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Design of live-attenuated animal vaccines
based on pseudorabies virus platform
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Abstract

Pseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains
many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral
propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is
considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize
the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of

vaccine application.
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Introduction

Pseudorabies virus (PRV) belongs to the members of
herpesiviridae family, Alpha-herpesvirinae subfamily
(Lefkowitz et al. 2018). The genome of PRV is a linear
double strand-DNA of approximate 150kb in length,
containing a unique long region (UL), a unique short re-
gion (US), a terminal repeat sequence (TRS), and in-
ternal repeat sequences (IRS) (Klupp et al. 2004;
Pomeranz et al. 2005). Nearly half of the PRV genome is
non-essential for virus replication, such as TK, gE, gI,
gG or gC, which can accommodate foreign sequence in-
sertions without impairing virus propagation (Lei et al.
2016; Zhang et al. 2021). In addition, PRV has a wide
range of hosts and can infect a variety of domestic and
wild animals (Miller et al. 2011; Sun et al. 2016; Cheng
et al. 2020). Particularly, PRV is a neurotropic virus that
preferentially infects the nervous system and can estab-
lish long-term latent infection in vivo (Heldens et al.
2008; Freuling et al. 2017; Gu et al. 2018). Such infec-
tious properties make PRV as a promising vector for
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generation of recombinant living vectored vaccines (Hu
et al. 2015). In fact, it has been shown that multiple re-
combinant PRVs (rPRVs) expressing heterogenous anti-
gens could successfully induce humoral or cellular
immune responses in vivo. Herein, we review the
current strategies for construction of rPRVs and the re-
search progress using attenuated rPRVs as vaccine
candidates.

Strategies for rPRV construction

Multiple methods have been used to successfully intro-
duce foreign gene coding sequences into PRV genome.
The early method for rPRV construction relies on the
homologous recombination technique that is less efficient
and time-consuming. Subsequently, the bacterial artificial
chromosomes (BAC) technique provides an efficient
method for generation of viral infectious clones (Jiang
et al. 2010; Warden et al. 2011; Dunn et al. 2017). This
method enables the insertion of PRV genome into BACs
in Escherichia coli and facilitates mutagenesis of the viral
genome by using the bacterial recombination mecha-
nisms. Accordingly, recombination systems based on Rec-
A, Red/ET, Cre/loxP, and FLP/FRT technology have been
extensively developed to rapidly insert, delete and mutate
specific sequences in BACs (Tischer et al. 2010; Tischer
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and Kaufer 2012; Grzesik et al. 2018). PRV-BAC clones
containing the PRV genome were transfected into
eukaryotic cells, and recombinant PRVs (rPRV) were then
isolated and purified by plaque purification (Tan et al.
2017). However, due to the large genome of PRV, con-
struction of rPRV by BAC method is still laborious.

The recently developed CRISPR/Cas9 system is a highly
efficient technique for gene editing (Cong et al. 2013; Xue
and Greene 2021). Guided by a single guide RNA
(sgRNA), the Cas9 nuclease can edit target gene sequence
by non-homologous terminal junction or homologous-
mediated repair thereby leading to gene knockout or
knock-in. In fact, the CRISPR/Cas9 gene editing system
has been used for generation of vector-based vaccines
(Okoli et al. 2018; Vilela et al. 2020) including manipulat-
ing genomes of large DNA viruses, such as PRV (Tang
et al. 2016; Yu et al. 2017; Hubner et al. 2018). Generally,
rPRV can be generated by co-transfection of a CRISPR/
Cas9-gRNA plasmid and a donor plasmid containing the
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target gene sequence, and a fluorescent expression cassette
into eukaryotic cells following infection of primary PRV.
Eventually, rPRV expressing fluorescence was isolated and
purified by plaque assay (Xu et al. 2015). Although fluores-
cence is easy for rPRV screening and purification, it is un-
desirable to contain the fluorescence protein in a live
vector vaccine. To avoid it, the CRISPR/Cas9-gRNA plas-
mid and PRV genome can be co-transfected into
eukaryotic cells, and rPRV will be isolated and purified by
plaque assay and identified by PCR and sequencing (Bo
et al. 2020) (Fig. 1). Thus, editing of PRV genome by
CRISPR/Cas9 system shows great efficiency and simplicity
and serves as a powerful tool for rPRV construction.

PRV-based live attenuated vaccines for viral
diseases

Currently, many rPRVs expressing key antigens from
animal viruses have been successfully constructed. A de-
tailed summary of the constructs is listed in Table 1.
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Fig. 1 Schematic diagrams of distinct strategies for rPRV generation. A Generation of rPRV by homologous recombination technology. The
recombinant plasmids are transfected into cells and then infected with PRV. Subsequently, rPRV with fluorescent expression cassette is isolated
and purified by plaque assay. B Generation of rPRV by BAC system. The recombinant transfer plasmids and PRV genome are co-transfected into
cells to generate the PRV-BAC vector. Then PRV-BAC vector is transfected into cells to produce recombinant virus. C Generation of rPRV by
CRISPR/Cas9 technology. a CRISPR/Cas9-gRNA plasmids and donor plasmids containing target gene sequences and fluorescent expression
cassettes are co-transfected into cells for 24 h and infected with PRV for 24 h. rPRV with fluorescent expression cassette is then isolated and
purified by plaque assay. b CRISPR/Cas9-gRNA plasmids and PRV genome are co-transfected into cells, and rPRV is then isolated and purified by
plaque assay. Recombinant viruses are then verified by PCR and sequencing
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PRV-based vaccines for porcine circovirus-associated
diseases (PCVD)

Porcine circovirus type 2 (PCV2) is the primary causa-
tive agent of porcine circovirus-associated diseases
(PCVD) that leads to immense economic losses in swine
industry worldwide (Mankertz et al. 2004; Darwich and
Mateu 2012; Meng 2013). PCV2 is a single-strand circu-
lar DNA virus with a tiny genome only approximately
1.7 kb in size and belongs to the members of the family
Circoviridae. PCV2 has two major open reading frames
(ORFs), ORF1 and ORF2, encoding Rep and capsid pro-
teins, respectively (Mankertz et al. 2004; Shen et al.
2008; Masuda et al. 2018). It has been reported that
rPRV expressing ORF1-ORF2 fusion protein induced
high levels of antibodies against PRV and PCV2 in both
immunized mice and pigs (Ju et al. 2005). To further im-
prove the immunogenicity of the rPRV vaccine, a novel
rPRV expressing PCV2 ORF2 and interleukin 18 (IL-18)
was constructed (Zheng et al. 2015). Mice immunized
with rPRV-ORF2-IL-18 twice produced specific anti-
bodies against PCV2 and higher CD3", CD4", and CD8"
T lymphocyte counts in peripheral blood, indicating that
expression of immunopotentiator such as IL-18 can
largely enhance the immune responses of the host. Re-
cently, a novel trigene deletion rPRV (PRVtmv) vaccine
was constructed with expressing chimeric PCV2b-shell,
CSFV-E2 and chimeric Erns-fused bovine granulocyte
monocyte stimulating factor (Erns-GM-CSF) (Pavulraj
et al. 2022). The PCV2b challenge showed that the
PRVtmv vaccine produced better protection in immu-
nized pigs than a commercial inactivated PCV2 vaccine.
In addition, pigs immunized with PRVtmv vaccine also
generated CSFV- and PRV-specific neutralizing anti-
bodies, suggesting that PRVtmv vaccine could be a
multivalent vaccine against multiple diseases. It is
worthy to note that the insertion sites of ORF2 in the
above two cases are different. Therefore, the insertion
sites of the foreign antigen genes in rPRV genome might
affect the efficiency of the vaccines.

PRV-based vaccines for porcine parvovirus infection

Porcine parvovirus infection is one of the major reasons
for reproductive failure in pregnant sows (Ren et al.
2013; Meszaros et al. 2017). Capsid protein VP2, the
major structural protein of the causative agent porcine
parvovirus (PPV), is the key antigen that induces neu-
tralizing antibodies (Xu et al. 2013; Ji et al. 2017). Thus,
rPRV expressing VP2 of PPV was generated (Chen et al.
2011). Piglets vaccinated with rPRV-VP2 produced PRV-
specific and PPV-specific humoral immune responses
and significantly reduced mortality caused by PRV infec-
tion. In order to enhance the protective immune re-
sponses, rPRV expressing PPV VP2 and IL-6 fusion
protein was further generated recently (Zheng et al
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2020). BALB/c mice inoculated with rPRV-VP2-IL6 via
the intramuscular route produced specific antibodies
against PPV and also maintain a strong specific lympho-
cyte proliferative response. Unfortunately, it only pro-
vided partial protection against PPV infection. This
study indicates that the current strategies for PRV-based
vector vaccines are not successful and further investiga-
tion is required to generate better vaccine candidates.

PRV-based vaccines for Japanese encephalitis

JEV is a zoonotic pathogen and causes viral encephalitis
with a serious public health problem in Asia, western
Pacific countries, and northern Australia (Campbell
et al. 2011). In swine, JEV infection generally leads to re-
productive disorders with abortion and weak piglets
(Yun and Lee 2014). Japanese encephalitis virus (JEV)
contains a positive-sense RNA genome within a host-
derived membrane and is classified within the family
Flaviviridae (Laureti et al. 2018). The JEV genome en-
codes 3 structural proteins (C, PrM/M, E) and 7 non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, NS5) (Unni et al. 2011; Duong et al. 2017).
Among them, PrM, E, and NS1 are glycosylated and are
capable of inducing protective immunity (Li et al. 2012;
Li et al. 2013). An early study reported rPRV expressing
the NS1 protein of JEV immunization produced JEV-
specific humoral and cellular immune responses in im-
munized animals (Xu et al. 2004). Comparably, a rPRV
expressing PrM-E of JEV also induced a high level of
antibodies against PRV and JEV (Qian et al. 2015). Fol-
lowing a lethal dose of JEV (SX09S-01) infection, the
rPRV-PrM-E immunization provided 80% survival pro-
tection in mice. Although rPRV-JEV NS1 and rPRV-
PrM-E can induce protection against JEV infection in
mice, both vaccine candidates-elicited JEV-specific im-
mune responses are lower than that of the inactivated
JEV vaccine. Also, it is essential to know the immuno-
genicity and protective effect of PRV-based JEV vaccine

in pigs.

PRV-based vaccines for porcine reproductive and
respiratory syndrome (PRRS)

Porcine reproductive and respiratory syndrome virus
(PRRSV) is the causative agent of PRRS, which is an
enveloped, positive-strand RNA virus that belongs to the
family Aterviridae (Guo et al. 2018). PRRSV infection
generally causes severe reproductive failure in sows and
respiratory distress in piglets and growing pigs, leading
to tremendous economic losses worldwide (Lunney et al.
2016). The genome of PRRSV is approximately 15 kb
and contains 9 open reading frames (ORFs) including
ORFla, ORF1b, ORF2a, ORF2b, ORF3, ORF4, ORF5,
ORF6, and ORF7 (Bautista et al. 1996). Among them,
ORF5 and ORF6 encode envelope glycoprotein GP5 and
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non-glycosylated membrane protein M respectively
(Verheije et al. 2002; Veit et al. 2014), two major
membrane-associated proteins that are associated to-
gether as disulfide-linked heterodimers in the virus par-
ticle (Jiang et al. 2006; Wang et al. 2017). In 2005, an
attenuated rPRV, rPRV-GP5, was developed that ex-
presses the GP5 protein of PRRSV. Immunization of the
rPRV-GP5 provides significant protection against clinical
symptoms and reduces pathogenic lesions caused by
PRRSV challenge in vaccinated pigs (Qiu et al. 2005). To
improve the protective efficacy of rPRV-GP5, a Pan DR
T-helper cell epitope (PADRE) sequence was introduced
between the N-terminal and the neutralizing GP5 epi-
tope. Compared to that of rPRV-GP5, the modified
rPRV-GP5 elicited higher levels of PRRSV-specific neu-
tralizing antibodies and cellular immune responses than
the rPRV-GP5. In addition, another rPRV named rPRV-
GP5m-M that expresses modified GP5 and M proteins
of PRRSV was also constructed (Jiang et al. 2007). Con-
sequently, mice immunized with rPRV-GP5m-M pro-
duced humoral immune responses specific to PRV and
provided complete protection against lethal PRV infec-
tion. Meanwhile, high levels of neutralizing antibodies to
PRRSV and lymphocyte proliferation responses were ob-
served in the immunized animals. In comparison to the
commercial inactivated PRRSV vaccine, rPRV-GP5m-M
immunized animals generated higher PRRSV-specific
neutralizing antibodies as well as the lymphocyte prolif-
eration responses, showing great potential for better pro-
tection against PRRSV infection. Notably, the NADC-
30-like PRRSV has become the dominant strain in the
field in recent years. A rPRV expressing NADC30-like
PRRSV GP5 and M proteins was then generated by
using PRV variant strain (X]J) as a backbone (Zhao et al.
2022). Mice immunized with rPRV-NC56 produced PRV
and NADC30-like PRRSV-specific humoral and cellular
immune responses, suggesting that rPRV-NC56 could be
a candidate vaccine for protection against NADC30-like
PRRSV infection. For decades, while several attenuated
vaccines have been developed to prevent PRRSV infec-
tion in recent years, the prevalence of PRRSV infection
in pigs still remains relatively high levels (Du et al.
2017). Hence, it is worthy to generate novel vaccines
such as PRV-based vaccine against PRRSV infection and
rPRV-GP5m-M might be a good candidate vaccine for
PRRSV.

PRV-based vaccines for foot-and-mouth disease (FMD)

FMD can be induced by foot-and-mouth disease virus
(FMDV) infection in all cloven-hoofed animals including
cattle, sheep, goats, pigs, and buffalo (Singh et al. 2019),
which is mainly characterized by vesicular lesions of the
mouth, nose, and feet (Grubman and Baxt 2004). FMDV
is a positive single-stranded RNA virus with a genome of
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about 8.5kb and belongs to the family of Picornaviride
(Domingo et al. 2002). The VP1 protein of FMDV has
been identified that contains most T- and B-cell epitopes
to induce neutralizing antibodies (Diaz-San Segundo
et al. 2017). Indeed, rPRV expressing VP1 of FMDV
(rPRV-VP1) elicited high-level neutralizing antibody re-
sponse to both FMDV and PRV as well as strong cyto-
toxic T lymphocyte (CTL) response against FMD in
vaccinated pigs (Li et al. 2008). In addition, FMDV P12A
and 3C genes have also been used widely on genetically
engineered FMDV vaccine (Joyappa et al. 2009; Lyons
et al. 2016). Accordingly, piglets vaccinated twice with
rPRV expressing P12A and 3C (rPRV-P12A-3C) pro-
duced higher neutralizing antibodies after 15days of
booster immunization (Zhang et al. 2011). However,
compared to the commercially available inactivated
EMD vaccine, rPRV-P12A-3C did not provide a strong
defense against FMDV infection although it still elicited
significant FMDV-specific lymphocyte proliferative re-
sponse in piglets. The immunized piglets also showed
mild clinical signs and delayed appearance of blistering
lesions possibly due to the low neutralizing antibodies
induced by rPRV-P12A-3C. Thus, combined expression
of P12A-3C and other adjuvant proteins might be help-
ful to enhance the immunogenicity and protection of
PRV-based vaccines.

PRV-based vaccines for swine influenza

Influenza virus is an enveloped RNA virus that consists
of negative single-stranded RNA, which belongs to type
A influenza virus and is the member of the family Ortho-
myxoviridae (Lefkowitz et al. 2018). Swine is susceptible
to the infection of both avian and/or human influenza A
viruses (Sun et al. 2020), which facilitates genomic reas-
sortment among viruses from multiple host species,
making swine as mixing vessels for influenza A viruses
and a source of emergence for novel recombinant vi-
ruses. The hemagglutinin (HA) glycoprotein is the major
surface glycoprotein and is the major immunogen of all
influenza viruses, which can induce subtype-specific pro-
tective cellular and humoral immune responses in ani-
mals (de Vries and Rimmelzwaan 2016). Therefore, a
PRV expressing the HA gene from H3N2 subtype of
SIV (rPRV-H3N2 HA) was constructed (Tian et al.
2006). Mice immunized intranasally with the rPRV-
H3N2 HA produced HA antibodies at 3 weeks post-
vaccination, while no vaccine virus was isolated from
vaccinated mice. When the immunized mice were chal-
lenged with porcine H3N2 virus (A/Swine/Heilongjiang/
74/2000), only slight pathological damage was observed
in the lungs. More recently, a rPRV expressing codon-
optimized HIN1 HA was also generated by BAC tech-
nology (Klingbeil et al. 2014). Single immunization of
pigs with rPRV vaccine expressing the modified HA
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gene induced high levels of HA-specific antibodies. The
immunized pigs did not show clinical signs after swine
HIN1 virus infection, showing that the rPRV-HA vac-
cines are safe and can protect swine from influenza virus
infection. Notably, optimization of the exogenous pro-
tein codon can enhance the immune effect of rPRV-HA
vaccines. Given that there are numerous subtypes of in-
fluenza viruses, it is necessary to verify whether the
rPRV-HA vaccine is also effective to other subtypes of
swine influenza viruses.

PRV-based vaccines for classical swine fever (CSF)

CSF generally leads to considerable economic loss in the
pig industry worldwide (Xu et al. 2020), which is caused
by infection of classical swine fever virus (CSFV), an
enveloped, positive single-stranded RNA virus that be-
longs to the genus Pestivirus of the family Flaviviridae
(Beer et al. 2015). The structural glycoprotein E2 of
CSFV is a determinant for viral entry and the major pro-
tective antigen inducing neutralizing antibodies against
CSFV (Van Gennip et al. 2004; Risatti et al. 2005; Huang
et al. 2014). Recently, a recombinant variant PRV with
gE/gl/TK deletion and E2 protein expression was gener-
ated and its safety and immunogenicity were evaluated
in pigs (Lei et al. 2016). No clinical signs or virus shed-
ding were observed in pigs immunized with different
doses of rPRVTJ-delgE/gl/TK-E2. Importantly, the im-
munized pigs produced anti-PRV or anti-CSFV neutral-
izing antibodies and were completely protected against
the lethal infection with either CSFV or variant PRV,
demonstrating that rPRVT]J-delgE/gl/TK-E2 is a promis-
ing bivalent viral vaccine candidate against CSFV and
PRV coinfections. Further studies are needed to compare
the immunogenicity and protection efficiency of
rPRVT]J-delgE/gl/TK-E2 and the current commercially
CSFV vaccine. Given that CSFV chimeric vaccines and
E2 subunit vaccines do not provide the desired safety
profile (Wei et al. 2021), the optimized rPRV-based vac-
cines may have better application prospect in clinical.

PRV-based live attenuated vaccines for bacterial
or parasitic diseases

PRV-based vaccine for brucellosis

Brucella is a zoonotic bacteria that infect domestic ani-
mals including cattle, sheep, swine and human (Ye et al.
2015; Glowacka et al. 2018). Currently, attenuated live
vaccines are used for vaccination to protect animals
against Brucella infection. However, production of atten-
uated live vaccines cannot avoid to culture live Brucella,
which is a disadvantage of commercial vaccines. While
the smooth live attenuated vaccines present biosafety
risks, inactivated vaccines only offer low protection (Lal-
siamthara and Lee 2017). Hence, generation of novel
and safe vaccines for Brucella are much desired. The
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BP26 protein of Brucella is a highly conserved soluble
cellular protein that can reduce bacterial infection when
mice were immunized with the BP26 and Tf proteins
(Yang et al. 2007). As such, rPRV expressing BP26 was
generated and its immunogenicity was evaluated in mice
(Yao et al. 2015). At 6 weeks post-vaccination, rPRV-
BP26 induced a two-fold titer of antibody against BP26
and produced a high titer of PRV neutralizing antibody.
In addition, immunized mice showed strong lymphocyte
proliferative responses and the IFN-y induction induced
by rPRV-BP26 compared with that infected with the par-
ent viruses. However, no Brucella challenge was per-
formed against the rPRV-BP26 vaccine in these studies,
raising the concerns of the efficiency of rPRV-BP26. In
addition, it is also necessary to verify the protective ef-
fect of rPRV vector vaccines in pigs or sheep.

PRV-based vaccine for toxoplasmosis

Toxoplasma gondii is an important food-borne parasite,
which infects various mammals and birds as well as human
(Lourido 2019; Zhao and Ewald 2020). Owing to the low
efficacy of inactivated and live attenuated vaccines, there
are currently no approved vaccines and therefore there is a
need to develop novel vaccines against Toxoplasma gondii
infection (Warner et al. 2021). SAG1 induces humoral and
cellular immune responses, is highly conserved in T. gondii
strains, and is a major vaccine candidate antigen (Windeck
and Gross 1996; Zhang et al. 2007). A rPRV expressing
TgSAG1 protein of Toxoplasma gondii was generated (Liu
et al. 2008). BALB/c mice vaccinated with rPRV-TgSAG1
produced a high level of specific antibody responses
against 7. gondii lysate antigen, and a strong splenocyte
proliferation response. As a result, the levels of IFN-y and
IL-2 generated by T cells from immunized mice were sig-
nificantly elevated in vitro, showing a strong cytotoxic T-
cell response. Besides TgSAGI, the micronemal protein
MIC3 expressed in all three infectious stages of T. gondii
can also elicit early and powerful immune responses
(Ismael et al. 2009). Therefore, rPRV expressing TgSAG1
or TgMIC3 proteins of T. gondii were generated and im-
munized BALB/c mice (Nie et al. 2011). Consequently,
mice jointly immunized with rPRV-SAG1 and rPRV-MIC3
cocktail produce even higher T. gondii-specific IgG anti-
bodies and lymphocyte proliferative responses, conferring
more efficient protection against 7. gondii challenge. These
studies suggest that immunization of rPRV vaccines ex-
pressing different antigens according to a cocktail method
can provide better effective protection. Hence, combined
PRV vector vaccines expressing different antigens is also a
good option for rPRV vaccine immunization.

PRV-based vaccine for schistosomiasis (S. japonicum)
S. japonicum is a zoonotic parasite that can infect several
mammalian hosts (Gryseels 2012). The glutathione S-
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transferase (Sj26GST) and fatty acid-binding protein
(SJEABP) of S. japonicum were used to test their protect-
ive efficacy in laboratory animals (Tang et al. 2019).
Thus, three recombinant viruses rPRV/Sj26GST, rPRV/
SJEABP, and rPRV/Sj26GST-SjFABP were constructed
and evaluated in mice and sheep against S. japonicum
challenge (Wei et al. 2010). Not surprisingly, rPRV/
Sj26GST-SJFABP provided significant protection in mice
and sheep, indicating that combined antigens
immunization provides much effective protection from
Schistosoma japonicum infection. Similarly,
immunization of rPRV/Sj26GST and rPRV/SJFABP to-
gether may provide better protection.

Concluding remarks

With the advantages of large foreign gene volume, good
safety, wide host range, and low application cost, PRV
has been used as a viral vector to express a variety of
key foreign antigens of animal viruses, bacteria, and par-
asites, which have been successfully studied in the la-
boratory (Wei et al. 2010; Yao et al. 2015; Zheng et al.
2020). Another advantage is that PRV can be amplified
on a wide range of cell lines with high viral titers. rPRVs
modified at non-essential gene locations have similar
characteristics to wild-type virus in terms of growth
curve, morphogenesis, and virus plaque sizes (Klingbeil
et al. 2015; Lei et al. 2016; Zheng et al. 2020). Also,
PRV-based vaccines can be immunized via multiple
manners including intranasal, subcutaneous, intraven-
ous, and intramuscular inoculation. Furthermore, rPRV
is able to induce both outstanding humoral and/or cellu-
lar immune responses and cytotoxic T lymphocytes re-
sponses that are crucial for control of pathogens in
immunized animals. In addition, it is possible to
optimize foreign gene codons or to construct rPRV ex-
pressing foreign genes of pathogens and fusion proteins
such as IL-6 or IL-18 to enhance the immune effects
(Zheng et al. 2015; Zheng et al. 2020; Chowdhury et al.
2021). Moreover, a cocktail immunization of rPRV ex-
pression multiple antigens can induce strong immune
responses, which would be easier for application of
multivalent or polyvalent vaccines (Pavulraj et al. 2022).
Taken together, PRV as a viral backbone could provide a
potential vaccine option for multiple animals other than
pigs.

Although PRV vector vaccines have shown great po-
tential, there is still no rPRV-based vaccine commercially
licensed in any countries so far due to the challenge in
the clinical application of PRV vector vaccines. In pigs,
one concern is that maternal antibodies may impair the
immunization of rPRV (Wang et al. 2020b). TK- or gE-
deleted PRV vaccines could reduce maternal antibodies
interference (Kit et al. 1993; Pomorska-Mdl et al. 2010).
Although Bartha-K61 vaccine are still the mostly used
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vaccine to protects pigs for PRV, it is clear that emer-
gence of variant PRVs in Bartha-K61 immunized pig
farms has become an issue currently (An et al. 2013). In
fact, while PRV-Bartha-K61 strain can provide complete
protection against challenge with classical strain, several
studies have shown that PRV-Bartha-K61 strain only
partial protection against challenge with variant strains
(JS-2012, HeN1) (An et al. 2013; Tong et al. 2015). Im-
portantly, recent studies have shown that variant PRV
can directly infect humans, causing severe neurological
and respiratory damage, which has increased the con-
cern about the biosafety of variant PRV (Yang et al
2019; Wang et al. 2020a). In addition, the genetic stabil-
ity of exogenous genes in PRV genome is also critical for
live vector vaccines, which needs to be monitored by
continuous passages. Finally, further understanding the
improvement of the exogenous antigen levels and en-
hancement of immune responses mediated by rPRV also
contribute to the vaccine application (Bouard et al. 2009;
Rauch et al. 2018; Abid et al. 2019).

The bio-safety of the attenuated live vaccines for
highly pathogenic agents is always a critical issue. For
example, African swine fever virus (ASFV) infection can
cause a devastating and economically significant disease
in both domestic and wild swine (Galindo and Alonso
2017; Wang et al. 2021a; Wang et al. 2021b). Unfortu-
nately, an effective vaccine for ASF is still not available
(Dixon et al. 2019). Although attenuated live vaccines
for ASFV have been reported recently, the bio-safety
concerns make it difficult to apply commercially (Huang
et al. 2021; Liu et al. 2021; Yang et al. 2021). Addition-
ally, the source of primary macrophages for ASFV
propagation also limits the production of live attenuated
vaccines. Considering the advantages of rPRV, recom-
binant viruses expressing the ASFV antigens would be a
possible way for generation of ASFV vaccine. In fact,
PRV has been used to express ASFV antigens (Feng
et al. 2020). As combined immunization of recombinant
vaccinia virus expressing key ASFV antigens could in-
duce the production of specific antibodies against ASFV
(Jancovich et al. 2018), it is also possible that combin-
ation of multiple rPRV expressing distinct ASFV anti-
gens may be an effective strategy for generation of novel
ASF vaccines. In summary, PRV has shown great poten-
tial for development of live vector-based vaccines in ani-
mals, providing useful tools for prevention and control
of animal infectious diseases.
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