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Abstract

Introduction: Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has
been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor
growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and
prostate tumors.

Methods: Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor
cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer
cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The
expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence
analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk
between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by
immunofluorescence and real-time PCR.

Results: Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium
enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor
size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs
(hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by
injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with
BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation.
Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells
were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are
exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage
inflammatory protein-2, vascular endothelial growth factor, transforming growth factor-beta and IL-6) was increased.

Conclusion: These results indicate that BM-MSCs promote tumor growth and suggest that the crosstalk between
tumor cells and BM-MSCs increased the expression of pro-angiogenic factors, which may have induced tumor cell
proliferation and angiogenesis thereby increasing solid tumor growth.
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Introduction
Tumor development and progression has been recognized
as the product of an evolving crosstalk between different
cell types within the tumor and its surrounding supporting
tissue, or tumor stroma [1-3]. The tumor stroma is com-
posed of extracellular matrix as well as a multitude of cell
types such as fibroblasts and myofibroblasts, immune and
inflammatory cells, adipocytes, pericytes and endothelial
cells of the blood and lymphatic circulation [2]. The mu-
tual interactions between tumor cells and stromal cells via
direct contact or through the production of growth factors,
cytokines and chemokines in a paracrine manner are
thought to modulate tumor expansion, invasion, metastasis
and angiogenesis [2,4-9]. As one of the most crucial com-
ponents of the tumor microenvironment, carcinoma-
associated fibroblasts (CAFs) have been shown to precede
the onset of invasion and promote tumor cell survival as
well as migratory properties [10]. Various different mobi-
lized cell types including normal fibroblasts, preadipocytes,
epithelial cells and smooth muscle cells have been shown
to be the sources of CAFs [11]. Accumulating evidence
from both human and mouse tumor models suggests that
bone marrow-derived mesenchymal stem cells (BM-MSCs)
have a significant contribution to CAF and myofibroblast
populations within the tumor stroma [12-15].
Mesenchymal stem cells (MSCs) are multipotent adult
stem cells of mesodermal germ layer origin that possess
an innate ability for self-renewal and are capable of dif-
ferentiating into a variety of mesodermal lineages, in-
cluding chondrocytes, osteoblasts and adipocytes under
proper experimental conditions in vitro and in vivo
[16,17]. The multilineage potential of MSCs plays an im-
portant role in wound healing and tissue regeneration
through differentiation and the release of important
growth factors and cytokines [18-20]. Secretion of
chemokines/cytokines from the neoplasm or inflamma-
tory tissues such as vascular endothelial growth factor
(VEGF), transforming growth factors (TGFs), fibroblast
growth factors (FGF), platelet-derived growth factors
(PDGF) and interleukin-8 (IL-8) is known to promote
the migration of MSCs from the bone marrow [21,22].
Tumor/cancer is considered a wound that never heals
and tumor microenvironments have many similarities
with the tissue repair processes that attract specific
homing of MSCs [23,24]. The tumor homing properties
of MSCs made them ideal candidates as anti-tumor
agent delivery vehicles [25] and also attracted increased
interest in understanding the role and fate of MSCs in
tumor development and growth. Several studies have
indicated that MSCs could enhance tumor growth and
metastasis [26,27]. Mishra and colleagues have demon-
strated that, by prolonged exposure to tumor cell
conditioned medium, MSCs could be activated, differen-
tiated into CAFs and become part of the tumor
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microenvironment [12]. To the contrary, there are stud-
ies indicating that MSCs also display intrinsic anticancer
activities such as those in an in vivo model of Kaposi's
sarcoma [28].

In most studies regarding the effect of MSCs on tu-
mors, human tumor cells and human MSCs were used
in mouse models. The stromal cells in this tumor xeno-
graft model are thus from two different species. There
may be some unknown interactions between the human
and mouse cells that would affect the analysis. In this
study, in addition to studying the effect of human bone
marrow-derived mesenchymal stem cells (hBM-MSCs)
on human prostate cancer growth, the mouse mammary
tumor cell line 4T1 was selected to study the effect of
mouse bone marrow-derived mesenchymal stem cells
(mBM-MSCs) on tumor growth. For the latter, all cells
used are of mouse origin and one can therefore interpret
the results more clearly. We used luciferase-labeled
tumor cells and co-cultured methods to access the
tumor cell growth in vitro. We found that in both co-
culture with mBM-MSCs and exposure to conditioned
medium of mBM-MSCs, the proliferation of Luc-4T1
cells was promoted in vitro. Furthermore, with co-
injection of mBM-MSCs with 4T1 cells into the nude
mice, the tumor growth was enhanced. For the effect of
hBM-MSCs on the growth of DU145 cells, we obtained
consistent results. The underlying mechanism was also
studied. We found that BM-MSCs could promote tumor
growth through enhanced angiogenesis.

Materials and methods

Cell culture

The 4T1 mouse mammary tumor cell line was pur-
chased from American Type Culture Collection and cul-
tured in alpha-minimum essential medium (a-MEM,
Manassas, Virginia, US) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin—streptomycin—
neomycin (complete culture medium; all from
Invitrogen Corporation, Carlsbad, CA, USA). Human
prostate cancer cell line DU145 was obtained from
American Type Culture Collection and grown in RPMI
1640 medium supplemented with 10% FBS and 1% peni-
cillin—streptomycin—neomycin.

Mouse skin fibroblasts were isolated from dorsal skin
and cultured in complete a-MEM medium. For the pri-
mary culture of mBM-MSCs, bone marrow was flushed
and harvest from the femur of 6-week-old to 8-week-old
FVB mice. The cell suspension was then filtered and the
bone marrow cells cultured in a 100 mm culture dish
in a-MEM containing 20% FBS. After 3 days the
nonadherent cells were removed by changing the
medium; after an additional 4 to 7 days the culture be-
comes confluent, and when it reaches 70 to 80% conflu-
ence the adherent cells were trypsinized and subcultured.
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After three to five passages, a homogeneous cell population
was obtained and used for further expansion and
characterization. The mBM-MSCs were used at passage 5
in this study.

Human fetal bone marrow stem cells (hBM-MSCs)
were donated from the Stem Cell Bank of the Prince of
Wales Hospital of the Chinese University of Hong Kong.
Human ethics approval was obtained from the Joint
Chinese University of Hong Kong-New Territories East
Cluster Clinical Research Ethics Committee (ethical ap-
proval code: CRE-2011.383). Informed written consent
form was approved by the Clinical Research Ethics Com-
mittee and signed by donor before sample collection.
4T1 cells, DU145 cells stably expressing luciferase (Luc-
4T1, Luc-DU145) and hBM-MSCs stably expressing
GFP were kept in our laboratory.

Characterization of mouse bone marrow-derived MSCs

To identify the isolated cells, cell surface markers and
differential potential were analyzed. Flow cytometric
analysis was applied for examining the expression of sur-
face antigens of the cells. Briefly, cells at passage 5 were
harvested and cell suspensions containing 1 x 10° cells
were stained with the fluorescence conjugated anti-
bodies phycoerythrin-conjugated rat anti-mouse CD44,
phycoerythrin-conjugated rat anti-mouse Sca-1, fluor-
escein isothiocyanate-conjugated rat anti-mouse CD45
and fluorescein isothiocyanate-conjugated rat anti-
mouse CD34 (BD Pharmingen, Franklin Lakes, NJ,
USA) for 1 hour at 4°C. After washing with PBS, the
cells were resuspended in 0.5 ml stain buffer (BD
Pharmingen) for flow cytometric analysis. Nonspecific
background signals were measured by incubating the
cells with the appropriate isotype control antibodies.
The percentage of cells with a positive signal and the
mean geometric fluorescence value of the positive
population were calculated using the WinMDI Version
2.9 program (The Scripps Research Institute, La Jolla,
CA, USA). For osteogenic differentiation, the cells at
passage 5 were seeded in a six-well plate at a density of
4% 10° cells/em® and cultured in the base complete
medium for 2 or 3 days until they reached 80% confluence.
The medium was then removed and replaced by osteo-
genic induction medium, which was complete medium
supplemented with 1 nM dexamethasone, 50 mM L-ascor-
bic acid-2-phosphate, and 20 mM p-glycerolphosphate for
14 days (all from Sigma-Aldrich, St Louis, MO, USA). The
induction medium was changed every 3 days. Cells cul-
tured in the base complete medium were used as a nega-
tive control. Alizarin Red S staining is used for the
assessment of calcium compound formation. For
adipogenic differentiation, cells were plated at a density of
4% 10° cells/cm® in a six-well plate and cultured in base
complete medium for 2 or 3 days until they reached 80%
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confluence. Afterwards the medium was removed and re-
placed by adipogenic medium, which was complete
medium supplemented with 500 nM dexamethasone, 0.5
mM isobutyl-methylxanthine, 50 mM indomethacin, and
10 mg/ml insulin (all from Sigma-Aldrich). Cells cul-
tured in the base complete medium served as a nega-
tive control. After 14 days of culture, 2% (wt/vol) Oil
Red-O solution (Sigma-Aldrich) was applied to identify
the presence of lipid-rich vacuoles. For chondrogenic dif-
ferentiation, about 8x10° cells were pelleted into a
micromass by centrifugation at 450 x g for 10 minutes in a
15 ml conical polypropylene tube and cultured in complete
basal medium or chondrogenic medium, which contained
LG-DMEM supplemented with 10 ng/ml TGF-B1 (Gibco,
Invitrogen Corporation), 10~ M dexamethasone, 50 pg/ml
ascorbate-2-phosphate, 40 pg/ml proline, 100 pg/ml
pyruvate (all from Sigma-Aldrich), and 1:100 diluted
BD™-ITS Universal Culture Supplement Premix (Becton
Dickinson, Franklin Lakes, NJ, USA). At day 21, the
pellet was fixed for safranin-O/fast green staining.

In vitro cell proliferation assays

For investigation of the effect of BM-MSCs on prolifera-
tion of tumor cells, luciferase-labeled tumor cell line
Luc-4T1 was co-cultured with either 4T1, mouse skin fi-
broblasts or mBM-MSCs in a 96-well black plate at a
ratio of 1:1 in a density of 1.0x 10*/well in a-MEM
containing 1% FBS. Similar experiments were conducted
for Luc-DU145. Tumor cell proliferation was examined
every 12 hours for a 72-hour period using the IVIS 200
in Vivo Imaging System (PerkinElmer, Waltham, MA,
USA) according to the manufacturer’s instructions.
Briefly, after removing the medium, the fresh medium
containing D-luciferin (Biosynth, Itasca, IL, USA) at a
concentration of 150 pg/ml was added. Prior to imaging
examination, the plate was incubated at 37°C for 10 mi-
nutes. Bioluminescent images were acquired and the
bioluminescent intensity was quantified in photons/sec-
ond using Living Image 2.5 software (PerkinElmer) ac-
cordingly. For analyzing the dose—response effect of
BM-MSCs on tumor cell proliferation, Luc-4T1 or Luc-
DU145 cells were cultured alone or incubated with BM-
MSC:s at ratios of 1:0.2, 1:0.5, 1:1, 1:2, 1:5, 1:10 and 1:15.
At the same time, Luc-4T1 or Luc-DU145 cells were in-
cubated alone or in combination with mouse skin fibro-
blasts at different ratios as a control. After 48 hours of
culture, the bioluminescent images were acquired and
the bioluminescent intensity was quantified.

To investigate the effect of conditioned medium from
BM-MSCs on tumor cell proliferation, conditioned
medium was collected from mBM-MSCs and hBM-
MSCs during the logarithmic growth phase. Briefly, BM-
MSCs were plated in a 75 cm? flask in 12 ml complete
medium for 18 to 24 hours of culture, and when they
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reached preconfluence the medium was changed and the
cells were rinsed in 1x PBS twice and cultured in fresh
medium containing 1% FBS for an additional 3 days.
The medium was then centrifuged at 1,000 x g for 10
minutes at 4°C for clarifying and the supernatant
regarded as conditioned medium was collected and
stored at —80°C for future use. To assess the tumor cell
proliferation, Luc-4T1 or Luc-DU145 cells were seeded
at 50x10% cells/well in a black 96-well plate in
complete medium for 12 hours. Afterwards the medium
was replaced by either conditioned medium collected from
BM-MSCs or a-MEM containing 1% FBS. Tumor cell pro-
liferation was assessed every 12 hours for a 96-hour period
using the IVIS 200 in Vivo Imaging System. Tumor cell
proliferation in the presence of conditioned medium
from BM-MSCs was also assessed using the BrdU assay
kit (Roche Applied Science, Penzberg, Upper Bavaria,
Germany) according to the manufacturer’s instructions.
4T1 or DU145 cells were seeded at a density of 4 x 10
cells/cm? in a 96-well plate and conditioned medium or
a-MEM/1% FBS was replaced after 12 hours. After la-
beling with BrdU for 2 hours by adding BrdU labeling
reagent into the medium, the cells were then fixed and
incubated with anti-BrdU antibody that is peroxidase
conjugated for 1 hour. Followed by washing with wash-
ing buffer, the substrate solution TMB was added and
incubated for 5 minutes. The absorbance at 450 nm
was measured and reported.

In vivo tumor growth analysis

All experiments were approved by the Animal Research
Ethics Committee of the authors’ institution. For
assessing the effect of BM-MSCs on tumor growth
in vivo, all nude mice were randomly divided into the
following groups (17 =6) for transplanted cells through
subcutaneous injection: 4T1 cells alone (2.0 x 10°); 4T1
cells (2.0 x 10°) mixed with mBM-MSCs (2.0 x 10°) at a
ratio of 1:1; mBM-MSCs alone (2.0 x 10°); 4T1 cells
(2.0 x 10°) mixed with mouse skin fibroblasts (2.0 x 10°)
at a ratio of 1:1; DU145 cells alone (2.0 x 10°); DU145
cells (2.0 x 10°) mixed with hBM-MSCs (2.0 x 10°) at a
ratio of 1:1; hBM-MSCs alone; and DU145 cells (2.0 x 10°)
mixed with mouse skin fibroblasts (2.0 x 10°) at a ratio of
1:1. The cells were suspended in 200 pl 1x PBS and
injected subcutaneously into the dorsal sides of nude
mice. Beginning 5 days after transplantation, the size of
the tumor was measured with a caliper and the tumor vol-
ume was calculated using the following formula:

Tumor volume(mm®) = 0.52 x width(mm)®
X length(mm)

After 21 days, nude mice were sacrificed using 20%
overdose pentobarbital. The tumors were removed and
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cut into two pieces. One-half of the tumors were embed-
ded in Optimal Cutting Temperature medium, frozen in
liquid nitrogen, and stored at —80°C. The other tumors
were fixed in formalin, dehydrated through increasing
concentrations of ethanol and embedded in paraffin for
immunochemistry.

Immunofluorescence staining
For immunofluorescence staining, the frozen samples
were cut into 5-pm sections using a cryostat microtome
(Leica, Wetzlar, Hesse, Germany). The slides were fixed
in 4% paraformaldehyde in PBS (pH 7.4) for 15 minutes
at room temperature and washed with cold PBS. After
treatment with PBS containing 0.25% Triton X-100 for
10 minutes for permeabilization, the samples were incu-
bated with 5% normal goat serum/1% BSA/PBS for 30
minutes to block unspecific binding of the antibodies.
Subsequently the slides were incubated with primary
antibodies specific to CD31 (Abcam, Cambridge, UK)
at 1:50, alpha smooth muscle actin (a-SMA; Abcam) at
1:100 and Ki67 (Abcam) at 1:200 overnight at 4°C,
followed by PBS washing three times. Alexa Fluor 488-
conjugated secondary antibody or Alexa Fluor 594-
conjugated secondary antibody was incubated for 1 hour
at room temperature (Invitrogen). ProLong Gold antifade
reagent with DAPI (Invitrogen) was applied to mount and
counterstain the slides. All of the fluorescence pictures
were captured and analyzed under a fluorescent micro-
scope (Zeiss-spot; Carl Zeiss Microlmaging GmbH, Jena,
Thuringia, Germany). For quantification of the
microvessel area, 10 fields at 200x were randomly selected
from sections stained with CD31 antibody and the vessel
area was measured using Image] software [29]. For assess-
ment of cell proliferation in vivo, the percentage of Ki-67
-positive cells was calculated using the Image] software.
For cell immunofluorescence staining, hBM-MSCs
were seeded in sterilized glass coverslips placed in a six-
well plate. The cells were starved for 24 hours and
treated with conditioned medium for 7 days or not.
After removing the medium, the cells were fixed in 4%
paraformaldehyde for 10 minutes at room temperature,
washed with cold PBS twice, incubated with PBS
containing 0.25% Triton X-100 for 10 minutes, blocked
with 5% normal goat serum/1% BSA/PBS for 30 minutes
and then incubated with primary antibodies for 2 hours
at room temperature. Cells were immunostained for
VEGE, TGE-B and IL-6 (all from Santa Cruz, Dallas,
Texas, USA) at 1:100. Following PBS washing, the cells
were incubated with Alexa Fluor 488-conjugated sec-
ondary antibody or Alexa Fluor 594-conjugated second-
ary antibody. Finally, all cells were mounted and
counterstained with ProLong Gold antifade reagent with
DAPL
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Immunochemistry

For immunochemistry, the paraffin blocking was cut
into 5 pm sections and then deparaffinized and
redehydrated. Subsequently the sections were incubated
in 3% H,O, solution in methanol at room temperature
for 10 minutes to block endogenous peroxidase activity
and, after rinsing in PBS twice, antigen retrieval was
performed by arranging the sides in a stain container
containing 10 mM citrate buffer (pH 6.0) at 95°C for 15
minutes. After cooling and washing, blocking buffer (5%
normal goat serum/1% BSA/PBS) was added and incu-
bated for 30 minutes at room temperature. The sections
were then incubated with diluted primary antibodies
anti-GFP (Abcam) at 1:1,000 overnight at 4°C. Followed
by washing three times, horseradish peroxidase-
conjugated rabbit anti-goat secondary antibodies were
applied for 1 hour at room temperature. The substrate
3,3’-diaminobenzidine (Dako, Glostrup, Denmark) was
used for color development. Sections were then rinsed
in running tap water and counterstained with
hematoxylin. The primary antibodies replaced by anti-
body diluent served as a negative control. At least five
sections from each sample were analyzed.

Exposure of human bone marrow-derived MSCs to
conditioned medium of tumor cells

DU145 cells were plated in 75 cm? flasks in a-MEM
containing 1% FBS. The tumor cell conditioned medium
was harvested during their logarithmic growth phase,
centrifuged at 1,000 x g for 10 minutes at 4°C for clarify-
ing and stored at —-80°C for subsequent use. Before ex-
posure to conditioned medium, hBM-MSCs were
serum-starved by cultured in serum-free a-MEM for 24
hours. Afterwards BM-MSCs were cultured in DU145
conditioned medium or a-MEM/1% FBS and the
medium was changed every 2 days for the entire cultur-
ing period (7 days).

Tube formation assays

For assessment of angiogenic activity of interaction be-
tween BM-MSCs and tumor cells in vivo, tube formation
assays were performed. Matrigel (100 pl; BD Pharmingen)
was paved on a well of a 96-well plate and incubated for
1 hour at 37°C to allow the gel to solidify. Then 1.5 x 10*
human umbilical vein endothelial cells were seeded in:
base culture medium (a-MEM); hBM-MSC conditioned
medium; DU145 cell conditioned medium; and hBM-
MSCs co-cultured with DU145 conditioned medium at a
final volume of 100 ul. All assays were independently
performed six times for each group. After incubation for 8
hours, the cells were visualized using a light microscope.
Endothelial tubule length was quantitatively analyzed
using Image-Pro Plus software 6.0 (Media Cybernetics,
Rockville, MD, USA).
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RNA extraction and real-time quantitative PCR

The expression level of angiogenic factor was analyzed
by quantitative real-time PCR. hBM-MSCs were co-
cultured with DU145 using noncontacting co-culture
transwell systems or were treated by conditioned
medium from DU145. Cells cultured in a-MEM served
as a control. After 7 days culturing, cells were harvested
and RNA was extracted using an RNA extraction mini
kit (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Then 800 ng total
RNA of each sample was reverse transcribed to cDNA
by M-MLV Reverse Transcriptase (Life Technologies).
Real-time PCR assays were performed on the ABI
StepOne Plus system using Power SYBR® Green PCR
Master Mix (Life Technologies) with 4 ng (10-fold
dilutions) standard cDNA and 400 nM specific primers
for IL-6, TGF-B, VEGF and macrophage inflammatory
protein-2 (MIP-2). The sequences were as follows:
IL-6, 5'-GGTACATCCTCGACGGCATCT-3’ (forward)
and 5-GTGCCTCTTTGCTGCTTTCAC-3" (reverse);
TGEF-B, 5'-CCCAGCATCTGCAAAGCTC-3" (forward)
and 5 -GTCAATGTACAGCTGCCGCA-3" (reverse);
VEGE, 5'-CTACCTCCACCATGCCAAGT-3" (forward)
and 5 -GCAGTAGCTGCGCTGATAGA-3" (reverse);
and MIP-2, 5'-CGCCCAAACCGAAGTCAT-3" (for-
ward) and 5'-GATTTGCCATTTTTCAGCATCTTT-3’
(reverse). The amplification was performed under the
following conditions: one cycle of denaturation at 95°C
for 10 minutes, 40 cycles of denaturation at 95°C for 30
seconds, annealing at 60°C for 30 seconds, and extension
72°C for 30 seconds. Fluorescence data were acquired
at the end of each annealing step. Finally, a melting curve
was generated by increasing the temperature from 65
to 95°C. The expression of target gene was measured rela-
tive to that of GAPDH as housekeeping gene. The primers
for amplify GAPDH were: 5'-AGGGCTGCTTTTAAC
TCTGGT-3" (forward) and 5'-CCCCACTTGATTTTGG
AGGGA-3" (reverse). All samples were performed in
triplicate.

Statistical analysis

Results are expressed as the mean + standard deviation.
Data were analyzed with GraphPad Prism statistical soft-
ware 6.0 (GraphPad Software, La Jolla, CA, USA) using
either one-way analysis of variance followed by Tukey’s
post-hoc test or Students ¢ test where appropriate.
P <0.05 was considered statistically significant.

Results

Characterization of bone marrow-derived MSCs
mBM-MSCs were established from FVB mice of 6 weeks
old and were subjected to flow cytometry as well as a
differentiation assay in vitro. The mBM-MSCs exhibited
fibroblast-like spindle-shaped morphology in culture at
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passage 5 (Figure 1b) and the surface marker expression
on these cells was characterized. The flow cytometry re-
sults revealed that the BM-MSCs were positive for Sca-1
and CD44, which are characteristically expressed on
MSCs, but negative for CD34 and CD45 (Figure 1a). In
order to examine whether BM-MSCs show multipotent
differentiation potential in vitro, adipogenic, osteogenic
and chondrogenic induction were performed. Fourteen
days after adipogenic induction, oil red O staining re-
sults showed that the BM-MSCs were committed to-
ward adipogenic lineage and filled with lipid-rich
vacuoles (Figure 1b). Following osteogenic induction, as
shown by the alizarin red staining result in Figure 1b,
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culture, suggesting osteoblastic differentiation (Figure 1b).
Safranin-O/fast green staining for sulfated glycosamino-
glycan matrix deposition of pellets showed chondrogenic
differentiation of BM-MSCs in a 21-day pellet culture
with induction medium (Figure 1b). Combined, these
data indicated that BM-MSCs are indeed MSCs from
bone marrow.

Co-culture with bone marrow-derived MSCs promotes
proliferation of tumor cells in vitro

To investigate whether BM-MSCs could promote prolif-
eration of the tumor cells in vitro, the growth of Luc-
4T1 cells co-cultured with mBM-MSCs were compared
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Figure 1 Characterization of mouse bone marrow-derived mesenchymal stem cells. (a) Flow cytometric analysis showing the expressing of
cell surface markers Scal, CD44, CD34 and CD45. (b) Spindle-shaped morphology of cells that appear at passage 5 (upper left); the cells
differentiated into mineralizing cells stained with alizarin red (upper right); adipogenesis of cells was stained with Oil-red-O (lower left); and
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(e) Luc-4T1 cells were incubated with mouse skin fibroblasts and (f) Luc-DU145 cells were incubated with mouse skin fibroblasts at different
ratios. Luciferase activities were measured after 48 hours (n =6 per group; **P <0.01). (g) 4T1 cells were cultured in mBM-MSC conditioned
medium and (h) DU145 cells were cultured in hBM-MSC conditioned medium for 72 hours. BrdU assay was performed to measure the
proliferation of tumor cells at the indicated time points (n =6 per group; *P <0.05, **P <0.01).
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fibroblasts or 4T1 cells. For DU145, similar experiments
were conducted. These cells were incubated in black 96-
well plates and luciferase activities were measured at dif-
ferent time points. There are good correlations between
cell numbers and bioluminescence in the cells trans-
duced with the luciferase gene using the In Vivo imaging
system IVIS 200 as we reported earlier [30]. Signifi-
cantly, co-culture with mBM-MSCs, but not with 4T1 or
fibroblasts, enhanced the proliferation of Luc-4T1 after
72 hours (P <0.01) (Figure 2a); consistently, we found
that the growth of Luc-DU145 cells was also enhanced
when co-cultured with hBM-MSCs, but not with DU145
cells or mouse skin fibroblasts (P <0.01) (Figure 2b).
These results showed that when co-cultured with BM-
MSCs, the proliferation of Luc-4T1 or Luc-DU145 could
be promoted in vitro. To determine whether the dosage
of MSCs could affect the proliferation of tumor cells,
Luc-4T1 with mBM-MSCs or Luc-DU145 with hBM-
MSCs were co-cultured at different ratios for 48 hours.
The results indicated that Luc-4T1 cells and mBM-
MSCs at 1:1 and 1:15 ratios exhibited 2.52-fold (P <0.01)
and 4.48-fold (P <0.01) greater Luc-4T1 cell number
after 48 hours (Figure 2c). The results also showed that
there was 2.50-fold (P <0.01) and 3.46-fold (P <0.01)
increase in proliferation of Luc-DU145 when the ratio
of Luc-DU145 and hBM-MSCs were 1:1 and 1:15 res-
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pectively (Figure 2d). However, when tumor cells incu-
bated with fibroblasts at different ratios, no significant
promoting effect was observed during 48 hours of incu-
bation (Figure 2e,f). On the basis of these data, we found
that the proliferation of Luc-4T1 and Luc-DU145 cell in-
creases were in accordance with the number of BM-
MSCs that presented in the co-culture system.

To further evaluate the effect of conditioned medium
from BM-MSCs on the growth of tumor cells, condi-
tioned medium was obtained from mBM-MSCs or
hBM-MSCs and its effect on 4T1 or DU145 cell prolifer-
ation was tested respectively. Results from the BrdU
assay indicated that, compared with culture in a-MEM,
there was a 1.22-fold (P <0.01) increase in proliferation of
4T1 cells (Figure 2g) and a 1.17-fold increase (P <0.01) in
DU145 cells (Figure 2h) in the presence of conditioned
medium from mBM-MSCs or hBM-MSCs.

Bone marrow-derived MSCs promote tumor growth

in vivo

To investigate in vivo effects of BM-MSCs on tumor
growth, mBM-MSCs and 4T1 cells or hBM-MSCs and
DU145 cells were mixed together and implanted into
nude mice respectively. At the same time, tumor cells
were also co-injected with mouse skin fibroblasts with
an equal number of tumor cells plus BM-MSCs. At day

Tumor cells alone

a

4T1

DU145

o

A - 4T1+mBM-MSCs
1:5:10% o 4T4(alone)
o -+ mBM-MSCs(alone)
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3
4
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Tumor Volume(mm®)

Figure 3 Bone marrow-derived mesenchymal stem cells promote tumor growth in nude mice. (a) Representative photographs of 4T1 and
DU145 tumors generated from nude mice injected with tumor cells alone, co-injected with mouse skin fibroblasts, or bone marrow-derived
mesenchymal stem cells (BM-MSCs). (b) Mouse bone marrow-derived mesenchymal stem cells (mBM-MSCs) alone and 4T1 cells along with or
without mBM-MSCs/skin fibroblasts were injected and the tumor size was measured and calculated every 3 days (n =6 per group; *P <0.05).

(c) Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) alone and DU145 cells along with or without hBM-MSCs/skin fibroblasts
were injected and tumor size was measured and calculated every 4 days (n =6 per group; *P <0.05).
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20 post tumor inoculation, the tumors generated in nude
mice injected with mBM-MSCs and 4T1 cells exhibited
a 2.45-fold increase in tumor volume compared with tu-
mors from injected 4T1 cells alone (P <0.05) (Figure 3a,b).
At day 28 post tumor inoculations, mice injected with
hBM-MSCs and DUI145 showed 2.56-fold (P <0.05)
greater tumor volume than mice injected with DU145
alone (Figure 3a,c). Moreover, the BM-MSC-induced in-
crease in the tumor growth was significantly more than
that when mixed with fibroblasts (P <0.05) and there was
no statistical difference between the fibroblast group and
the tumor cells alone group (Figure 3). Mice injected with
mBM-MSCs or hBM-MSCs did not have any tumor
growth in the experimental period.
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Bone marrow-derived MSCs promote tumor cell
proliferation and enhance tumor vascularization in vivo
To understand mechanisms underlying the effect of
tumor growth promotion by BM-MSCs, the morphology
of tumor tissue harvest at the end of in vivo experiments
was analyzed using H & E staining. The necrosis area of
4T1+ mBM-MSC tumors and tumors from mice
injected with 4T1 cells alone was compared. The stain-
ing results showed that the former had a vast area of ne-
crosis inside the tumor tissue. However, only a limited
area of necrosis could be detected in the center of 4T1 +
mBM-MSC tumors (Figure 4a). Similar results were found
for the DU145 tumor model (Figure 4a). To access the
presence of BM-MSCs in the tumor stroma, hBM-MSCs

a Tumor cells alone

4T1

stem cells.

DU145+GFP-hBM-MSCs
Figure 4 Histological analysis of tumor sections. (a) Sections from 4T1 and DU145 tumors injected with tumor cells alone or together with
bone marrow-derived mesenchymal stem cells (BM-MSCs) were stained with routine H & E, and necrotic areas could be seen in the sections (¥).
Scale bar, 200 pm. (b) GFP-hBM-MSCs (arrows) could be detected by immunohistochemical analysis in paraffin sections of the DU145 + GFP-hBM-MSCs
tumors collected at the end of the in vivo experiment with anti-GFP antibodies. Scale bar, 200 um. hBM-MSCs, human bone marrow-derived mesenchymal
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stably expressing GFP combined with DU145 were co-
injected into nude mice and the distribution of GFP-
hBM-MSCs was detected by immunochemistry using
anti-GFP antibody. The hBM-MSCs were randomly dis-
tributed inside the tumor but the number was relatively
low (Figure 4b).

To determine the effect of BM-MSCs on tumor cell pro-
liferation in vivo, immunofluorescence was performed to
detect Ki-67, a nuclear antigen widely used as a prolifera-
tion marker that is expressed by dividing cells [31]. The
immunofluorescence staining results showed the majority
of cells in the tumor obtained from mice injected with
4T1 + mBM-MSCs were positive for Ki-67, whereas
there were less proliferation cells in the 4T1 alone group
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(Figure 5a). The quantification of Ki-67 proliferation index
(the percentage of Ki-67-positive cells to tumor cells) re-
vealed that the average percentage of Ki-67-positive cells
in 4T1 alone tumors was 19.21%, while there was a signifi-
cantly higher percentage of proliferation cells in 4T1 +
mBM-MSCs tumors (40.6%; P <0.05) (Figure 5c). For
DU145 cells we obtained consistent results. The immuno-
fluorescence result showed that there were limited prolif-
eration cells in the DU145 alone tumors and the number
of Ki-67-positive cells was greater in DU145 + hBM-MSC
tumors (Figure 5b). Average percentages of Ki-67-positive
cells were 12.7% and 30.3% for DU145 alone tumors and
DU145 + hBM-MSCs tumors respectively, and the differ-
ence was significant (P <0.05) (Figure 5d).

a Ki67 Nuclei
Tumor edge Tumor center c
4T1 alone ~ 509
2 %
g “
§ 30+
K-
S 20+
£
©°
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b Ki67 Nuclei d
Tumor edge Tumor center
DU145 alone § 40 - -
P
T 30 !
5
© 20 -
%
5 10+
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o
DU145+hBM-MSCs x - T
DU145 alone DU145+hBM-MSCs
Figure 5 Bone marrow-derived mesenchymal stem cells promote tumor cell proliferation in vivo. Immunofluorescence analysis of
proliferation cells in frozen sections from (@) 4T1 tumor or 4T1 combined with mouse bone marrow-derived mesenchymal stem cell (mBM-MSC)
tumor and (b) DU145 tumor or DU145 mixed with human bone marrow-derived mesenchymal stem cell (hBM-MSC) tumor by staining with anti-
Ki67. DAPI (for nuclei staining) is blue; Ki67 detected in red. Scale bar, 100 um. Quantitative analysis of proliferation cells in (c) 4T1 and (d) DU145
tumors using the ImagelJ software (n =6 per group; *P <0.05).
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To detect the blood vessel in the tumor environment,
the antibody of CD31 (platelet endothelial cell adhesion
molecule-1) was used to stain the frozen tumor section
by immunofluorescence to visualize the blood vessels.
As compared with the 4T1 alone tumor group, the dens-
ity of blood vessel in 4T1+ mBM-MSC tumors was
much higher both at the edge and center of the tumor at
day 20 (Figure 6a). The blood vessel density was also
quantified by analyzing the percentage of CD31-positive
areas. According to the quantification results, the per-
centage of vessel area was significantly higher in tumors
from mice injected with 4T1 + mBM-MSCs than tumors
injected with 4T1 alone (P <0.05) (Figure 6c).

For DU145 xenograft tumors, the immunofluorescence
staining results revealed that the a-SMA-positive area
was abundant in the center of DU145 + hBM-MSC tu-
mors and there were also some a-SMA-positive cells
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present in the peripheral areas. On the contrary, the a-
SMA-positive cells were much fewer both in the center
and peripheral areas of the tumor in the DU145 alone
group (Figure 6b). Quantification analysis showed that
there was a significant increase in vessel area of tumors
from mice injected with DU134 cells mixed with hBM-
MSCs in comparison with tumors from mice injected
with DU145 cells alone (P <0.05) (Figure 6d).

Conditioned medium from human bone marrow-derived
MSCs co-cultured with DU145 cells increases capillary
tube formation

To confirm our findings in vivo that BM-MSCs promote
angiogenesis, further studies using a tube formation
assay in vitro were performed. Conditioned medium
from hBM-MSCs alone, DU145 cells alone, and co-
cultures of hBM-MSCs with DU145 cells were applied

a Tumor edge CD31 Nuclei

4T1 alone

4T1+mBM-MSCs

a-SMA Nuclei
b Tumor edge

DU145 alone

DU145+hBM-MSCs

Tumor center

Tumor center

Figure 6 Bone marrow-derived mesenchymal stem cells promote tumor angiogenesis in vivo. Immunofluorescence analysis of blood
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vessel density in frozen sections from (@) 4T1 tumor or 4T1 combined with mouse bone marrow-derived mesenchymal stem cell (mBM-MSC)
tumor by staining with anti-CD31 and (b) DU145 tumor or DU145 mixed with human bone marrow-derived mesenchymal stem cell (hBM-MSC)
tumor by staining with anti-alpha smooth muscle actin (anti-a-SMA). DAPI (for nuclei staining) is blue; Arrows, blood vessels, Scale bar, 100 pm.
Quantitative analysis of blood vessel density of (c) 4T1and (d) DU145 tumors using the ImageJ software (n =6 per group; *P <0.05).
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Figure 7 Co-culture of human bone marrow-derived mesenchymal stem cells with DU145 cells increases tube formation.

(@) Representative photographs of human umbilical vein endothelial cells seeded on Matrigel in culture medium (control) and in the presence of
conditioned medium from DU145 cells, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) or DU145 + hBM-MSCs. Scale bar, 100 pm.
(b) Tube length was quantitated using Image-Pro Plus software (n =6 per group; **P <0.01).
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in this assay. Human umbilical vein endothelial cells
were incubated in normal culture medium a-MEM and
were used as a control. Figure 7 shows the capillary tube
formation after 8 hours in culture. By measuring the
length of the capillary-like structure, the length of the
endothelial cell networks was significantly increased
when incubated in conditioned medium from hBM-MSCs
(P<0.01), DU145 (P<0.01) and co-cultures (P<0.01)
compared with control respectively (Figure 7b). Further-
more, in comparison with conditioned medium from
hBM-MSCs or DUI145 alone, incubation in the co-
culture conditioned medium induced a more branched
network and contained enlarged cords so the ability of
tube-like structure formation was dramatically en-
hanced (Figure 7a). Quantitative analysis also showed
co-culture conditioned medium increased the tubular
length to a greater extent compared with the hBM-
MSCs alone and the DU145 alone groups (P <0.01 vs.
hBM-MSCs; P <0.01 vs. DU145) (Figure 7b).

Tumor cell conditioned medium enhances bone marrow-
derived MSC angiogenic factor expression

As we observed conditioned medium from both hBM-
MSCs alone and co-cultured with DU145 cells could
promote the formation of capillary-like structures
in vitro, we next analyzed the pro-angiogenic factor gene
expression changes in BM-MSCs when exposed to
tumor cell conditioned medium. Cell immunofluores-
cence staining was performed on hBM-MSCs to measure
the expression of pro-angiogenic factors TGF-B, VEGF
and IL-6. The results revealed there were weak TGEF-f,
VEGF and IL-6 staining in untreated hBM-MSCs, whereas
the staining intensity increased when hBM-MSCs were
exposed to DU145 conditioned medium (Figure 8a),

indicating an increased production of these factors in
comparison with the untreated cells. To further confirm
this finding, real-time quantitative PCR was employed to
detect the mRNA expression of four pro-angiogenic fac-
tors. Compared with untreated hBM-MSCs, when treated
with DU145 conditioned medium or co-cultured with
DU145 for 7 days there was a relative high level of all four
genes (TGF-B, VEGE, IL-6 and MIP-2). The increase in
mRNA level was 4.8-fold (P <0.05), 2.17-fold (P <0.05),
2.8-fold (P <0.05) and 4.36-fold (P <0.05) for TGEF-f,
VEGE, IL-6 and MIP-2 respectively compared with the
level in untreated hBM-MSCs (Figure 8b). IL-6 was most
responsive to co-cultured condition, which had 4.54-fold
increase in IL-6 mRNA (P <0.05) compared with the
control group. The mRNA expression of TGF-$, VEGF
and MIP-2 was increased 3.85-fold (P <0.05), 2.85-fold
(P <0.05) and 4.26-fold (P <0.05) respectively in the co-
cultured group compared with the control group
(Figure 8b).

Discussion

Rapid tumor growth requires the recruitment of diverse
stromal cells that constitute the tumor microenviron-
ment. Paget originally proposed the concept that the
stromal microenvironment plays a critical role in regu-
lating tumor development in his ‘seed and soil’ hypoth-
esis [32]. Among the stromal cells, CAFs communicate
with cancer cells to stimulate the tumor growth and
metastatic potential, and also secrete a serious of cyto-
kine or growth factors to enhance angiogenesis [4,9].
Current evidence suggests that at least a proportion of
CAFs are bone marrow derived, especially derived from
bone marrow MSCs [15].
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Figure 8 Expression of pro-angiogenic factors by human bone marrow-derived mesenchymal stem cells. (a) Immunofluorescence analysis
of pro-angiogenic factor expression in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) after co-culture with DU145 cells. DAPI
(for nuclei staining) is blue; transforming growth factor (TGF)-3 and vascular endothelial growth factor (VEGF) detected in green; IL-6 detected in
red. Scale bar, 100 um. (b) Real-time quantitative PCR for pro-angiogenic factor relative mRNA levels to GAPDH in hBM-MSCs, hBM-MSCs co-
cultured with DU145 cells and hBM-MSCs cultured in conditioned medium of DU145 cells (n =6 per group; *P <0.05). MIP-2, macrophage
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In the present study, BM-MSCs promoted tumor cell
proliferation in vitro and tumor growth in vivo. However,
such promotion was not associated with the number of
BM-MSCs at the tumor sites. A similar finding has been
reported in which MSCs promote Daudi tumor cell prolif-
eration and protected them against apoptosis, which are
partly mediated by MSC-derived soluble factors, and the
maximal protective effect of MSCs on Daudi tumor cell
apoptosis could be achieved by direct cell contact [33]. In
contrast, Khakoo and colleagues reported that MSCs ex-
hibit potent antitumor effects in a model of Kaposi’s sar-
coma and this effect is mediated by direct cell contact
leading to the inhibition of Akt activation in KS cells [28].
The different types of tumor models or sources of MSCs
for assessment may be one of the factors accounting for the
variability results of pro-tumorigenic or anti-tumorigenic
effects. The effect of MSCs is thus context dependent and
may be mediated through changes in soluble factors pro-
duced by the MSCs communicating with tumor cells in a
paracrine manner [34,35].

A number of studies have demonstrated that once MSCs
are incorporated into the tumor mass, they contribute with
other cells such as myofibroblasts, endothelial cells,
pericytes, and inflammatory cells to create a microenviron-
ment and influence the morphology and proliferation of
cells within microenvironments [36,37]. Of particular note
is that angiogenesis is critical for tumor growth so that the
blood vessel in the tumor environment could provide suffi-
cient nutrients and oxygen to the cells, which are essential
for the growth and survival of tumor cells [38]. According
to the study of Duffy and colleagues, MSCs played active

roles in angiogenesis through regulating the formation,
stabilization and maturation of newly formed vessels [39].
We therefore hypothesize that enhanced angiogenesis may
account for the tumor growth-promoting effects by BM-
MSCs. In our study, the presence of BM-MSCs correlated
with a higher abundance of blood vessels, suggesting that
BM-MSCs in the tumor microenvironment contributed to
promoting angiogenesis.

In addition, pericyte marker a-SMA [40] staining re-
sults suggested there was increased vascular pericyte
coverage in the presence of BM-MSCs. Previous studies
indicated that MSCs can function as pericyte-like cells
in experimental gliomas that integrate into the tumor
neovasculature [41]. In our study, the numbers of BM-
MSCs detected in the tumors could not account for the
increased numbers of a-SMA-positive cells. BM-MSCs
may thus play a role in recruiting endogenous pericyte
progenitors that participate in the formation of func-
tional tumor vessels [42]. Furthermore, the in vitro ef-
fect of BM-MSCs on angiogenesis was shown in the
tube formation assay. Collectively, these findings sug-
gest that BM-MSCs may have the ability to potentially
active angiogenesis in the tumor microenvironment.
The promotion effect of MSCs on angiogenesis was
consistent with a recent study by Hung and colleagues
in which MSCs or factors secreted by MSCs have been
shown to decrease apoptosis and enhance angiogenesis
[43]. Moreover, the interaction of MSCs with tumor
cells to promote angiogenesis could also be found in
human ovarian carcinoma cells and melanoma cancer
cells [44,45].
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However, the mechanism of how MSCs stimulate angio-
genesis remains to be elucidated. According to current
study, we suggest that the enhancement of angiogenesis
might partly attribute to the increased expression of angio-
genic factors including TGF-B, VEGE, IL-6 and MIP-2 by
hBM-MSCs when interacting with tumor cells. The well-
established roles of these factors in promoting tumor angio-
genesis strongly support our findings [46-49]. Similar to our
results, Coffelt and colleagues reported that ovarian tumor-
derived leucine, leucine-37 recruits MSCs to the tumor
microenvironment and stimulated MSCs secreted larger
amounts of pro-angiogenic factors including IL-1 receptor
antagonist, IL-6, IL-10 and VEGF to support angiogenesis
[50]. Tsai and colleagues demonstrated that secretion of IL-
6 by MSCs activated the signal transducer and activator of
transcription-3 pathway in cancer cells and promoted tumor
formation [51]. Lin and colleagues reported that MSCs
expressed higher levels of VEGF via the hypoxia-inducible
factor-1a pathway, thus increasing tumor angiogenesis and
leading to colon cancer growth in mice [52]. These previous
studies provided important clues to the molecular mecha-
nisms underlying our findings in breast or prostate tumor
models. Additionally, bedsides secretion of angiogenic fac-
tors, previous studies have demonstrated that MSCs may
act as a component of tumor-associated fibrovascular net-
works, including the pericytic population that contributes
to the microvessels involved in the neovascularization as
well as the fibroblastic population that contributes to
matrix remodeling and tumor growth. Nevertheless, the de-
tailed characterization of the properties of MSCs in the
tumor microenvironment merits further investigation.

Conclusion

In this study, we have demonstrated that BM-MSCs
could promote tumor cell proliferation in vitro and
tumor growth in vivo. The promotion effect may partly
attribute to the increased expression of pro-angiogenic
factors in BM-MSCs in the tumor microenvironment and
subsequent enhancement in angiogenesis and tumor
growth. Better understanding of the underlying mecha-
nisms of interaction between tumor cells and MSCs could
lead to establishment of new therapeutic approaches.
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