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Abstract

Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for
therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic
cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG,
SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of
the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor
suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial
step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that
leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor
genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells
(pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle
arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous
stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by
oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic
changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of
the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their
tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.
Introduction
Reprogramming of induced pluripotent stem cells and
tumorigenic properties
Stem cells with the capacity to differentiate into all adult
tissue types can be derived from the inner cell mass of the
mouse blastocyst [1]. These embryonic stem cells (ESCs)
are unique resources for the research of cell development
and differentiation, with the ultimate aim of repairing
damaged tissues and organs in humans. The reprogram-
ming of differentiated mammalian somatic cells into an
undifferentiated pluripotent state was first demonstrated
by the birth of viable young sheep after nuclear transfer of
adult somatic cells into unfertilized enucleated oocytes
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[2]. However, the approaches used to obtain pluripotency
in humans, such as the nuclear transfer of somatic cells or
the fusion of somatic cells with ESCs, have always been as-
sociated with ethical concerns that interfere with the ap-
plication of these types of cells in basic research and
clinical therapy. The successful reprogramming of mouse
somatic cells to induced pluripotent stem cells (iPSCs) by
the enforced expression of pluripotency factors [3] has
paved the way for autologous cell-based therapeutic appli-
cations and the study of degenerative disorders. Subse-
quent reports have demonstrated that iPSCs are highly
similar to ESCs when tested using a serial set of assays
[4-6]. The use of such cells can circumvent the ethical
concerns described above.
The core ESC regulatory circuitry involves OCT4, SOX2,

and NANOG, which regulate their own expression and the
expression or suppression of other factors involved in self-
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renewal, pluripotency, and dedifferentiation [7-10]. Re-
cently, two reports showed that TFCP2L1 is another crit-
ical factor for nuclear reprogramming [11,12]. Several
studies have shown that the activation of the Wnt pathway
can cause ESCs to remain pluripotent [13-17]. In contrast,
other studies demonstrated that the Wnt pathway con-
trols the differentiation of ESCs and the terminal differen-
tiation of postmitotic cells [18,19]. Furthermore, another
group observed that OCT4 regulates pluripotency via nu-
clear β-catenin degradation, thereby antagonizing Wnt-β-
catenin signaling, and that the downregulation of OCT4
increases β-catenin protein levels, thus enhancing Wnt
signaling and initiating the differentiation of ESCs [20].
Some of the pluripotency factors used to generate iPSCs
have been implicated in tumorigenesis, indicating that re-
programming and cellular transformation might occur via
related pathways [8,21-23]. Interestingly, the inhibition of
the tumor suppressor p53 (the product of the human
TP53 and mouse Trp53 genes) enhances the reprogram-
ming of fibroblasts into iPSCs [24] and can generate trans-
formed cancer stem cells from differentiated cells [25].
The efficacy of the nuclear reprogramming of cancer cells
with mutated p53 or deleted p53 is increased to generate
iPSCs; however, the frequency of tumorigenesis is also
clearly increased in these reprogramming cancer stem
cells [26]. Thus, none of the traditional models incorpo-
rates the possibility of tumor-associated cellular repro-
gramming and the plasticity associated with the loss of
p53 function. Therefore, the tumorigenicity risk associated
with these stem cells must be removed before the achieve-
ments observed in basic research can be safely translated
into clinical applications.
In this review, we summarize the connection between

tumor suppressor genes (to avoid the emergence of
tumor cells) and full reprogramming to iPSCs. We ad-
dress the question of whether cancer-cell-specific iPSCs
are equivalent to other types of stem cells, such as fully
committed iPSCs (full-iPSCs), from the point of view of
overcoming their tumorigenic properties.

Role of gatekeeping tumor suppressors in stem cells
Stem cell genomes must be rigorously ‘guarded’ through-
out each developmental stage because such cells expand
periodically to enable tissue repair and replacement.
Thus, as faithful genomic duplication over a lifetime is
restricted to minimize the accumulation of oncogenic le-
sions during such expansions, inadequate genomic sta-
bility control would be especially deleterious in ESCs
because they are the progenitors of all adult organ sys-
tems. Gatekeeping tumor suppressors, such as p16INK4a,
p14ARF, and p53, negatively regulate cellular proliferation
and survival [27]. These gene products were first discov-
ered by virtue of their role in cancer, but probably
evolved to regulate homeostasis in normal tissues by
regulating the proliferation and survival of normal cells.
Gatekeeping tumor suppressors tend to negatively regu-
late stem cell function [28] and regulate stem cell aging
because their expression and/or function increase with
age [29-31]. Elevated p53 expression or constitutive p53
activation can deplete stem cells [32], causing premature
aging, and shorten life-span despite reducing cancer inci-
dence [33-35]. These effects in mice also appear to reflect
similar functions in humans because a polymorphism in
p53 that reduces p53 function increases cancer incidence
and life-span in humans [36]. This suggests that increased
p53 activity protects against cancer but can promote aging
and shorten life span, at least when a certain threshold of
activity is reached. The functions of the p16INK4a, p14ARF,
and p53 tumor suppressors depend on expression level
and context, thus promoting the maintenance of mitoti-
cally active cells in some contexts, while promoting cell
death or senescence in other contexts. For example, p53
promotes the maintenance of genome integrity [37] and
promotes tissue generation in ATR mutant mice by pro-
moting DNA repair and/or by promoting the death of
cells with DNA damage [38]; however, in response to
oncogenic stimuli or telomere attrition, p53 depletes stem
cells [32,39]. Overall, gatekeeping tumor suppressors have
pleiotropic functions that promote stem cell functions in
some ways and negatively regulate them in other ways,
with complex and context-dependent consequences for
aging.

Deficiency of p53 and stemness characteristics
Although p53 mutation and pathway inactivation are
found in the majority of tumors, they appear to be espe-
cially concentrated among tumors that exhibit plasticity
and loss of differentiation characteristics [40-42]. Selection
for p53 functional inactivation during cancer progression
has typically been attributed to the survival benefits that
result from reduced apoptosis, cell cycle arrest, and in-
creased opportunities for cellular evolution afforded by
genomic instability. In light of the above discussion, how-
ever, it is also possible that p53 loss destabilizes the differ-
entiated state and enables reversion to a more stem-like
state. It is well known that the inhibition of the p53 path-
way increases the apparent efficiency of iPSC generation
dramatically [43-47]. The downregulation of genes that
contribute to cell-cycle arrest or apoptosis also increases
reprogramming. For example, although a mutation in
MDMX reduced p53 activity by only two-fold at baseline,
it increased reprogramming efficiency dramatically [45].
These results have several important implications. First,
subtle changes in p53 activity are all that is required to
increase the probability of reprogramming. Second, repro-
gramming is limited by a variety of p53-induced protective
pathways, including, but not limited to, those involved
in cell-cycle arrest, senescence, and apoptosis. Third,
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through its ability to inhibit cell-cycle progression, p53
provides a potent barrier to the acquisition of the dediffer-
entiation involved in iPSC formation. Understanding of
the mechanisms via which p53 limits reprogramming is
complicated by the various methods used for the intro-
duction of the reprogramming factors, as well as by the
expression levels of these factors. In terms of stress induc-
tion, however, all these commitments are similar in the
case of the induction of oxidative stress and production of
reactive oxygen species (ROS).

Roles of reactive oxygen species and tumor suppressor
genes during reprogramming
The cellular damage caused by free radicals may gener-
ate ROS as a consequence of oxidative phosphorylation
in the mitochondrial electron transport chain [48]. ROS,
such as superoxide and hydroxyl radical, are highly re-
active and can damage mitochondrial and nuclear DNA,
as well as proteins and lipids, by modifying them chem-
ically. Nuclear reprogramming induced by Yamanaka
factors involves extensive chromatin remodeling and re-
sets the epigenetic program to generate iPSCs [49]. This
conventional iPSC technique using virus-mediated gene
transfer is now a common method to deliver reprogram-
ming factors [50]. In fact, the virus infection-induced
immune response, like innate immunity, can result in ac-
cumulation of ROS [51,52]. Alternative reprogramming
methods without virus infection might be useful to in-
crease the survival rate of iPSCs due to less ROS pro-
duction. Stem cells appear to be particularly sensitive to
elevated ROS levels. Increased ROS levels resulting from
metabolic changes in iPSCs may hinder the survival of
reprogrammed cells, as suggested by observations of
iPSC-generation under hypoxic conditions [53,54]. In
addition, mitochondrial functions are also repressed in
iPSCs or human ESCs [55], suggesting that ROS gener-
ation by reprogramming factors is unfavorable to the
generation of iPSCs. Vitamin C has been reported to be
an effective chemical to boost iPSC generation. Treat-
ment with vitamin C reduced p53/p21 levels, which are
the main barrier to successful reprogramming [56].
Wang et al. [57] found that the histone demethylases
Jhdm1a/1b are the direct downstream effectors of vita-
min C, in addition to antioxidant activity. Jhdm1b pro-
motes cell-cycle progression and suppresses senescence by
repressing the INK4a/ARF locus during reprogramming.
Furthermore, inhibition of the mammalian target of
rapamycin (mTOR) pathway by rapamycin, PP242, or
the insulin/insulin growth factor-1 (IGF-1) signaling path-
way notably enhances the efficiency of reprogramming [58].
Based on the concept that reprogramming is a stressful
process that activates apoptosis and cellular senescence, it
was shown that targeting the mTOR pathway alleviates the
senescence imposed by the DNA damage response [59].
In addition, it was reported that senescence impairs
the reprogramming to iPSCs, and that reprogramming
triggers a stress response of senescence at the initial
stage [60]. In fact senescence is the irreversible arrest
during the G1 transition of the cell cycle that is elicited
by replicative exhaustion or in response to stresses such
as DNA damage, drugs, or oncogenes. Moreover, oxida-
tive stress also induces the cellular apoptosis and au-
tophagy. These arrests are implemented primarily
through the activation of p53 and the upregulation of
the cyclin-dependent kinase inhibitors p16INK4a and
p21CIP1 [61]. The introduction of Yamanaka factors ini-
tially triggers stress responses with characteristics of oxi-
dative stress-like increases in the oxidized 8-oxoguanine
and reprogramming-induced senescence (RIS) by upreg-
ulating p53, p16INK4a, and p21CIP1 at the initial stage
(pre-induced pluripotent stem cells (pre-iPSCs)). This
upregulation of p16INK4a and p21CIP1 was observed in
heterokaryon-based reprogramming [62], suggesting the
existence of an inherent link between senescence and re-
programming. Subsequently, the elevated levels of
p16INK4a and p21CIP1 that were detected in pre-iPSCs
were decreased at a later stage in mouse embryonic fi-
broblasts, and increased levels of p53 and p21CIP1 in
IMR90 cells were also decreased at a later stage
[60,63,64]. The inhibition of senescence using knock-
down constructs of p53, p21CIP1, and p16INK4a at the late
stage finally improved the efficiency of the reprogram-
ming of somatic cells or primary cancer cells, and the
resulting iPSCs displayed characteristics of pluripotent
stem cells (full-iPSCs) [60,65]. Other reports have con-
firmed the involvement of these two steps in reprogram-
ming to full-iPSCs. Pre-iPSCs that failed to reprogram
fully are trapped in a late step of reprogramming [63].
Inhibition of DNA methylation, knockdown of lineage-
specific genes, or treatment with two inhibitors [66] can
either convert some of these pre-iPSCs to full-iPSCs, or
increase the proportion of fully reprogrammed iPSCs
versus pre-iPSCs. The inhibition or the alleviation of
senescence can increase the number of cells that surpass
the early barrier imposed by RIS, resulting in a higher
number of both pre-iPSCs and fully reprogrammed
iPSCs. A combination of both strategies may be used
synergistically to enhance reprogramming efficiency. RIS
and probably reprogramming-induced apoptosis act as
an initial barrier that limits the efficiency of the repro-
gramming. The reprogramming is slower and stochastic,
suggesting the existence of a barrier that limits its effi-
ciency. To increase the efficiency of reprogramming, the
repression of RIS or reprogramming-induced apoptosis
is definitely required at the late stage followed by a de-
crease in the expression of p16INK4a, p21CIP1, and p53 by
hypoxic or other conditions, which are necessary for full
reprogramming [43,45-47,67,68] (Figure 1).
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Figure 1 Schematic representation of the nuclear reprogramming process from somatic cells, including primary cancer cells. The initial
stage of reprogramming includes the induction of somatic cells to pre-induced pluripotent stem cells (Pre-iPSCs) by exogenous pluripotent
factors (such as Yamanaka 4 factors) via reprogramming-induced senescence (RIS; which results from DNA damage and metabolic stresses), which
results in expression of tumor suppressor genes (such as p21CIP1 and p16INK4a) via the activation of p53. The subsequent process is triggered to
overcome the barrier of RIS, cell apoptosis, or cell-cycle arrest by shutting off the function of tumor suppressor genes such as p16INK4a, p21CIP1,
and p53, and then inducing the full commitment of iPSCs (Full-iPSCs) by endogenous stemness genes, as described in the text. Thus, the reaction
oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming factor genes through at
least epigenetic changes or antioxidation reactions [60,69].
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The tumor suppressor p53 has been studied most ex-
tensively as a pivotal signal that converts diverse up-
stream stresses into downstream responses, including
cell-cycle arrest, senescence, DNA repair, reprogram-
ming, and programmed cell death [70]. p53 has been
implicated as an enforcer of differentiation by virtue of
its ability to limit the stem cell characteristic of self-
renewal in several systems [65,71]. Together with the
demonstration by Yamanaka that differentiated cells can
be reprogrammed to a dedifferentiated state [67], and
the demonstration that p53 is a potent reprogramming
barrier [43-47,53,68], this has led to a resurgence of
interest in the idea that loss of differentiation [72] may
be linked to p53 pathway disruption in tumors. Recent
studies have provided additional evidence of the link be-
tween p53 and the emergence of dedifferentiated, stem-
like phenotypes [73]. The implications of these findings
are far-reaching and will cause us to reconsider the role
played by p53 inactivation in tumor pathophysiology
and, more generally, the relationship between stem cells
and cancer. Thus, reprogramming requires two stages:
the initial stage includes ROS production induced by re-
programming factors, which leads to the reprogramming
changes or DNA damage that induce the expression of
p16INK4a, p21CIP1 and p53. At this late stage, these alter-
ations should be shut down by reducing expression of
p53, p21CIP, and p16INK4a via hypoxic conditions or the
expression of stemness genes such as OCT4, SOX2,
NANOG, or other pluripotent genes (Figure 1).
The efficacy of reprogramming is indeed increased by

several fold, but these iPSCs reprogrammed from cancer
cells sometimes maintain or produce p53 mutations,
resulting in tumor formation. Several genes in the original
Yamanaka iPSC cocktail, such as c-MYC, generate onco-
genic stresses that activate the p53 pathway to induce cell-
cycle arrest or death [74]. Consequently, c-MYC expres-
sion, together with general tissue culture stresses, would
be expected to activate p53 during the generation of
iPSCs, to reduce reprogramming frequency or rate. These
results have several important implications. First, subtle
changes in p53 activity are all that is needed to increase
the probability of reprogramming. At initial stages, the
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reprogramming factors induce ROS production by DNA
damage and repair function and, at a later stage, these
ROS should be suppressed by the antioxidation system of
cells or other epigenetic changes [75]. At this stage, p53-
related pathways are required for epigenetic chromatin
changes. Second, reprogramming is limited by a variety of
p53-induced protective pathways during the late stage. Fi-
nally, through its ability to inhibit cell-cycle progression,
p53 provides a potent barrier to the acquisition of the epi-
genetic changes that underlie the dedifferentiation in-
volved in iPSC formation. Thus, p53-dependent pathways
are required to inhibit the mutation of cells at the initial
stage. Subsequently, to overcome p53-dependent senes-
cence, cell-cycle arrest, and apoptosis, p53 downregulation
by epigenetic reprogramming via the induction of stem-
ness genes is required. A controllable system that was
used to analyze reprogramming kinetics indicated that
p53 inhibition enhances the generation of iPSCs probably
through cell-cycle acceleration [76], although the data did
not exclude the possible involvement of cell-cycle-
independent contributions.

Reduction of the risk of tumorigenicity during the
reprogramming of induced pluripotent stem cells
New cancer therapies based on the reprogramming
approach using oncogenic pluripotency factors might in-
crease the risk of tumor formation. Therapies that en-
hance the expression of tumor suppressor genes such as
Figure 2 Schematic diagram of the overlapping mechanisms between
pluripotency factors (such as OCT4, SOX2, KLF4, c-MYC, and microRNAs) an
p16INK4a, p21CIP1, and p53) drive the generation of pluripotency (blue arrow
omerase [77] and H-Ras V12 [25] genes. These tumor suppressor genes are
genic processes. iPSC, induced pluripotent stem cell; ROS, reactive oxygen
p53, p16INK4a, p14ARF and p21CIP1, accompanied by at
least one pluripotency factor (OCT4 or SOX2) used with
a plasmid-delivery system to target cancer cells, seem
more advantageous. This combination inhibits ROS pro-
duction first and reduces the expression of tumor sup-
pressor genes via the induction of endogenous stemness
genes. This method of iPSC generation is efficient and
effective without any mutation of tumor suppressor
genes, thus resulting in the generation of normal, non-
mutated iPSCs (Figure 2).
It is commonly recognized in the field of stem cell re-

search and regenerative medicine that tumorigenic risks
must be overcome before the start of human iPSC-based
clinical applications. Several possible risks need to be
avoided: (i) the prolonged adaptation of human ESCs in
culture conditions often results in gains of chromosomes
12 and 17 [78-80] and iPSCs [81], which might induce
tumor formation; (ii) iPSCs derived from normally dis-
carded human placental tissues, such as the amnion,
chorion, umbilical cord, or fetal blood, might minimize
the acquisition of genetic and epigenetic alterations, and,
therefore, might be safer than iPSCs derived from adult
somatic cells or cancer cells [82,83] (Table 1). Cultured
human amniotic membrane-derived cells can differentiate
into cells of all three germ layers under both in vitro and
in vivo conditions [84,85]. In fact, primary amniotic tissues
have low immunogenicity and anti-inflammatory properties
[86,87], and the expression of putative immunosuppressive
cellular reprogramming and tumorigenesis. Overexpression of
d inhibition of tumor suppressor gene products (such as p14ARF,
s) and tumorigenicity (red arrows) in the presence of activated tel-
hypermethylated and silenced during the reprogramming and tumori-
species.

http://stemcellres.com/content/5/2/58


Table 1 Characteristics of various types of pluripotent stem cells

Stem
cell type Donor cell type

Reprogramming
factors/systems

Teratoma
formation

Chimera
formation

Pluripotency marker expression

ReferenceSSEA1 SSEA3/4 OCT4,SOX2, NANOG

MESCs Embryo - + + + - + [9]

HESCs Embryo - + ND - + + [7]

MEpiSCs Epiblast - + - + - + [90]

MiPSCs Neural stem cell OCT4, viral + + + _ + [91]

HiPSCs Amnion SOX2, plasmid electroporation + ND - + + [82]

MiPSCs-C Melanoma OCT4, c-MYC, KLF4, viral + + ND ND ND [43]

HiPSCs-C Colorectal cancer OCT4, c-MYC, SOX2, KLF4, viral + ND - + + [92]

HiPSCs-C Melanoma miRNA, viral + ND - + + [93]

Human and murine pluripotent stem cells are characterized as described in the cited references. HESCs, human embryonic stem cells; HiPSCs, human induced
pluripotent stem cells; HiPSCs-C, human induced pluripotent stem cells from cancer; MEpiSCs, murine epiblast stem cells; MESCs, murine embryonic stem cells;
MiPSCs, murine induced pluripotent stem cells; MiPSCs-C, murine induced pluripotent stem cells from cancer; ND, not determined.
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factors, such as CD59 and CD73, is lost during the repro-
gramming process [88]. The loss of those factors in repro-
grammed human amniotic membrane-derived iPSCs
might benefit their potential therapeutic application. Up-
regulated CD44 expression may be a surrogate marker of
p53 inactivation and associated plasticity; thus, we will
screen for the risk of developing tumorigenicity using this
CD44 marker [89]. These approaches to avoid the cause
of tumorigenicity might be useful when we treat stem cells
or iPSCs with cancer-inducing agents, or when generating
full reprogramming stem cells from somatic cells.

Merits of reprogrammed cancer cells as a cancer model
These reprogrammed cancer cells from cancer patients
may alternatively be used to find genetic and epigenetic
clues as to how the nuclear reprogramming was blocked
when generating fully competent iPSCs or stem cells. In-
deed, reprogrammed cancer cells generated from pa-
tients for the induction of pluripotent cells provided a
potential cell-based therapy model to restore tissues or
organs destroyed by chemotherapy, even though these
cells are not fully pluripotent cells [89]. Accumulating
evidence indicates that the epigenetic mechanism affects
the properties of reprogrammed iPSCs, and appears to
retain epigenetic imprinting associated with their tissue
type of origin [94]. Thus, epigenetic mechanisms have
been recognized to play important roles in cancer devel-
opment and cell differentiation. Based on these results,
the reprogrammed cancer cells can serve as the ideal
model system to study the molecular mechanisms of
tumorigenesis and the properties of cancer stem cells to
establish critical approaches for cancer and regenerative
medicine.

Conclusion
Here we have reviewed the tumorigenicity risks associated
with iPSCs. Recently, genetic alterations, including copy-
number variations and protein-coding point mutations,
were observed during the reprogramming process by
using high-resolution genetic approaches [95,96]. Point
mutations were enriched in cancer-related genes [95].
These studies strongly suggest iPSCs have a high tumori-
genicity potential. Thus, specifically, to achieve the thera-
peutic application of cancer cells via the reprogramming
method, transfection of tumor suppressor genes, such as
p16INK4a/RB, p21CIP1, p14ARF and p53, combined with
pluripotent factors, such as OCT4 or SOX2, might be
preferable compared with viral transduction of potent on-
cogenes. Importantly, reprogramming and senescence are
related processes, as shown by studies demonstrating that
the reprogramming of cells is more challenging in cells
that are closer to the onset of senescence [69]. The expres-
sion of reprogramming factors triggers RIS by activating
several tumor-suppressive mechanisms. In addition, gene
expression profiling studies have revealed that signature
genes that are activated during reprogramming are com-
mon to these antiproliferative responses [69]. The small
number of reports on the reprogramming of human
primary cancer cells limits our ability to decipher the
biological or technical barriers that prevent the repro-
gramming of cancer cells. However, we emphasize that
human pluripotent stem cells should be checked to
eliminate the possibility of any mutations in tumor sup-
pressor genes, as they may lead to tumorigenesis after
transfer to patients.
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