up to 10.3-fold difference, P ≤ 0.001) (Figure 1B). These re-
sults were corroborated by the results of a WST-1 assay
(~0.313 and 0.110 optical density at 450 nm in IGF-I-
treated vs. lacZ-treated cells on day 21; 2.8-fold difference,
P ≤ 0.001) (Figure 1B) and when monitoring the DNA
contents in the cultures (53.9 ± 2.3 and 30.6 ± 1.8 μg/mg
total proteins in IGF-I-treated vs. lacZ-treated cells on day
21; 1.8-fold difference, P ≤ 0.001) (Figure 1B). Further ana-
lyses also revealed that application of rAAV-hIGF-I signifi-
cantly increased the proteoglycan contents in the cultures
at the end of the evaluation period compared with lacZ
treatment (25.7 ± 2.3 vs. 14.1 ± 1.7 μg/mg total proteins on
day 21; 1.8-fold difference, P ≤ 0.001) (Figure 1C).

Prolonged rAAV-mediated IGF-I expression in
chondrogenically differentiated hMSCs
hMSCs were then transduced with rAAV-hIGF-I in chon-
drogenically induced aggregate cultures [10,12,13], again
using rAAV-lacZ as a control condition because rAAV
does not impair the potency of these cells [20,24,32,39], in
order to evaluate the ability of the candidate vector to pro-
mote the expression of IGF-I over time in cells committed
toward the chondrocyte phenotype, with a focus on day
21 where chondrogenesis is known to occur [10,12,13].
In agreement with the findings in monolayer cultures,
a strong, durable signal specific for the growth factor
was detected by immunohistochemistry in cells trans-
duced with rAAV-hIGF-I compared with lacZ for up to
21 days, with transduction efficiencies of 74 to 81%
(Figure 2A). This result was also substantiated by an
analysis of the IGF-I production levels in IGF-I-
transduced cells (44.5 ± 2.3 vs. 2.1 ± 0.4 pg/ml/24 hours
in lacZ-treated aggregates or 1.9 ± 0.2 pg/ml/24 hours
in untreated aggregates on day 21; 21.2-fold to 23.4-fold
difference, P ≤ 0.001, while there was no difference be-
tween controls, P = 0.130) (Figure 2A).

Effects of rAAV-hIGF-I treatment on the biological activities
and differentiation potential of chondrogenically
induced hMSCs
Cells were next transduced with rAAV-hIGF-I and in-
duced in aggregate cultures toward chondrogenesis in
order to examine the effects of IGF-I treatment upon
the biological activities and chondrogenic differenti-
ation potential of the cells versus the lacZ control con-
dition. As we and others clearly reported previously that
rAAV gene transfer does not impair the potency of
hMSCs [20,24,32,39], we did not further include a con-
dition without vector treatment. Immunodetection of
BrdU incorporation in IGF-I-transduced cells revealed
significantly increased levels of proliferation compared
with lacZ (87 to 94% vs. ≤11% BrdU+ cells on day 21; up



Figure 2 Recombinant adeno-associated virus-mediated IGF-I gene transfer in chondrogenically induced cultures of human bone
marrow-derived mesenchymal stem cells. Human bone marrow-derived mesenchymal stem cell aggregates were transduced with rAAV-hIGF-I
or rAAV-lacZ (40 μl each vector) as described in Methods and were histologically processed after 21 days to monitor (A) transgene (insulin-like
growth factor I) expression by immunohistochemical analysis (magnification × 20) and enzyme-linked immunosorbent assay, and the levels of cell
proliferation by immunohistochemical detection of bromodeoxyuridine (BrdU) incorporation and histomorphometry (B) (magnification × 10), by
hematoxylin and eosin staining and histomorphometry (C) (magnification × 4), or by biochemical assays (WST-1 assay and detection of the DNA
contents) (D). *Statistically significant compared with rAAV-lacZ. hIGF-I, human insulin-like growth factor I; OD, optical density; rAAV, recombinant
adeno-associated virus.
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to 8.5-fold difference, P ≤ 0.001) (Figure 2B). These re-
sults were confirmed by an analysis of the cell densities
on hematoxylin and eosin-stained sections from aggre-
gates (4,220 ± 254 vs. 1,050 ± 187 cells/mm2 on day 21;
fourfold difference, P ≤ 0.001) (Figure 2C), by the results
of a WST-1 assay (~0.231 and 0.182 optical density at
450 nm in IGF-I-treated vs. lacZ-treated aggregates on
day 21; 1.3-fold difference, P ≤ 0.001) (Figure 2D), or
when monitoring the DNA contents in the cultures (9.2 ±
1.4 and 5.2 ± 0.7 ng/mg total proteins in IGF-I-treated
vs. lacZ-treated aggregates on day 21; 1.8-fold differ-
ence, P ≤ 0.001) (Figure 2D). Also of note, application of
the IGF-I vector significantly increased the diameters of
the aggregates at the end of the period of evaluation
compared with lacZ transduction (1,044 ± 190 vs. 822 ±
244 μm; 1.3-fold difference, P = 0.021) (Figure 2C).
When samples were processed to monitor the meta-

bolic and differentiation activities of hMSCs, successful
chondrogenesis was noted on histological sections of ag-
gregates as evidenced by toluidine blue staining and type
II collagen deposition, revealing more intense staining
when the IGF-I vector was applied (1,657 ± 22 vs. 181 ±
8 and 405 ± 12 vs. 83 ± 4 pixels of toluidine blue staining
and type II collagen immunostaining, respectively, in
IGF-I-treated vs. lacZ-treated aggregates on day 21; up
to 9.2-fold difference, always P ≤ 0.001) (Figure 3A,C).
These results were substantiated by an evaluation of the
proteoglycan and type II collagen contents in the aggre-
gates (283.5 ± 10.5 and 64.5 ± 7.8 μg proteoglycans/mg
total proteins and 12.7 ± 2.2 and 5.9 ± 1.9 μg type II col-
lagen/mg total proteins in IGF-I-treated vs. lacZ-treated
aggregates on day 21; up to 4.4-fold difference, always
P ≤ 0.001) (Figure 3A,C), possibly due to an increase in
SOX9 expression promoted by IGF-I gene transfer (98 ±
1% vs. 41 ± 2% of SOX9+ cells, respectively, in IGF-I-
treated vs. lacZ-treated aggregates on day 21; 2.4-fold



Figure 3 Metabolic and differentiation activities in chondrogenically induced cultures of human bone marrow-derived mesenchymal
stem cells transduced with rAAV-hIGF-I. Human bone marrow-derived mesenchymal stem cell aggregates were transduced with rAAV-hIGF-I
or rAAV-lacZ as described in Figure 2 and histologically processed after 21 days to evaluate the production of matrix proteoglycans (toluidine blue
staining with histomorphometry and detection of the proteoglycan contents) (A) and the expression of SOX9 with histomorphometry (B) and
type II collagen (specific immunodetection with histomorphometry and detection of the type II collagen contents) (C) (all at magnification × 4).
*Statistically significant compared with rAAV-lacZ. hIGF-I, human insulin-like growth factor I; rAAV, recombinant adeno-associated virus.
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difference, P ≤ 0.001) (Figure 3B). An analysis of the gene
expression profiles by real-time reverse transcription
(RT)-PCR further confirmed these findings (9.1-fold and
2.8-fold higher SOX9 and COL2A1 expression levels, re-
spectively, in IGF-I-treated vs. lacZ-treated aggregates,
always P ≤ 0.001) (Figure 4).
Interestingly, administration of the IGF-I vector com-

pared with lacZ led to increases in the intensity of type
I and type X collagen immunostaining and of alizarin
red staining (60 ± 2 vs. 43 ± 2, 62 ± 3 vs. 49 ± 2, and 56 ±
2 vs. 42 ± 2 pixels of type I and type X collagen immu-
nostaining and alizarin red staining, respectively, in
IGF-I-treated vs. lacZ-treated aggregates on day 21; up
to 1.4-fold difference, always P ≤ 0.001) (Figure 5A,B,C).
These findings were corroborated by an evaluation of
the type I and type X collagen contents in the aggregates
(36.3 ± 2.9 and 22.8 ± 2.7 μg type I collagen/mg total
proteins and 1.2 ± 0.1 and 0.8 ± 0.1 ng type X collagen/
mg total proteins in IGF-I-treated vs. lacZ-treated cells
on day 21; up to 1.6-fold difference, always P ≤ 0.001)
(Figure 5A,B) and by real-time RT-PCR analysis (1.4-fold
and 2.2-fold higher COL1A1 and COL10A1 expression
levels, respectively, in IGF-I-treated vs. lacZ-treated
aggregates; always P ≤ 0.001) (Figure 4). Of further note,
such an analysis also revealed enhanced expression
profiles for MMP13, RUNX2, ALP, and β-catenin upon
IGF-I gene transfer compared with lacZ (6.1-fold, 2.5-
fold, 3.6-fold, 1.9-fold, and 1.9-fold, respectively; always
P ≤ 0.001) (Figure 4).

Effects of rAAV-hIGF-I treatment on the osteogenic and
adipogenic differentiation potential of hMSCs
The candidate IGF-I vector was next provided to osteo-
genically and adipogenically differentiated hMSCs over
time to estimate further the effects of the growth factor
via rAAV application on the potential for osteogenic and
adipogenic differentiation of the cells compared with
control lacZ treatment. Successful osteogenic differenti-
ation was noted in the induced cultures as evidenced by
ALP staining (Figure 6A). Notably, application of rAAV-
hIGF-I significantly increased the percentage of stained
areas as well as the intensities of staining after 21 days
compared with lacZ condition (62 ± 1% vs. 22 ± 2% and
1.773 ± 0.017 vs. 1.678 ± 0.009 × 106 pixels/mm2, respect-
ively; up to 1.1-fold difference, always P ≤ 0.001) (Figure 6A).
Successful adipogenic differentiation was also achieved
in the induced cultures as seen by the accumulation of
lipid droplets after staining with Oil Red O (Figure 6B).



Figure 4 Expression analyses in chondrogenically induced
cultures of human bone marrow-derived mesenchymal stem
cells transduced with rAAV-hIGF-I. Human bone marrow-derived
mesenchymal stem cell aggregates were transduced with rAAV-hIGF-I
or rAAV-lacZ as described in Figure 2 and processed on day 21 for
gene expression analysis by real-time reverse transcription-polymerase
chain reaction amplification after total cellular RNA extraction and
cDNA synthesis, as described in Methods. The genes analyzed
included the transcription factor SOX9, type II, type I, and type X
collagen (COL2A1, COL1A1, COL10A1), matrix metalloproteinase
13 (MMP13), the transcription factor RUNX2, alkaline phosphatase
(ALP), and β-catenin, with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) serving as a housekeeping gene and internal control
(primers are listed in Methods). Threshold cycle (Ct) values were
obtained for each target and GAPDH as a control for normalization,
and fold inductions (relative to lacZ-treated aggregates) were
measured using the 2–ΔΔCt method. *Statistically significant compared
with rAAV-lacZ. hIGF-I, human insulin-like growth factor I; rAAV,
recombinant adeno-associated virus.
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Interestingly, while there was no significant difference
between the percentages of stained areas on day 21 be-
tween IGF-I-treated and lacZ-treated samples (75 ± 1%
and 74 ± 1%, P = 0.215), the intensities of staining were
significantly higher when the rAAV-hIGF-I was applied
(1.110 ± 0.001 vs. 1.009 ± 0.002 × 106 pixels/mm2; 1.1-fold
difference, P ≤ 0.001) (Figure 6B).

Discussion
The concept of transplanting progenitor cells such as
MSCs in articular cartilage defects is a promising ap-
proach to enhance the intrinsic healing capacities of this
particular tissue [40-42] and is already a clinical reality
employed to treat patients [11]. Yet the production of an
original, hyaline cartilage tissue has never be reported in
any of the lesions so far treated with stem cells, leading
instead to the formation of a fibrocartilage with poor
biomechanical properties, showing the need for im-
proved procedures. In this regard, the genetic manipula-
tion of MSCs is an attractive approach to address such
an issue by improving their potentiality for enhanced
cartilage repair processes upon transplantation in the de-
fects. Here, we focused on delivering a candidate se-
quence coding for the anabolic and mitogenic IGF-I
factor by transduction with rAAV, one of the safest and
most effective gene vehicles available to date for human
gene therapy, in light of our previous work showing that
such a construct allows for stable reconstruction of hu-
man osteoarthritic cartilage in situ [36].
Our data first demonstrate that highly effective and pro-

longed expression of IGF-I can be achieved upon rAAV
transduction in hMSCs using undifferentiated and chon-
drogenically induced cultures for at least 21 days (the lon-
gest time point evaluated), with transduction efficiencies
reaching up to 84%, all in good agreement with previous
findings using the same vector to target articular chondro-
cytes [36] or when applying other rAAV to this cell type
[20,24,32,39], probably due to the good persistence of
rAAV transgenes in their targets [43]. The levels achieved
here in hMSC aggregates with rAAV were 44.5 pg IGF-I/
ml/24 hours after 21 days of culture, while higher but
only very short-term production has been reported upon
transduction with IGF-I adenoviral vectors (from 75 to
30 ng/ml in hMSCs between days 3 and 7, and of 50 to
80 ng/ml for only 3 days in animal cells, with undetectable
expression levels beyond these time points) [19,44,45].
This is probably due to the much higher MOIs applied in
these previous studies (MOI = 100 to 250) whereas we
used much lower rAAV MOIs (MOI = 4, 25-fold to 63-
fold less vector) in a similar three-dimensional envir-
onment, all in good agreement with the properties of
each class of vector [46,47].
The data further indicate that IGF-I overexpression

using rAAV in the conditions applied here was capable
of stimulating both the proliferative and anabolic activities
of hMSCs in undifferentiated monolayer cultures over a
prolonged period of time (21 days), probably due to the
sustained levels of IGF-I expression achieved with this
stable class of gene transfer vector, all in good agreement
with the properties of the growth factor [36,48,49]. Most
remarkably, treatment with the current rAAV IGF-I con-
struct also allowed one to enhance the differentiation of
these cells in chondrogenically induced aggregate cultures
compared with the control (lacZ) treatment, as noted by
the increased expression levels and deposition of proteo-
glycans and type II collagen. These results are in marked
contrast with previous findings from different groups who
reported that application of IGF-I to MSCs via gene trans-
fer was not capable of inducing such processes in similar
culture conditions [19,44,45]. It is important to mention
that all these earlier studies focused on the use of much
less efficient adenoviral vectors that allowed only for very
short-term transgene expression (not beyond a week),
while we evidenced a prolonged production of IGF-I with
rAAV over the whole period of evaluation (21 days).



Figure 5 Hypertrophic differentiation in chondrogenically induced cultures of human bone marrow-derived mesenchymal stem cells
transduced with rAAV-hIGF-I. Human bone marrow-derived mesenchymal stem cell aggregates were transduced with rAAV-hIGF-I or rAAV-lacZ
as described in Figure 2 and histologically processed after 21 days to examine the expression of type I collagen (A) and type X collagen (B) by
immunohistochemistry/histomorphometry and by analysis of the type I collagen (A) and type X collagen (B) contents, and to evaluate matrix
mineralization (alizarin red staining with histomorphometry) (C) (all at magnification × 4). *Statistically significant compared with rAAV-lacZ. hIGF-I,
human insulin-like growth factor I; rAAV, recombinant adeno-associated virus.

Figure 6 Analyses in osteogenically and adipogenically differentiated cultures of human bone marrow-derived mesenchymal
stem cells transduced with rAAV-hIGF-I. Cells in monolayer cultures were transduced with rAAV-hIGF-I or rAAV-lacZ (40 μl each
vector) and induced toward osteogenic or adipogenic differentiation as described in Methods. Cultures were processed on day 21 for
(A) alkaline phosphatase (ALP) staining with histomorphometry (osteogenesis; magnification × 4) and (B) Oil Red O staining with histomorphometry
(adipogenesis; magnification × 10). *Statistically significant compared with rAAV-lacZ. hIGF-I, human insulin-like growth factor I; rAAV, recombinant
adeno-associated virus.
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Moreover, our data are strongly supported by work from
Uebersax and colleagues [50], who showed that the slow,
sustained release of IGF-I from biocompatible scaffolds
can promote the chondrogenic differentiation of hMSCs
over a similar, extended period of time. Of further note,
we observed that rAAV IGF-I gene transfer was capable
of stimulating the expression levels of SOX9, a key
chondrogenic factor for MSC differentiation, as noted
when providing the same vector to human chondrocytes
[36] and in good agreement with previous findings [51],
probably resulting in the enhanced commitment of the
cells toward chondrogenesis compared with control treat-
ment. Interestingly, we noted that administration of rAAV
IGF-I led to the expression of hypertrophic and osteogenic
markers in hMSCs. This was probably a result of the en-
hanced expression levels for MMP13 (marker of terminal
differentiation), RUNX2 (transcription factor control-
ling the osteoblastic expression of COL1, COL10, and
MMP13), ALP (osteogenic marker), and β-catenin (me-
diator of the Wnt pathway for osteogenic differentiation)
in response to IGF-I treatment, concordant with the
osteogenic activities of the growth factor further evi-
denced here and with previous findings [52]. Also of note,
IGF-I gene transfer with rAAV enhanced the adipogenic
differentiation of the cells, again in good agreement with
previous findings [53].
Overall, these results suggest that a tight control of

IGF-I production is a prerequisite for the optimal use of
the current rAAV vector in ongoing, clinically relevant
stem cell-based experimental models of cartilage defects
in vivo [54,55]. A balance of expression that allows one
to produce sufficient levels of IGF-I for chondrogenic
differentiation without activation of premature hyper-
trophic maturation and ossification may be reached by
applying various (lower) vector doses, using lineage-
specific/tissue-specific or regulatable promoters, and/or
by providing additional factors that have the ability to
prevent such undesirable effects. Among them, FGF-2,
the SOX transcription factors, and molecules that may
silence osteogenic pathways such as an anti-Runx2/
Cbfa1 small interfering RNA are potent candidates to
achieve this goal as they have been already reported for
their ability to delay hypertrophic processes in MSCs
[24,29,30,32,34]. In this regard, rAAV vectors are strong
tools that can promote a simultaneous expression of
separate genes in target cells without interference [56].
In conclusion, the present findings show the potential of
using rAAV-mediated gene transfer as a tool for future
stem cell-based approaches to treat articular cartilage
defects.

Conclusions
In summary, our study suggests that the genetic modi-
fication of hMSCs via rAAV for the durable expression
of IGF-I is a strong tool to induce the chondrogenic
commitment of the cells but that a tight regulation of
the production levels will be necessary to adapt the
strategy in experimental settings of articular cartilage
repair to control the premature terminal differentiation of
the cells in vivo.
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