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Abstract

Introduction: Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and
regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is
easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study
and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine
ASCs (pASCs) from both tissue-harvesting sites.

Methods: ASCs were isolated from interscapular subcutaneous adipose tissue (Scl) and buccal fat pads of six swine.
Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when
cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their
growth in the presence of autologous and heterologous serum were also assessed.

Results: Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed
among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both Scl- and BFP-pASCs
showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and
osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated
toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production
over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM
compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli.

Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum.

Conclusions: Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also
osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be
applied in preclinical studies of periodontal and bone-defect regeneration.

Introduction

Dental tissue engineering may now represent an innova-
tive approach to replacing bone and periodontal liga-
ment lost, through the delivery of bioactive molecules
and the use of suitable scaffolds and cells. Advanced re-
search in this field leads to rapid progress in tissue repair
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and regeneration of oral tissues. Mesenchymal stem cells
(MSCs), because of their ability to self-renew, their mul-
tidifferentiative potential toward mesodermal cells [1-3],
and their plasticity toward cells of ectodermal [4] and
endodermal [5,6] origin, are considered proper candi-
dates for these applications. Bone marrow is still the
elected source for MSCs [7], although adipose tissue, in
the last decade, gained recognition, because adipose-
derived stem cells (ASCs) can be easily extracted with
mild donor-site morbidity or patient discomfort [8]. The
first ASCs were isolated from subcutaneous adipose tis-
sue, which is usually discarded after aesthetic surgical
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procedures. Several studies have also described the pres-
ence of ASCs in visceral adipose tissue [9], human or-
bital fat tissue [10,11], and from special fat pads such as
the Hoffa pad [12].

Here, we propose the buccal fat pad (BFP) as a new
source for ASCs, which could be of great interest for
odontoiatric and maxillofacial surgeons who consider the
tissue-engineering approach to be a possible future goal.

The BFP is located between the masseter and buccina-
tors muscles and the ascending mandibular ramus and
zygomatic arch [13], and it is easily accessible with a sim-
ple surgical procedure under local anesthesia [14]. Since
1977, the BFP has been used in surgery for the treatment
of congenital oroantral and/or oronasal diseases [15], con-
genital cleft palate repair [16], oral submucous fibrosis
[17,18], intraoral malignant defects [19], and cheek mu-
cosa defects [15,20]. In addition, BFP is a discarded tissue
of plastic surgery for cheek reduction. Recent studies
showed that human ASCs isolated from the BFP possess
all the suitable characteristics for bone tissue engineering,
both in vitro [21] and in vivo [22]. Despite the known low
immunogenicity of human ASCs, which suggests theoret-
ically their use in preclinical models, we are required to
test their safety when implanted in a homologous setting.
Considering the potential ability of ASCs in bone regener-
ation, we have chosen swine as a preclinical model be-
cause their bone shares several features with the human
bone, such as rate of healing, morphology, anatomy [23],
mineral density, and composition [24]. Furthermore, the
oral maxillofacial region of these animals is similar in anat-
omy, development, physiology, pathophysiology, and dis-
ease occurrence to the human one [25]. Therefore these
animals might be considered appropriate for oral disease
models and in orofacial research; they were recently used
in preclinical models of dental implants [26-28] and max-
illofacial surgery [29-31].

Despite the great variety of supports used in tissue en-
gineering, titanium is widely used in dental surgery, due to
its high mechanical and corrosion resistance, as well as its
biocompatibility. Interestingly, silicon carbide (SIC), with
its hardness and wear-resistance, may be an innovative
material suitable to coat metallic implants, giving adequate
protection to the material and decreasing the wear rate of
the inserted devices. Moreover, SIC obtained by the
plasma-enhanced chemical vapor-deposition technique
(SIC-PECVD) does not negatively influence any biologic
features of human ASCs, in vitro [32], and SIC particles
do not give rise to any relevant inflammatory response
and do not negatively affect bone growth in vivo [33].

In this study, we described some of the features of ASCs
isolated from swine BFP and interscapular subcutaneous
adipose tissue from the same animal, and their osteodiffer-
entiation ability in vitro, either in the absence or in the
presence of titanium and SIC supports. Finally, pASCs
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cultured in the presence of autologous and heterologous
serum have been also investigated.

Materials and methods

Isolation of porcine adipose-derived stem cells (pASCs)
Fat tissues and blood samples were collected at the end of
preclinical studies approved by the Italian Ministry of
Health and were performed at the CRABBC (Biotech
Research Centre for Cardiothoracic Applications) (Rivolta
d’Adda, CR). All the procedures were carried out in con-
formity with institutional guidelines in compliance with
national (Law 116/92, Authorization n.169/94-A issued
December 19, 1994, by the Italian Ministry of Health)
and international laws and policies (EEC Council Directive
86/609, O] L 358. 1, December 12, 1987).

Adipose tissues were collected from subcutaneous inter-
scapular sites (Scls) and buccal fat pads (BFPs) (Figure 1A,
B) from six swine. Porcine adipose-derived stem cells
(pASCs) were isolated as previously described. In brief,
tissues were enzymatically digested with 0.1% type I collage-
nase (225 U/mg; Worthington, Lakewood, NJ, USA) at 37°C
for 60 minutes. The stromal vascular fraction (SVF) was cen-
trifuged, filtered, and 10° cells/cm® were plated in DMEM
(Sigma-Aldrich, Milan, Italy) supplemented with 10% FBS,
50 U/ml penicillin, 50 pg/ml streptomycin, and 2 mM
L-glutamine (Sigma-Aldrich) (control medium, CTRL). Cells
were maintained at 37°C in a humidified atmosphere with
5% CO,. When cells reached 70% to 80% confluence, they
were detached with 0.5% trypsin/0.2% EDTA (Sigma-
Aldrich) and plated at a density of 5 x 10° cells/cm®.

Proliferation

About 5 x 10% cells/cm® were maintained in culture for
three passages, and regularly detached and counted. Prolif-
eration rate was expressed as doubling time (DT), calcu-
lated as follows: In(N/Njy)/In,, in which N represents the
number of counted cells, and N represents the number of
seeded ones.

MTT cell-viability assay

To test the viability of cells, 1.5 x 10* pASCs/cm® were
plated in 96-well plates, and monitored at days 1, 3, and 7.
Then 100 pl of MTT (3-[4,5 dimethylthiazol-2-yl]-2,5-di-
phenyltetrazolium bromide; Sigma-Aldrich) (final concen-
tration, 0.5 mg/ml in DMEM) was added, and cells were
maintained for 4 additional hours at 37°C. Formazan pre-
cipitates were solubilized by 100% DMSO (dimethylsulfox-
ide; Sigma-Aldrich), and absorbance was read at 570 nm
in a Wallac Victor II plate reader (Perkin Elmer Western
Europe, Monza, Italy) [34].

Fibroblast-colony-forming unit assay (CFU-F)
pASCs were plated in DMEM supplemented with 20%
EBS, 50 U/ml penicillin, 50 pg/ml streptomycin, and
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Figure 1 Localization of subcutaneous interscapular and buccal fat pad tissue withdrawal. Anatomic regions of subcutaneous
interscapular adipose tissue and buccal fat pad (A). Surgical procedure for tissue collection (B).

2 mM L-glutamine, in six-well plates by serial dilution
starting from 1,000 cells/well. After 6 days, the medium
was replaced, and, at day 10, cells were washed, fixed in
100% methanol, and stained with 0.5% crystal violet
(Fluka, Buchs, Switzerland). The frequency of the CFU-F
was established by counting individual colonies (of at least
25 cells) compared with the number of seeded cells.

Flow-cytometry analysis

The pASCs (3 x 10%) in 100 pl of PBS with 1% FBS and
0.1% NaN; were incubated for 30 minutes on ice with
monoclonal antibodies raised against CD14, CD45, CD73,
CD90, CD105, and CD271 (Ancell, Bayport, MN, USA). In
particular, CD73, CD90, and CD105 were chosen according
to the minimal criteria for defining mesenchymal stem cells
[35,36]. Specific binding was revealed by either streptavidin-
PE- or fluorescein isothiocyanate—conjugated sheep anti-
mouse antibody. Samples were acquired by MACSQuant
Analyzer (Miltenyi Biotec, Italy), and data were analyzed by
using MACSQuantify Software (Miltenyi Biotec).

Osteogenic differentiation
Cells were maintained in either control or osteogenic
medium (OSTEO, DMEM, 10% FBS, 10 nM dexametha-
sone, 10 mM glycerol-2-phosphate, 150 pM L-ascorbic
acid-2-phosphate, 10 nM cholecalciferol; Sigma-Aldrich)
in 24-well plates at the density of 2 x 10% 1 x 10% and
5 x 10° pASCs/well for 7, 14, and 21 days, respectively.
After 7 and 14 days, to determine collagen production,
cells were stained with 0.1% (wt/vol) Sirius Red F3BA in
saturated picric acid (Sigma-Aldrich) for 1 hour at room
temperature, and then the samples were extracted with
0.1 M NaOH for 5 minutes [37]. Absorbance was read at
550 nm, as previously. Standard curve of known concen-
tration of calf-skin type I collagen (Sigma-Aldrich) was
used to determine the concentration of secreted collagen.

Extracellular matrix (ECM) calcification, at 14 and 21
days, was determined on fixed ASCs stained by 40 mM
Alizarin Red-S (AR-S, pH 4.1; Fluka). Mineral deposition
was quantified by incubating the stained sample with
10% wt/vol cetylpyridinium chloride (CPC; Sigma-
Aldrich) in 0.1 M phosphate buffer (pH 7.0) for 15 mi-
nutes to extract AR-S. Absorbance was read at 550 nm
with a Wallac Victor II plate reader [38]. To evaluate al-
kaline phosphatase (ALP) enzymatic activity, both undif-
ferentiated and differentiated ASCs were lysed in 50 pl
of 0.1% Triton X-100 and incubated at 37°C with
10 mM p-nitrophenylphosphate dissolved in 100 mM
diethanolamine and 0.5 mM MgCl,, pH 10.5. Samples
were read at 405 nm, and ALP activity was standardized
with respect to the sample protein concentration deter-
mined by BCA Protein Assay (Pierce Biotechnology,
Rockford, IL, USA).

Osteonectin (ON) expression was also analyzed with
Western blot: both undifferentiated and osteo-differentiated
cells were lysed in 50 mM Tris pH 8, 150 mAM NaCl,
1% Nonidet P40, 0.1% sodium dodecylsulfate (SDS),
supplemented with protease inhibitor cocktail. Then
20 ug of protein extracts was resolved by 12.5% SDS-
polyacrylamide gel (Bio-Rad Laboratories), electrotrans-
ferred onto HybondTM-ECLTM extra nitrocellulose
membrane (GE Healthcare), and probed with either mouse
anti-ON (1:100 dilution; Santa Cruz Biotechnology), and
mouse anti-p-actin (1:5,000 dilution, Sigma-Aldrich). Spe-
cific proteins were revealed by horseradish peroxidase
(HRP)-conjugated secondary antibodies (GE Healthcare)
and the ECL Western Blotting Analysis System Kit (GE
Healthcare), according to the manufacturer’s protocol.

Adipogenic differentiation
Porcine ASCs were induced to differentiate toward the
adipogenic lineage, as previously described [21]. In brief,
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1.5 x 10* pASCs/cm? were plated and cultured in control
medium supplemented with 1 pM dexamethasone,
10 pg/ml insulin, 500 pM 3-isobutyl-1-methyl-xanthine,
and 200 pM indomethacin (Sigma-Aldrich). At 14 days
later, cells were fixed in 10% neutral buffered formalin
for 1 hour and stained with fresh Oil Red O solution
(20 mg/ml (wt/vol) Oil Red O in 60% isopropanol) for
15 minutes. Lipid vacuoles were quantified by extraction
with 200 ul of 100% isopropanol for 10 minutes and
reading the absorbance of 50 pl at 490 nm with the Wal-
lac Victor II plate reader.

Chondrogenic differentiation

Then 5 x 10° pASCs were cultured in micromasses in
chondrogenic medium (DMEM supplemented with 1%
FBS, 100 nM dexamethasone, 110 mg/L sodium pyru-
vate, 150 pM L-ascorbic acid-2-phosphate, 1x insulin-
transferrin selenium (ITS) and 10 ng/ml TGF-p1) for
21 days. Glycosaminoglycans (GAGs) production was
assessed with dimethylmethylene blue (DMMB) assay,
as previously described [39,40]. In brief, micromasses
were digested at 56°C overnight by 100 ul of 50 pg/ml
proteinase K in 100 mM K,HPO, (pH 8.0). After 10
minutes at 90°C to inactivate the enzyme, the samples
were spun at 14,000 g for 10 minutes, and each super-
natant was collected for GAGs and DNA quantification.
The samples were then incubated at room temperature
in 40 mM glycine/NaCl (pH 3) with 16 mg/ml DMMB,
and the absorbance was read at 500 nm with the Wallac
Victor II plate reader. The amount of GAGs was deter-
mined with respect to known concentrations of chon-
droitin sulfate (Sigma-Aldrich) and normalized on total
DNA content determined as described later. Then
0.2 pg/ml Hoechst 33258 was added to the samples for
1 minute at room temperature, fluorescence was mea-
sured (excitation at 340 to 370 nm; emission, 440 to
460 nm), and DNA concentration for each sample de-
termined with respect to the standard curve of salmon
sperm DNA.

ASC culture and osteogenic differentiation on
biomaterials

Both ScI- and BEP-pASCs were seeded at 5 x 10°/cm> on
titanium disk (kindly provided by Permedica S.p.A., Merate,
Italy) and silicon carbide—plasma-enhanced chemical-vapor
deposition (SIC) fragments (kindly provided by CETEV,
Centro Tecnologico del Vuoto, Carsoli, AQ, Italy) either in
CTRL or OSTEO medium. To determine cells adhering to
the biomaterials, both undifferentiated and differentiated
pASCs for 21 days, were lysed in 0.1% Triton X-100, and
protein concentration was determined by BCA Protein
Assay, as described earlier. Meanwhile, in adjacent wells,
calcified ECM deposition was determined, and compared
with the one produced by plastic-adherent (PA) cells.
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Porcine serum collection

Then 10 ml of blood from each animal was allowed to
clot for 30 to 45 minutes at 37°C and then transferred at
4°C for 30 minutes. After centrifugation (1,000 ¢ for 10
minutes), sera were collected under sterile conditions
[41] and maintained at —20°C until their use.

Statistical analysis

Data are expressed as mean + SEM. Statistical analyses
were performed by using Student ¢ test. Differences were
considered significant at P < 0.05.

Results

Comparison between porcine ASCs isolated from two
different body sites

We collected different amounts of subcutaneous inter-
scapular adipose tissue (ScI-pASCs) and buccal fat pad
(BFP-pASCs) from six swine, as indicated in Table 1.
We isolated 5.5x 10*+3.3x10* ScI-pASCs/ml and
3.0 x 10*+ 9.3 x 10*> BFP-pASCs/ml of raw tissue. pASCs
adhered nicely to tissue-culture plates, and in a week,
they began to proliferate, showing an MSC-typical
fibroblast-like morphology (Figure 2C). In details, the
doubling times (DT) of the two cell populations were
constant, and no significant differences were observed
between ScI-pASCs and BFP-pASCs. Indeed, the mean
DT was of about 82.9 + 11.5 hours for ScI-pASCs and
72.5+ 8.2 hours for BFP-pASCs (Figure 2A). Further-
more, cell viability was maintained for all the pASC
populations analyzed (Figure 2B), and their prolifera-
tion trend was quite stable.

Porcine ASCs held a strong clonogenic ability that was
maintained along passage I to IV (Figure 2D): about
10.1% + 1.4% of ScI-pASCs and 8.9% + 1.5% of BFP-
pASCs produced CFU-F. Moreover, both pASC popula-
tions were immunophenotyped, and a FACS analysis of
both cells derived from two animals is shown in Figure 3.
Both ScI- and BFP-pASCs appeared similar in size and
granularity (upper panels), and both cell types expressed
CD90 (middle panels), whereas the CD271 was not de-
tectable (lower panels), as CD14 and CD45 (data not
shown). Unfortunately, no cross-reactivity was found on
both ScI- and BFP-pASCs for CD73 and CD105 (data
not shown).

Table 1 pASC source

Gender Age n Raw adipose tissue (ml)
pASCs Scd 34,39 =4months 6 123+36
BFP 3d,39 =2=5months 6 57+15

Gender, age of the animals, amount of harvested fat from subcutaneous
interscapular adipose tissue (Scl), and buccal fat pad (BFP). Data are expressed
as mean + SEM.
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Figure 2 Stemness features of Scl- and BFP-pASCs. Cell proliferation expressed as doubling time (DT, hours) of ASCs from Il to IV passage

(A). Viability assessed by MTT assay at days 1, 3, and 7 (B). Morphology of Scl-pASCs and BFP-pASCs (optical microscopy, 200x magnification; scale
bar, 100 um) (C). Clonogenicity from passage | to IV expressed as colony-forming units (CFU-F) percentage (ratio of number of colonies/number
of plated cells x 100) (D, upper panel). Data are expressed as mean + SEM (n = 6). Representative Scl-pASCs and BFP-pASCs plates stained with

crystal violet (D, lower panel).
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Osteogenic, adipogenic, and chondrogenic differentiation
of Scl-pASCs and BFP-pASCs
Osteogenic differentiated ScI- and BFP-pASCs significantly
increased the production of bone-specific markers, such as
collagen (Figure 4A,B), calcified ECM (Figure 4C,D), alka-
line phosphatase (ALP) activity (Figure 4E), and osteonec-
tin (ON, Figure 4F), compared with undifferentiated cells.
Although BFP-pASCs showed a slightly lower basal level
of collagen deposition with respect to ScI-pASCs, these
differences at 7 and 14 days were not significant. Collagen
level significantly increased by about 42% and 310% in 7
days osteoinduced ScI- and BFP-pASCs, respectively,
compared with undifferentiated cells (CTRL); this upregu-
lation further increased for ScI-pASCs (+87%) and was
maintained (+254%) for BFP-pASCs (Figure 4A,B). In
addition, osteodifferentiated pASCs produced abundant
amounts of calcified ECM, and in 2 weeks, ECM calcifica-
tion increased by about 118% and 116% for Scl- and for
BFP-pASCs, respectively (Figure 4C,D). Meanwhile, ALP
activity was also determined: after 1 week of culture, we
observed an upregulated ALP activity in both osteo-
differentiated Scl and BFP cells, compared with undifferen-
tiated ones, with increases of 126% and 201%, respectively
(Figure 4E). This trend was also maintained after 14
days (Figure 4E). In Figure 4F, we show that osteonectin
(ON) expression is induced of about 336% and 306% in
osteodifferentiated ScI- and BFP-pASCs, respectively.

The multidifferentiative ability of BFP-pASCs was fur-
ther tested and compared with ScI-pASCs. At first, as
shown in Figure 5A, adipogenic differentiation is ob-
served after 14 days: the morphology of both cell types
is remarkably modified, from the usual fibroblast-like
shape to a round one, with a cytoplasmic accumulation of
lipid vacuoles (upper panel). Oil Red O staining (Figure 5A,
middle panel), and its quantification proved that both
cell types similarly differentiate (+121% for ScI-pASCs
and +130% for BFP-pASCs, with respect to control cells)
(Figure 5A, lower panel).

Then we also determined GAGs content in both chon-
drogenic differentiated pASCs for 1, 2, and 3 weeks. We
observed an increase of GAGs deposition during that
time. Indeed, after 14 days, the GAG content, with re-
spect to 7 days, was more abundant at 56% and 45% in
Scl- and BFP-pASCs, respectively, and it was further up-
regulated after 21 days (+184% and +149% for Scl- and
BFP-pASCs, respectively) (Figure 5B). We conclude that
both pASCs display in vitro the multipotent feature of
mesenchymal stem cells.

pASCs on biomaterials

pASCs cultured for 21 days on biomaterials, both in the
presence and in the absence of osteogenic stimuli, effi-
ciently adhered to them; indeed, no significant differ-
ences were observed between the protein concentrations



Niada et al. Stem Cell Research & Therapy 2013, 4:148
http://stemcellres.com/content/4/6/148

Page 6 of 11

ssCA

500
FSC-A FSC-A

3
1500
PI\P2 PI\P3
12501 99.97%-4 3981%:4
7557%1 76.14%T
Qo
1000
a '
re—_
o ™
500-]
) Y i,
0 0
T T T T T T T T
1001 1el Te2 Te3 10 1 el 1e2 1e3
1 1
PI\WP3
1.18%4
— 083%T P1\P2
~ 0.19%4
N —_— 0.16%T
[m) ———————
0 T 0-—4p

T T
10 1 Te1 162 1e3 1 0 1' 1;1 1;2 1e3

Figure 3 FACS analysis of Scl- and BFP-pASCs. Expression of specific mesenchymal stem cell markers in Scl- and BFP-pASC populations (n = 2).
Size and granularity are shown (upper panels). pASCs stained for CD90 and CD271 are reported (lower panels).

Scl BFP

FSC-A

P13
$9.86%4
7758%1

1
T T T
1 0 1 Tel 1e2 1e3 A0 1el 1e2 Te3

1
P1\P3
04154
0.36%T PI\P2
048% 4
0.37%T

Tt T T
a4 0 1 Tel le2 1e3

{

o

T T
Tel 1e2 1e3

of either plastic adherent cells or scaffold-associated
ones. This indirect evidence is shown in Figure 6B. Scl-
and BFP-pASCs cultured for 7 days on the supports are
alive and tightly laid on them when observed by confocal
microscopy (data not shown).

Both pASCs, cultured on biomaterials, differentiated
toward cells of the osteogenic lineage. Indeed, pASCs
seeded on TIT, and osteodifferentiated, deposited an in-
creased amount of calcified ECM of about 46% and 37%
for ScI- and BFP-pASCs, respectively, compared with
CTRL cells; similarly, ScI- and BFP-pASCs on SIC, in-
creased ECM deposition of 90% and 200%, respectively,
compared with CTRL cells.

Moreover, TIT is osteoinductive for pASCs; we quanti-
fied an increase of calcified ECM of about 91% in CTRL
Scl-pASCs, and of about 234% in CTRL BFP-pASCs,
compared with plastic-adherent cells (Figure 6A).

Culture of pASCs in porcine serum
Considering porcine ASCs useful in preclinical models,
we compared their behavior when they were cultured in

medium supplemented with porcine serum, 5% autolo-
gous (AS), and 5% heterologous sera (HS), and with 10%
FBS (standard condition). Cells did not proliferate as fast
as when maintained in standard condition. In more de-
tail, the number of pASCs collected after 3 weeks was
about 4.4% + 2.4% compared with cells grown in stand-
ard condition and set as 100% (data not shown). After 7
days, the presence of either autologous or heterologous
sera did not allow a rapid cell growth. However, after 21
days, pASCs grown in the presence of HS increased their
number with respect to pASCs cultured in AS (Figure 7).
As depicted also in Figure 7, all ASCs, grown in the
presence of autologous or heterologous serum, aggre-
gated in small clusters and changed morphology, becom-
ing smaller and rounder compared with cells cultured in
10% FBS.

Discussion

We investigated the possibility of isolating porcine
ASCs from Buccal Fat Pads (BFP-pASCs), which have
similar stemness features to the ones isolated from
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subcutaneous tissue (ScI-pASCs), previously characterized
[34]. Human BFP-ASCs might be quite easily applied in
oral tissue engineering, because this tissue is rapidly ac-
cessible by dentists and maxillofacial surgeons [14]. How-
ever, before moving to the clinic, it is mandatory to
perform approved preclinical studies to validate the safety
and efficacy of cellular therapies. The most used large-
animal model of human oral bone defects is swine [31,42],
because these animals present a healing potential compar-
able to that of the human. Several studies have been con-
ducted by using stem cells in oral diseases and orofacial
research: Wilson et al. [31] investigated bone regeneration
in the pig mandible ramus by either local or systemic
ASCs injection, concluding that both treatments acceler-
ate the healing process, without any significant difference
between the two routes of administration. In another
study, similar results were obtained combining decidua
stem cells with a B-TCP scaffold in a minipig model [43].
Here we compared pASCs derived from two different
body areas and evaluated their behavior in vitro to iden-
tify a convenient source for future preclinical studies.

BFP-pASCs were very similar to ScI-pASCs. Although
the cellular yield of the porcine ASCs was lower than
the human one [44], after 30 days in culture, we could
have been able to obtain a homogeneous populations of
about 10® to 10° cells, with still a pronounced clono-
genic ability.

Both cell populations, analyzed at passage 4, were
CD90", CD271°, CD45, and CD14". These results are
similar to the ones on porcine MSCs from different tis-
sues [45], and to our results on human mesenchymal
stem cells from the Bichat fat pad that express CD90,
CD73, and CD105 [21], as defined for human mesenchy-
mal stromal cells [35,36].

In conclusion, both cell populations were highly posi-
tive for CD90, one of the main MSC surface antigens,
whereas no cross-reactivity has been observed for CD73
and CD105. Although limited, these results are consist-
ent with the ones obtained with porcine MSCs from
bone marrow [46].

Furthermore, by a molecular approach of RT-PCR, we
have preliminary data on the expression of Kruppel-like
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Figure 5 Adipogenic and chondrogenic potential of pASCs. Microphotographs of BFP-pASCs and Scl-pASCs maintained for 14 days in control
(CTRL) and adipogenic medium (ADIPO; 200x magnification; scale bar, 50 um), both during culture (A, upper panels) and after lipid vacuoles
staining by Oil Red O (B, middle panels). Quantification of lipid vacuoles formation by Oil Red O extraction is shown in A, lower panel.
Quantification of glycosaminoglycans (GAGs) production normalized on DNA content in CHONDRO-pASCs after 7, 14, and 21 days of
differentiation in pellet culture (B).

factor 4 (KIf-4), a marker of immature stem cells in-
volved in the control of cell multipotency in many
development-related processes and in the maintenance
of stem cell-associated properties [47]. The mRNA ex-
pression levels in BFP-pASCs are comparable to the
ones in human-ASCs. We consider this result interest-
ing, because we recently showed that Klf-4 expression in
hASCs seems to be related to the cell proliferation, clo-
nogenic ability, and differentiative potential, and to be
downregulated by the pathologic condition (obesity) of
patients from which cells were isolated [48].

Besides, all the porcine BFP-ASCs, grown in the pres-
ence of inductive stimuli, nicely increased both osteo-
genic and adipogenic features, as already described for
subcutaneous porcine ASCs [34,49,50]. At last, both
populations are able to progressively depose GAGs dur-
ing 3D culture when induced to chondro-differentiate.
Altogether, these results suggest our claim that swine
buccal fat pad contains progenitor cells of the mesen-
chymal stromal cell family, similar to the human ones.

Because these cells could be used in preclinical studies
of tissue engineering, and their interaction with appropri-
ate supports is essential, we evaluated the ability of both
pASCs to grow and differentiate onto two synthetic scaf-
folds: the former, a widely used biomaterial in dental sur-
geries (titanium), and the latter, a promising candidate for
the coating of some portions of implant (SiC-PECVD).
Like human ASCs [32], pASCs adhere and differentiate on
both scaffolds. Moreover, the osteoinductive properties of
titanium on hASCs [32], were also observed on both por-
cine progenitor cells, whereas SIC-PECVD did not modu-
late their osteogenic differentiation.

Next, testing porcine autologous or heterologous sera,
we detected that pASCs proliferated slower than cells
cultured in the presence of FBS, and they dramatically
stopped growing, changed morphology, and aggregated
in clusters. These data are consistent with previous data
by Schwarz et al. [41], in which equine ASCs cultured
with autologous serum proliferate less than with FBS.
Differently, our results are in contrast with data obtained
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with human ASCs, in which it has been shown that the
use of autologous serum favors or does not influence
ASCs proliferation [21,51,52]. Nevertheless, Kurita et al.
[53] showed that among four human ASC populations,
only one proliferates faster when cultured with autolo-
gous serum. This discrepancy has also been observed for
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Figure 7 pASCs cultured in media supplemented with porcine
sera. pASCs were grown for 7, 14, and 21 days, in DMEM
supplemented with 109% FBS or 5% autologous or heterologous
serum. Data are expressed as mean + SEM (n = 4). Microphotographs
of Scl-pASCs in culture for 21 days (lower panel, optical microscopy,
100x magnification, scale bar 50 um). AS, autologous serum; FBS,
fetal bovine serum; HS, heterologous serum.

human bone marrow stem cells [54-57], suggesting that
other factors may influence cell growth. This issue re-
quires further investigation to be clarified, although we
have shown that both pASCs behaved similarly.

Conclusions

Our data suggest that the buccal fat pad might be a novel
source of MSCs. This region contains a population of pro-
genitor cells with stemness features that are able to differ-
entiate in vitro and also are associated with synthetic
supports. This is quite relevant for maxillofacial and dental
surgeons, because for them, human BFP is an easily reach-
able and convenient area. Human ASCs have been isolated
from small specimens of BFP (1 ml of tissue), and they are
similar to the most known ScI-ASCs [21,58]. Data about
human cells and previous data on pASCs [2,8,34] are con-
sistent with our work, indicating that BFP-ASCs are com-
parable with ASCs isolated from human and porcine
subcutaneous tissue. Although it could be debatable to
isolate cells from a very small fat pad, we think that pro-
genitor cells derived from a nearby area of the defect could
push toward a proper use of BFP-ASCs in oral clinical
studies. The natural localization of BFP-ASCs could make
them more prone to respond to stimuli naturally secreted
in the mouth, as we previously observed regarding the
osteoinductive properties on human BFP-ASCs of amelo-
genin, the most abundant enamel matrix protein [21]. For
preclinical test, the low immunogenicity of mesenchymal
stem cells might be exploited by using heterologous
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porcine BFP-ASCs, because in swine, the buccal fat pad is
not so easily accessible as in the humans.

Our data support future clinical applications of human
BFP-ASCs in a tissue-engineering approach for oral and
maxillofacial diseases, and we suggest swine as a con-
venient preclinical model to test new bioconstructs.
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