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Abstract 

As a pathogen of a major public health concern with animal health importance, Campylobacter constitutes a clear 
and present threat to One Health. This organism colonizes the intestinal tract and is widely distributed among various 
animal species, including livestock and poultry, companion animals, and wildlife. As a result of its broad distribu-
tion, Campylobacter is exposed to antibiotics used in both human and veterinary medicine, which creates antibiotic 
selection pressure that has driven the development and rising prevalence of antibiotic resistant Campylobacter. This 
is particularly evident with the resistance to fluoroquinolone (FQ), which has become a great concern for public 
health. However, the increased prevalence of antibiotic-resistant Campylobacter cannot be solely attributed to 
antibiotic usage, as interspecies transmission and subsequent clonal expansion also contribute to the dissemination 
of antibiotic-resistant Campylobacter. This is exemplified by the emergence and expansion of FQ-resistant Campylo-
bacter clones in animal production systems where FQ antibiotics were never used, the transmission of extensively 
drug resistant Campylobacter from dogs to human patients, and the spread of antibiotic-resistant and hypervirulent 
Campylobacter from ruminants to humans. Another notable finding from recently published work is the emergence 
of antibiotic resistance genes of Gram-positive origin in Campylobacter, suggesting that genetic exchange between 
Campylobacter and Gram-positive bacteria occurs in the natural environment and is more frequent than previously 
realized. Once these “foreign” antibiotic resistance genes are presented in Campylobacter, they can further disseminate 
by clonal expansion or horizontal gene transfer among different Campylobacter species/strains. These findings indi-
cate that the emergence and transmission of antibiotic-resistant Campylobacter in the ecosystem are complex and 
multidirectional, and are affected by multiple factors. Thus, a holistic and One Health approach is necessary to fully 
comprehend and mitigate antibiotic resistant Campylobacter.
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Introduction
One Health represents both a concept and an approach. 
As a concept, it emphasizes the interdependence of 
human, animal, and environmental health, while as an  

approach it advocates for a systemic and ecological 
practice that integrates interdisciplinary and transdis-
ciplinary collaborations and unifies regional and global 
efforts to address issues that threaten human, animal, 
and environmental health [1]. There are many current 
challenges that impact One Health, such as emergence of 
zoonotic infections and new pathogenic variants, trans-
mission of foodborne diseases, spread of antimicrobial 
resistance (AMR), and climate changes [2–7]. As exem-
plified by AMR, these challenges are complex and affect 
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multiple sectors in the ecosystem, and addressing these 
issues requires a holistic approach to maximize impacts 
and outcomes.

Owing to their high efficacy and safety, antibiotics 
have been the key therapeutic agents of bacterial infec-
tious diseases in human and veterinary medicine [8]. The 
development and spread of AMR have made antibiotic 
treatments less or ineffective and are particularly prob-
lematic with severe and life-threatening infections. This 
situation is even worse with the emergence of multidrug-
resistant bacteria and pathogens that are resistant even to 
the last-resort antibiotics, such as carbapenem-resistant 
Enterobacterales, colistin-resistant Escherichia coli, and 
oxazolidinone-resistant Gram-positive pathogens [9–12]. 
Since antibiotics are important for prevention, control, 
and treatment of animal diseases, AMR also constitutes 
a major threat to animal production and welfare, food 
safety, and food security. Additionally,  the presence of 
antibiotics and/or their metabolic products in soil and 
water systems impacts microbial community and diversity 
in the ecosystem and selects for the evolution and dissem-
ination of AMR genes in the environment [13]. Moreover, 
the environment plays a key role in the transmission of 
AMR to wildlife, domestic animals, and humans.

AMR naturally occurs in microbial community, but 
the application of antibiotics in human and animal medi-
cine, as well as the use of antibiotics in crop production 
has driven the rapid evolution and spread of AMR across 
the entire ecosystem [8]. Thus, the extent and scale of 
AMR are largely shaped by antibiotic selection pressure 
originated from antibiotic usage. Bacteria have the natu-
ral ability to mutate and adapt under antibiotic selection 
pressure. Additionally, many AMR determinants are car-
ried by mobile genetic elements, and bacteria can acquire 
AMR via horizontal gene transfer [14].

AMR does not respect boundaries, and its transmis-
sion is multi-directional. AMR developed in one sector 
can spill over to another. For example, AMR developed 
in animal reservoirs may be transmitted to humans via 
food, water, and environmental routes, while human sew-
age, animal manures, and agricultural runoff can spread 
AMR to soil, water systems, and the environment [13]. 
Additionally, reverse zoonotic transmission of AMR from 
humans to animals may also occur [15]. Thus, AMR truly 
represents a One Health challenge.

Campylobacter is a major zoonotic and foodborne 
pathogen [16], and is increasingly resistant to antibiotics 
used for human and veterinary medicine [17]. Due to its 
importance in public health and its rising resistance to 
antibiotics, particularly fluoroquinolones (FQ), Campylo-
bacter has been recognized as one of the serious antibi-
otic resistant threats of high priority by both WHO and 
the CDC [18]. Thus, antibiotic resistant Campylobacter 

presents a clear and imminent challenge to One Health. 
In this review, we will examine development and trans-
mission of antibiotic-resistant Campylobacter from a 
One Health perspective and will use some examples to 
illustrate the relevance of antibiotic-resistant Campylo-
bacter to One Health. It should be pointed out that this 
paper is not intended to provide a comprehensive review 
on Campylobacter antibiotic resistance mechanisms and 
trends. For such a topic, we would refer readers to some 
recent review articles [17, 19–21].

Campylobacter distribution and transmission 
in the ecosystem
Campylobacter has extensive animal reservoirs and is 
commonly present in the intestinal tracts of food produc-
ing animals and companion animals [22]. Additionally, 
Campylobacter may be carried by wildlife, flies, and other 
insects, which serve as transmission vectors spreading 
Campylobacter to and across farms and to the environ-
ment including surface water [23–26]. The common 
presence of Campylobacter in animals and wildlife and 
the variety of means by which it can disseminate con-
tribute to the broad distribution of Campylobacter in the 
ecosystem. A single animal species may be colonized by 
multiple Campylobacter spp., but there are some notable 
differences in species distribution. For example, chick-
ens and ruminants tend to harbor more Campylobacter 
jejuni than Campylobacter coli; pigs tend to carry more 
C. coli than C. jejuni; and cats and dogs primarily carry 
C. jejuni and Campylobacter upsaliensis [27–29]. Campy-
lobacter spp. are generally commensals in animal reser-
voirs; however, they can be pathogenic in some animal 
species. One example is C. jejuni induced abortion in 
sheep [22]. Transmission of Campylobacter from animal 
reservoirs to humans mainly  occurs through contami-
nated food, milk, and water [30]. Contact with animals, 
such as petting zoo and companion animals, is another 
transmission route [31–33]. Thus, Campylobacter is 
both a zoonotic and a foodborne pathogen. In developed 
countries, campylobacteriosis is mainly manifested as 
foodborne enteritis, occurring as sporadic cases and out-
breaks, while in developing countries, Campylobacter is 
endemic and a significant burden of diarrhea in children 
[34]. Although the primary clinical condition induced by 
Campylobacter in humans is enteritis, it is also associated 
with extraintestinal diseases and other complications 
such as bacteremia and Guillain Barrie Syndrome [30].

Fluoroquinolone (FQ) resistance in Campylobacter: 
a One Health case study
As a zoonotic pathogen, Campylobacter is exposed to 
antibiotics used for both human and veterinary medi-
cine. Its resistance to FQ antimicrobials is of particular 
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concern to public health because FQs (e.g., ciproflox-
acin) are an important class of antimicrobials used 
for clinical therapy of campylobacteriosis and other 
enteric infections [35]. The prevalence of FQ-resistant 
Campylobacter is continuing to rise on a global scale 
and has reached alarming levels in some countries 
[17, 21, 36–38]. This has led WHO to list FQ-resist-
ant Campylobacter as a high-priority for research and 
development of new antibiotics [18]. Part of the reason 
for this high rate of FQ resistance in Campylobacter is 
due to the fact that DNA gyrase mutations that con-
fer resistance to FQ antibiotics readily occur in this 
organism and these mutants are rapidly selected and 
enriched under FQ treatment, which was shown by 
both in vitro and in vivo studies as well as observations 
from clinical trials with human patients [39, 40].

FQs are not only used in human medicine but also for 
the control and treatment of animal diseases in many 
countries [41]. In food producing animals, the use of FQ 
antimicrobials are not intended for curing Campylobac-
ter but for the control and treatment of other bacterial 
infections such as respiratory diseases in poultry, swine, 
and cattle [42, 43]. Thus, the selection and enrichment of 
FQ-resistant Campylobacter in these animals represent 
an unintended consequence of FQ application. However, 
FQ-resistant Campylobacter developed in food produc-
ing animals may be transmitted to humans via the food 
chain or environmental route. Use of FQs in poultry is of 
particular concern as Campylobacter is highly prevalent 
in poultry, and administration of FQ antibiotics to poul-
try results in the rapid emergence of FQ-resistant Campy-
lobacter [44–46]. Given that contaminated poultry meat 
serves as a major vehicle for transmission of Campylobac-
ter to humans, use of FQs and consequential development 
of FQ-resistant Campylobacter in poultry pose a major 
risk for food safety and public health. Indeed, there were 
many epidemiological observations that demonstrated a 
temporal link between approved use of FQ antimicrobi-
als in food producing animals, particularly in poultry, and 
the increased prevalence of FQ-resistant Campylobacter 
in both animal reservoirs and humans [47–49]. Addition-
ally, comparison of conventional production practices 
and organic operations in the U.S. showed a significantly 
higher rate of FQ-resistant Campylobacter in conven-
tional production systems than in organic operations [39, 
50], further suggesting the contribution of FQ use to the 
high prevalence of FQ-resistant Campylobacter. Arising 
from the concern with FQ resistance in Campylobacter, 
the FDA elected to withdraw the approval of FQ antibiot-
ics for poultry in the U.S. in 2005 [51].

Antibiotic selection pressure is not the only factor influ-
encing the emergence and transmission of FQ-resistant 
Campylobacter. In contrast to many other countries, FQ 

antimicrobials were never used in poultry production in 
Australia, where the prevalence of FQ-resistant Campylo-
bacter in human patients and poultry was historically at a 
very low level [52, 53]. However, recent studies have iden-
tified the emergence of FQ-resistant Campylobacter in 
both poultry production and human clinical cases in Aus-
tralia [54, 55]. Among the poultry isolates, the FQ resist-
ance rates were reported to be 15% in C. jejuni and 5% in 
C. coli, while the FQ resistance rate among the human C. 
jejuni isolates was 14%. Notably, FQ resistance appears to 
be associated with a limited number of genotypes: three 
sequence types (STs) for C. jejuni and a single ST for C. 
coli. Similarly, FQ antibiotics are prohibited for use in 
poultry in New Zealand, where FQ-resistant Campylo-
bacter was rarely reported until recently [56]. A recent 
study identified the emergence and rapid expansion of a 
FQ- and tetracycline- resistant C. jejuni clone (ST6964) 
in both human and poultry [57]. This clone was first 
detected in New Zealand in 2014 and became widely dis-
seminated in both chickens and human patients by 2015. 
The emergence and dissemination of these FQ-resistant 
Campylobacter clones in both Australia and New Zea-
land cannot be explained by the use of FQ antibiotics in 
poultry and suggest that they were initially introduced 
into poultry from a different source. As suggested by the 
authors, this could be wildlife (such as wild birds) or even 
reverse zoonotic transmission from human to chickens 
[54]. Regardless of the original sources of these FQ-resist-
ant Campylobacter, their rapid expansion suggest that 
they have a fitness advantage in the ecosystem.

Another example of the  emergence of FQ resistance 
due to clonal expansion is the recent discovery of a 
FQ-resistant C. coli clone in sheep in the U.S. [58]. FQ 
antimicrobials were never approved for use in sheep 
production in the U.S., and Campylobacter from sheep 
was generally susceptible to this class of antibiotics [59]. 
However, a 2019 study found that 95% of the C. coli iso-
lates from two commercial sheep farms were resistant 
to ciprofloxacin [58]. This high FQ resistance rate could 
not be explained by selection pressure derived from FQ 
usage as they were never used on sheep farms in the 
U.S. Additionally, the C. jejuni isolates derived from 
the same sheep farms were largely susceptible to cipro-
floxacin (only 1.7% resistant to ciprofloxacin), further 
suggesting the absence of FQ antimicrobial selection in 
the sheep. Thus, the FQ-resistant C. coli in sheep was 
likely introduced from another source. Notably, all the 
C. coli isolates identified in the study belonged to a sin-
gle predominant genotype (ST902), suggesting that host 
adaptation and clonal expansion contributed to its dis-
semination in sheep. How ST902 was introduced into 
sheep and what made it predominant remains unknown. 
Given that wild birds on livestock farms are known to 
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carry FQ-resistant Campylobacter [23, 60], it is possible 
that ST902 was initially transmitted to sheep by birds and 
subsequently expanded in the production system.

Similar to the situation in sheep, FQ-resistant Campy-
lobacter are increasingly detected in cattle in the U.S. 
For example, a study published by Tang et.al. in 2017 
reported that 74% C. coli and 35% C. jejuni isolated from 
feedlot cattle in five different states were resistant to cip-
rofloxacin [61]. Although the FQ-resistant C. jejuni iso-
lates were genetically diverse, most of the FQ-resistant 
C. coli strains belonged to a single genotype, ST1068, 
suggesting clonal expansion was involved in the dissemi-
nation of FQ-resistant C. coli in cattle. Another recent 
study reported that 87% of the calves obtained from a 
commercial farm were naturally colonized by FQ-resist-
ant C. jejuni [62], further indicating the high prevalence 
of FQ-resistant Campylobacter in the ruminant host. 
Different from sheep production where the  use of FQ 
antimicrobials is prohibited, FQs are used for the treat-
ment and control of respiratory diseases in cattle [63]. 
The use of FQ antimicrobials could serve as a selection 
force for the spread of FQ-resistant Campylobacter, but a 
recent FQ treatment study suggested that subcutaneous 
injection of FQ antimicrobials did not result in the  de 
novo development of FQ-resistant mutants from the 
inoculated FQ-susceptible C. jejuni in the cattle intes-
tinal tract [64]. As explained by the authors, this might 
be due to the relatively low density of Campylobacter in 
cattle feces and the high concentration of the antimicro-
bial excreted into the intestine [65], which could have 
exceeded the mutant selection window and prevented 
the emergence of FQ-resistant mutants. Although the 
exact factors contributing to the increased prevalence 
of FQ-resistant Campylobacter in cattle remain unclear, 
it constitutes a risk for food safety and public health as 
ruminant Campylobacter has been increasingly recog-
nized as a significant reservoir for human campylobac-
teriosis and for environmental contamination such as 
surface water [66–72].

Clinical use of FQ antimicrobials in human patients 
also selects for FQ-resistant Campylobacter, which was 
shown in clinical trials [40, 73]. Since human-to-human 
transmission of Campylobacter is rare in developed 
countries, the foodborne and environmental routes play 
a major role in the transmission of FQ-resistant Campy-
lobacter to humans. However, in developing countries, 
where Campylobacter is endemic and people may carry 
Campylobacter asymptomatically, community-based 
transmission of FQ-resistant Campylobacter may also 
occur. Additionally, antibiotic-resistant Campylobacter 
developed in humans may spill over to domestic animals, 
wildlife, and the environment by reverse zoonotic trans-
mission [54, 74]. Together, the examples discussed above 

illustrate that the transmission and dissemination of FQ-
resistant Campylobacter are complex and multi-direc-
tional, and constitute a threat to One Health.

The shared AMR gene pool between Campylobacter 
and other organisms in the One Ecosystem
Campylobacter shares the same "One Ecosystem" with 
many other bacteria in the animal intestinal tract and the 
environment and has the ability to acquire AMR deter-
minants from other bacteria via horizontal gene transfer. 
Recent studies have  discovered a plethora of antibiotic 
resistance determinants that were horizontally trans-
ferred to Campylobacter. Some examples include erm(B) 
and erm(N) for macrolide resistance [75–79], fexA, 
optrA, and cfr(C) for florfenicol resistance [80–84], and 
tet(L) for tetracycline resistance [85]. The emergence 
and spread of these AMR genes in Campylobacter were 
likely driven by the use of antibiotics in food producing 
animals. These genes are either associated with multid-
rug-resistance genomic islands or carried by conjugative 
plasmids. Sequence analysis strongly suggest that  they 
were originated from Gram-positive bacteria, such as 
Enterococcus, Staphylococcus, and Streptococcus. These 
recent discoveries, plus previously identified horizon-
tally acquired AMR genes, such as cat (chloramphenicol 
resistance) [86], aphA-3 (kanamycin resistance) [87, 88], 
and tet(O) (tetracycline resistance) [89], imply that gene 
transfer between Campylobacter and Gram-positive 
bacteria frequently occurs in the natural environment. 
It remains unclear how gene exchange occurs between 
Campylobacter and other bacteria, but it has been specu-
lated that AMR genes were first introduced into Campy-
lobacter from a Gram-positive origin by conjugation 
and then integrated into Campylobacter chromosome 
or plasmids [90]. Subsequent spread among different 
Campylobacter species and strains could be facilitated by 
natural transformation, which was shown under labora-
tory conditions. The sharing and transfer of AMR genes 
between Campylobacter and Gram-positive bacteria have 
both direct and indirect consequences for public health. 
For instance, macrolide is the drug of choice for thera-
peutic treatment of campylobacteriosis in humans. Thus, 
the spread of erm(B) and erm(N) may undermine the effi-
cacy of this important class of antibiotics. Some of the 
florfenicol resistance genes, such as optrA and cfr(C), not 
only confer resistance to florfenicol but also to the oxazo-
lidinone class [91], which is critical for treating infections 
caused by multidrug resistant Gram-positive pathogens 
[12]. Although oxazolidinones are not used for treating 
Campylobacter infections, gene exchange may lead to 
dissemination of these AMR genes from Campylobacter 
to other Gram-positive pathogens that share the same 
niche with Campylobacter.
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Sharing of multidrug resistant Campylobacter 
between companion animals and humans
Dogs and cats harbor many different Campylobacter spp., 
particularly C. jejuni, Campylobacter upsaliensis, and 
Campylobacter helveticus, and their prevalence is higher 
in younger dogs than in older dogs [29]. These animals 
may carry Campylobacter asymptomatically, but Campy-
lobacter-induced clinical diseases, such as enteritis, bac-
teremia, and abortion, have been reported in dogs [29]. 
Due to the intimate interaction between companion ani-
mals and their owners, transmission of Campylobacter 
may occur between them. Indeed, there have been mul-
tiple reports of transmission of Campylobacter between 
dogs and humans [92–94]. In these reported cases, epi-
demiological investigation and the use of genetic typ-
ing methods confirmed human-to-pet or pet-to-human 
transmission. Of particular note are the recent reports on 
a large outbreak associated with extensively drug-resist-
ant C. jejuni that occurred in the U.S. from 2016 to 2021 
[95–97]. Over the course, more than 160 people were 
infected, and multiple patients were hospitalized. Epi-
demiological investigation and whole genome sequence 
analysis conducted by the CDC linked the outbreak 
cases to contact with pet store puppies. Notably, the C. 
jejuni isolates implicated in the outbreak were extensively 
resistant to antibiotics and belonged to a single ST type 
(ST2109). Whole genome sequence analysis revealed 
the presence of multiple antibiotic resistance genes and 
resistance-conferring mutations in the outbreak isolates, 
explaining the extensively drug resistance phenotype. 
Additionally, ST2109 harbors a functionally enhanced 
multidrug efflux transporter CmeB (RE-CmeB), which 
was known to work with other AMR mechanisms to 
confer exceedingly high-level resistance to various anti-
biotics [98]. Interestingly, C. jejuni ST2109 was rarely 
reported in other animal species, and the reasons for its 
prevalence in commercial dog breeding facilities remain 
unknown. Furthermore, how ST2019 was introduced 
into dogs and how it became multidrug resistant are 
intriguing and warrant further investigations.

Ruminant‑to‑human transmission of hypervirulent 
and antibiotic‑resistant C. jejuni: a case study 
with clone SA
Secondary to poultry, ruminants are major reservoirs 
for C. jejuni, and there are many different strains and 
genotypes of C. jejuni in bovine and small ruminants 
[99–102]. Molecular typing and source attribution stud-
ies have increasingly recognized the role of ruminants in 
human campylobacteriosis [66, 71, 103–105]. Ruminant 
Campylobacter may be transmitted to humans via unpas-
teurized milk and other routes such as petting zoo or 
environmental contamination. Campylobacter reside in 

the intestinal tract of ruminant animals typically as com-
mensals, but some strains may be pathogenic and induce 
clinical abortion [22]. For example, a single C. jejuni 
clone named SA (for sheep abortion), has emerged as the 
major cause of sheep abortion in the U. S., responsible for 
more than 90% of Campylobacter-induced abortion cases 
[106]. Based on multi-locus sequence typing, all clone SA 
isolates belonged to a single sequence type (ST8). One of 
the distinct features of C. jejuni clone SA is that all the 
isolates derived after the year 2000 were resistant to tet-
racycline, the only antibiotic approved for the control of 
sheep abortion in the U.S. [106]. Early clone SA isolates 
(derived before the  year 2000) carried the tet(O) gene 
on a plasmid, but later isolates had the antibiotic resist-
ance gene inserted into the chromosome [107]. Clone SA 
is well adapted in the intestinal tract and gall bladder of 
sheep and is commonly detected in healthy animals [108]. 
However, C. jejuni clone SA is hypervirulent in pregnant 
ewes, as orally inoculated clone SA is able to translocate 
across the intestinal epithelium, produce systemic infec-
tion, and infect placenta, causing clinical abortion [109, 
110]. This distinguishes clone SA from many other C. 
jejuni strains that typically stay in the intestinal tract. 
The genomes of clone SA isolates are highly homologous 
and harbor unique amino acid substitutions in the major 
outer membrane protein encoded by the porA gene, 
which were shown to be responsible for its hyperviru-
lence in abortion induction [107]. In addition to being 
present in sheep, clone SA was also widely distributed on 
cattle farms (both feedlot and dairy cattle) in the U.S. and 
was also detected in goats [102, 108, 111, 112]. However, 
C. jejuni clone SA is uncommon in other animal species, 
indicating ruminant animals are the major reservoirs for 
C. jejuni clone SA.

Importantly, C. jejuni clone SA is also a foodborne haz-
ard that is transmitted to humans via contaminated raw 
milk and other routes, causing foodborne enteritis [108]. 
Molecular evidence  have linked multiple outbreaks and 
sporadic cases to this clone in the U.S. [108]. A known 
route for zoonotic transmission of C. jejuni clone SA is 
raw milk, but ruminant animals may also contaminate 
environmental water systems, which may also facilitate 
the dissemination of this pathogenic clone to humans. 
Analysis of the Campylobacter genomic sequences 
deposited in NCBI indicated that clone SA is primarily 
isolated from ruminants and humans, further suggest-
ing the transmission between the ruminant reservoir 
and humans. The analysis also indicated that C. jejuni 
clone SA was primarily reported in North America, but 
it was also found in other countries, such as China, Japan, 
Switzerland, and the UK (Zhang, unpublished data). The 
emergence of C. jejuni clone SA in the U.S. appears to 
be a relatively recent event as molecular clock analysis 
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estimates that it initially occurred around mid 1970s 
[107]. What has driven the emergence and spread of 
clone SA is not entirely clear, but computer analysis of 
genomic sequence data suggested the specific amino acid 
changes in the major outer membrane protein contrib-
uted to the evolution and expansion of clone SA. Addi-
tionally, the use of tetracycline in sheep production and 
insertion of the tet(O) gene into the  chromosome may 
have also helped the clone to expand on sheep farms and 
in other ruminant hosts.

Conclusion and future perspectives
The examples discussed above illustrate several key 
aspects of Campylobacter that are important to One 
Health. As a zoonotic pathogen, Campylobacter has 
broad animal reservoirs, and its transmission in the 
ecosystem is multidirectional and often crosses spe-
cies boundaries. This pathogenic organism has the abil-
ity to rapidly evolve in response to antibiotic selection 
pressure and the conditions in various animal hosts and 
the environment, leading to the emergence of new vari-
ants with multidrug resistance and/or hypervirulence 
(e.g., ST2109 and ST8). The use of FQ antimicrobials in 
human and veterinary medicine has driven the rapid rise 
of FQ resistance in Campylobacter worldwide, but recent 
studies suggest that interspecies transmission and sub-
sequent clonal expansion have also contributed to the 
dissemination of FQ-resistant Campylobacter (such as 
ST6964 in poultry in New Zealand and ST902 in sheep 
in the U.S.). What has promoted the rapid expansion of 
these FQ-resistant clones in the absence of FQ selec-
tion is unknown but intriguing, and answering these 
questions will facilitate the  mitigation of FQ resistance. 
Thus, further investigations are warranted to understand 
the bacterial, host, and environmental factors that con-
tribute to the establishment and thriving of these FQ-
resistant clones in different animal species. Additionally, 
many of the recently identified AMR genes in Campylo-
bacter appear to be the result of horizontal gene trans-
fer from Gram-positive bacteria, which share the same 
niche with Campylobacter in the  animal intestine. The 
mechanisms underlying the initial trans-Gram genetic 
exchange and subsequent integration of the transferred 
AMR genes into Campylobacter chromosome (e.g., mul-
tidrug resistance genomic islands) or plasmids remain to 
be defined. This needs to be examined beyond labora-
tory conditions, ideally in the natural environment (e.g., 
animal intestine) where Campylobacter resides. With the 
recent technological advancement, it is now possible to 
elucidate the transfer of AMR genes in complex niche 
systems. Although poultry remains the primary source of 
human Campylobacter infections, the role of ruminants 

and companion animals in transmitting Campylobacter 
to humans is being increasingly recognized, but has been 
understudied. Thus, heightened efforts should be taken 
to understand the complex and broader interactions of 
various animal reservoirs with humans and the environ-
ment in transmission of antibiotic-resistant Campylobac-
ter. A holistic and One Health approach that emphasizes 
the interconnection of animal reservoirs, humans, and 
the environment will likely lead to the optimal control of 
zoonotic Campylobacter and its resistance to clinically 
important antibiotics.
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