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Abstract

The H9N2 subtype avian influenza virus (AIV) inactivated vaccine has been used extensively in poultry farms, but it
often fails to stimulate a sufficiently high immune response in poultry in the field, although it works well in laboratory
experiments; hence, the virus still causes economic damage every year and poses a potential threat to public health.
Based on surveillance data collected in the field, we found that broilers with high levels of maternal-derived antibodies
(MDAs) against H9N2 virus did not produce high levels of antibodies after vaccination with a commercial H9N2
inactivated vaccine. In contrast, specific pathogen-free (SPF) chickens without MDAs responded efficiently to that
vaccination. When MDAs were mimicked by administering passively transferred antibodies (PTAs) into SPF chickens in
the laboratory, similar results were observed: H9N2-specific PTAs inhibited humoral immunity against the H9N2
inactivated vaccine, suggesting that H9N2-specific MDAs might hinder the generation of antibodies when H9N2
inactivated vaccine was used. After challenge with homologous H9N2 virus, the virus was detected in oropharyngeal
swabs of the vaccinated and unvaccinated chickens with PTAs but not in the vaccinated chickens without PTAs,
indicating that H9N2-specific MDAs were indeed one of the reasons for H9N2 inactivated vaccine failure in the field.
When different titers of PTAs were used to mimic MDAs in SPF chickens, high (HI = 12 log2) and medium (HI = log 9
log2) titers of PTAs reduced the generation of H9N2-specific antibodies after the first vaccination, but a booster dose
would induce a high and faster humoral immune response even of PTA interference. This study strongly suggested
that high or medium titers of MDAs might explain H9N2 inactivated vaccine failure in the field.

Keywords: Maternal-derived antibodies (MDAs), Passively transferred antibodies (PTAs), Humoral immune response,
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Introduction
H9N2 subtype avian influenza virus (AIV) is the most
widespread and harmful low pathogenic avian influ-
enza virus (LPAIV) in large parts of the world and

therefore poses an enormous threat to both the global
poultry industry and human food security. In
addition, H9N2 AIV might contribute to influenza vi-
ruses that cause diseases in humans through either
the donation of internal genes to highly pathogenic
avian influenza viruses (HPAIVs), such as H5 and H7
AIVs, or regular spillover from birds to humans and
pigs (Trock et al. 2015; Peacock et al. 2019; Pusch
and Suarez 2018; Song and Qin 2020).
Vaccination is the main strategy for controlling

H9N2 AIV in poultry. H9N2 inactivated whole virus
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vaccine is currently the main vaccine used in many
countries, such as China, Israel, South Korea,
Morocco, Egypt, Pakistan, Egypt, and Iran etc. (Zhang
et al. 2008; Banet-Noach et al. 2007; Naeem and Sid-
dique 2006; Kilany et al. 2016; Bahari et al. 2015; Lau
et al. 2016; Lee and Song 2013). Based on surveillance
data collected from several poultry farms in China,
broilers are normally vaccinated three times before
being sold when they are approximately 45 days old
to protect commercial broilers against H9N2 AIV: at
1-day-old with 0.1 mL of inactivated vaccine, 14-day-
old with 0.2 mL of inactivated vaccine and 21-day-old
with 0.3 mL of inactivated vaccine. However, most
vaccination programs against H9N2 AIV have showen
to be ineffective against infection and transmission in
the field, although those vaccines have been reported
to work well in the laboratory (Cui et al. 2021; Bahari
et al. 2015; Gu et al. 2017; Peacock et al. 2019).
Unfortunately, researchers have not yet clearly deter-

mined what factors contribute most to H9N2 vaccin-
ation failure in the field. Antigenic drift between vaccine
and field strains is considered as an important factor.
Thus, updating vaccines constantly seems to be indis-
pensable (Kapczynski and Swayne 2009; Capua and Cat-
toli 2013; Balish et al. 2010; Cattoli et al. 2011). The
hemagglutination inhibition (HI) assay has been
regarded as the most effective method to measure
changes in antigenicity and has been used to assess the
antigenic properties of AIVs for years (Donald and
Isaacs 1954). Antigenic distance between vaccine and
endemic strains has been evaluated by the differences in
HI titers of, for example, the field virus against the field
virus and of the same virus against the vaccine virus.
The larger the discrepancies, the greater the antigenic
distance will be. However, Sitaras et al. proved that when
sufficiently high HI titers (over 3, i.e., 8 log2) were
present against the challenge strain in over 85% of vacci-
nated animals, the transmission of HPAIV H5 AIV was
stopped, regardless of the antigenic distance (Sitaras
et al. 2016a; Sitaras et al. 2016b). This result implies that
for large antigenic differences, high HI titers against the
vaccine virus are needed. Thus, a strong immune re-
sponse and proper vaccination coverage would compen-
sate for the antigenic distance and protect animals from
infection and transmission (Swayne et al. 2006; Tian
et al. 2005; Swayne et al. 2015; Sitaras et al. 2016a; Ter-
regino et al. 2010; Pfeiffer et al. 2010; Abbas et al. 2011).
Maternal-derived antibodies (MDAs) have been re-

ported to interfere with the active immune response in
many species and hinder the efficacy of most types of
vaccines, such as inactivated vaccines, vector vaccines,
subunit vaccines and live attenuated vaccines in mam-
mals (Niewiesk 2014; Bahgat et al. 2009; Faulkner et al.
2013; Maas et al. 2011). However, researchers have not

clearly identified whether MDAs are one of the reasons
for H9N2 inactivated vaccine failure. In the present
study, the dynamics of MDAs in poultry and the effect
of MDAs on the immune response after inoculation with
an inactivated H9N2 vaccine were explored.
The final MDAs transferred from dams have a high

degree of variability in individual broilers (Gharaibeh
et al. 2008), and thus MDAs are difficult to study in the
field. However, the hyperimmune serum mainly contains
IgY. This antibody has similar isotype proportions to
MDAs and therefore has been used to mimic MDAs
(Hamal et al. 2006; Forrest et al. 2013). In the present
study, passively transferred antibodies (PTAs) were used
as a model in specific pathogen-free (SPF) chickens to
mimic MDAs in the laboratory and to explore the pos-
sible reasons for H9N2 inactivated vaccine failure in
poultry in the field.

Results
MDAs interfere with broilers’ humoral immune response
in the field
Commercial H9N2 inactivated vaccine has been used
in poultry for more than 25 years in China (Jiang
et al. 2012; Liu et al. 2020), and it has been proven
to exhibit very good efficacy in SPF chickens in the
laboratory, but H9N2 AIV is still prevalent among
poultry farms. SPF chickens of the same age and
commercial broilers were raised together and vacci-
nated to assess their immune responses and explore
factors that may contribute to H9N2 inactivated vac-
cine failure in the field. The results are shown in
Fig. 1. HI titers of 1-day-old commercial broilers
were 9.6 ± 0.5 log2 at the moment of vaccination,
which we interpreted to be attributed to MDAs, and
the titers decreased gradually to approximately 3
log2 at day 28 when animals were not vaccinated.
After applying the commercial H9N2 inactivated vac-
cine to immunize the commercial 1-day-old broilers,
HI titers also decreased gradually and were not dif-
ferent from those of the unvaccinated 1-day-old
commercial broilers (Fig. 1a). In contrast, HI titers
of 1-day-old SPF chickens were zero at the day of
vaccination (interpreted as no MDAs present) and
were significantly increased seven days after vaccin-
ation when inoculated with the commercial vaccine
(Fig. 1b). HI titers of the commercial broilers after
21 days were low (3.6 ± 0.7 log2), which were inter-
preted as a reduction in MDAs. Without vaccination,
the titers remained low. On the other hand, HI titers
of both commercial broilers and SPF chickens in-
creased after vaccination when starting with 21-day-
old chickens (i.e., with fewer remaining MDAs). HI
titers of all vaccinated groups at 21-day-old days of
age were significantly higher than those of the
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corresponding unvaccinated groups (Fig. 1c, d). All
these results indicated that high titers of MDAs in
broilers at the moment of vaccination may explain
H9N2 inactivated vaccine failure in the field.

Mimicking MDAs with PTAs interferes with the humoral
immune response of SPF chickens in laboratory
PTAs were used to mimic MDAs in laboratory and iden-
tify whether MDAs are indeed one of factors contribut-
ing to H9N2 inactivated vaccine failure in the field. 1-
day-old SPF chickens were passively transferred with 0.3
mL of high titers (HI = 12 log2) of H9N2-specific anti-
body and then vaccinated to show their immune re-
sponse. As shown in Fig. 2a, after passive transfer, HI
titers of those chickens were approximately 8 log2, which
was similar to that of 1-day-old commercial broilers in
the field (Fig. 1a). The dynamics of HI titers of PTAs in
SPF chickens were also similar to those of MDAs in
commercial broilers and ranged from 8.4 ± 0.5 log2 to
2.8 ± 0.8 log2. Two different hyperimmune sera were
used to mimic MDAs in this study: one was collected
from commercial hens in the field that were vaccinated

with multiple types of vaccines, including H9N2, H5N1
and H7N9 inactivated vaccines, live attenuated Newcas-
tle disease virus (NDV) vaccine, and VAXXITEK (her-
pesvirus of turkeys + infectious bursal disease) vector
vaccine; another was collected from SPF chickens in la-
boratory, which contained antibodies against only H9N2
AIV. Figure 2a shows that both types of PTAs hindered
the generation of H9N2-specific antibodies after vaccin-
ation. In contrast, HI titers of SPF chickens without
PTAs increased gradually after vaccination and were sig-
nificantly higher than those of SPF chickens with PTAs
14 days after vaccination.

Viral shedding and antibody titers after H9N2 challenge
MDAs clearly interfered with chickens’ humoral immune
responses. Chickens were challenged 28 days after vaccin-
ation and viral shedding was detected to obtain insights
into the interference induced by MDAs. As shown in Fig.
2b, viral titers in the oropharynx of unvaccinated group
were the highest at 4.9 ± 0.4 log2 at 3 days post-challenge
(dpc), and viral titers were 1.5 ± 0.9 and 1.2 ± 0.7 log2 in
chickens with PTAs from commercial hens and SPF

Fig. 1 Seroconversion after immunization with the commercial H9N2 AIV inactivated vaccine in commercial broilers and SPF chickens. Each 1-
day-old broiler (a) and 1-day-old SPF chicken (b) in Group one was subcutaneously inoculated with 0.1 mL of the commercial H9N2 AIV
inactivated vaccine. Each 21-day-old broiler (c) and 21-day-old SPF chicken (d) in Group two was subcutaneously inoculated with 0.3 mL of
commercial H9N2 AIV inactivated vaccine. The same number of SPF chickens and broilers in Group three of the same age were not vaccinated
and served as a negative control. Serum H9N2-specific antibody responses were measured weekly. The symbol (*) denotes differences between
two groups at the same time point (* P < 0.05, ** P < 0.01, and *** P < 0.001)
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chickens, respectively. On the other hand, no viral shed-
ding was detected in the vaccinated group without PTAs.
At 5 dpc, the virus was detected only in oropharyngeal
samples from unvaccinated group (EID50 = 3.1 ± 0.4 log2/
0.1 mL). All detected viruses were in oropharyngeal swabs.
Compared with unvaccinated chickens, vaccinated

chickens were more likely to have a higher and faster
antibody response after challenge. The antibody titers of
chickens vaccinated with PTAs from commercial hens
ranged from 4.6 ± 1.1 to 11 ± 0.7 log2; the antibody titers
of chickens vaccinated with PTAs from SPF chickens
ranged from 4.6 ± 0.9 to 12 ± 1.2 log2 at 7 dpc (Fig. 2c).

High and medium titers of PTAs interfered with chickens’
humoral immune responses after the first vaccination
High (HI = 12 log2), medium (HI = 9 log2), and low
(HI = 6 log2) titers of H9-specific antibodies and
phosphate-buffered saline (PBS) were used as PTAs in
the present study to obtain a better understanding of

the degree of interference induced by MDAs. High
(Fig. 3a) and medium (Fig. 3b) titers of PTAs indeed
attenuated the development of antibodies after the
first vaccination, while low (Fig. 3c) titers of PTAs
and PBS did not. However, after the booster vaccin-
ation, the antibody titers of chickens injected with
both high and medium titers of PTAs increased im-
mediately from 5.6 ± 0.5 to 10.2 ± 0.4 log2 and 3.6 ±
0.5 to 10.8 ± 0.4 log2, respectively, one week later,
which were similar to the antibody levels of vacci-
nated SPF chickens without PTAs.

Discussion
H9N2 AIV has caused substantial damage to economies
and public health. The inactivated vaccine has been used
regularly in the field in several countries to control it,
but the vaccine fails to stop the transmission and infec-
tion of H9N2 AIV in poultry in the field. In the present
study, we found that MDAs might explain H9N2

Fig. 2 Mimicking MDAs with PTAs in SPF chickens and the response to vaccination and challenge. After transferring antibodies into SPF chickens,
chickens were vaccinated one day later and challenged 28 d after vaccination. Seroconversion after vaccination (a), viral titers in oropharyngeal
swabs after challenge (b) and seroconversion after challenge (c) are shown in Fig. 2. Superscripts a-c denote differences among each group at
the same time point. The symbol (*) denotes differences among groups at the same time point. P < 0.05 was considered significant
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vaccination failure in poultry in the field. A study con-
ducted in the field and laboratory showed that H9N2-
specific MDAs indeed interfered with the immune re-
sponse after vaccination with the inactivated H9N2 vac-
cine in chickens. Furthermore, vaccination of chickens
without PTAs inhibited viral shedding through the oro-
pharyngeal route but not in chickens vaccinated with
PTAs at 3 days after challenge. In addition, high and
medium titers of PTAs interfered with the humoral im-
mune response in chickens after vaccination. However, a
booster dose induced a higher and faster humoral im-
mune response, even under the condition of PTA
interference.
H9N2 inactivated vaccine shows perfect efficacy in

SPF chickens in the laboratory, but it often fails in com-
mercial broilers in the field (Kim et al. 2010). Several
possible explanations have been proposed. Antigenic
drift is generally presumed to be a major reason. Mixed
infection or concurrent infection of H9N2 vaccination
with other pathogens may also contribute to vaccination
failure. Moreover, other factors, such as improper vac-
cination procedures, incorrect use of vaccines, density,
condition and species of chickens, may also contribute
to this phenomenon. However, the contribution of
MDAs to H9N2 inactivated vaccine failure has received
less attention. In this research, SPF chickens were

vaccinated with inactivated H9N2 (H514) homologous
to the virus challenge in laboratory to minimize the ef-
fects of other factors on vaccine efficacy. All experiments
were conducted in the Biological Safety Level 2 (BSL2)
facility. Using a PTA model to mimic MDAs in SPF
chickens, this study showed that PTAs interfered with
chickens’ immune response to the H9N2 inactivated
vaccine, indicating that MDAs were also one of the fac-
tors contributing to H9N2 inactivated vaccine failure in
poultry in the field. Similar results were reported by For-
rest et al. (Forrest et al. 2013), they used two different
sources of antibodies (from field-vaccinated layer chick-
ens or vaccinated SPF chickens) to mimic H5N2-specific
MDAs in three-week-old SPF chickens in different ways.
Similar to the present study, all sources of PTAs reduced
the generation of antibodies against H5N2 AIV. MDAs
are also considered a factor contributing to H5N1 inacti-
vated vaccine failure in broilers in Egypt (Abdelwhab
et al. 2012). The decrease in vaccine immune efficiency
caused by MDA interference may further affect the pre-
vention and control of AIV in poultry in the field (Kim
et al. 2010; Maas et al. 2011).
MDAs protect offspring at a young age from many in-

fectious diseases at the beginning of their lives when
they are vulnerable because of the immature immune
system (Forrest et al. 2013; Maas et al. 2011), but MDAs

Fig. 3 Seroconversion to prime or booster vaccination in SPF chickens with high, medium or low titers of PTAs. 1-day-old SPF chickens were
passively transferred with 0.3 mL of high (HI = 12 log2) (a), medium (HI = 9 log2) (b), or low (HI = 6 log2) (c) titers of antibodies or PBS (d) per
chicken via intravenous injection. Half of the 1-day-old chickens in each group were vaccinated. All were boosted 14 d after vaccination. Serum
H9N2–specific antibody responses were measured weekly. The symbol (*) denotes differences between two groups at the same time point (* P <
0.05, ** P < 0.01, and *** P < 0.001)
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do not protect chickens against H9N2 AIV during their
whole life since their levels decrease rapidly with age. In
this paper, HI titers of 1-day-old chickens with PTAs or
MDAs gradually decreased from approximately 9 log2 to
approximately 3 log2 in 21-day-old chickens with or
without vaccination, and thus they were not protective
against H9N2 AIV. In contrast, after challenge, the virus
was not detected in vaccinated chickens without PTAs,
as HI titers of those chickens were approximately 12
log2, which protected chickens from H9N2 AIV (Fig.
2b). Similar results were obtained by other researchers
(Chen et al. 2017; Kim et al. 2021; Zhao et al. 2017). A
potential explanation for this result is that HI titers must
be over 5 log2 to protect chickens from H9N2 AIV in
the field.
Understanding the mechanism of MDAs interference

is essential for developing next-generation vaccines to
overcome/bypass MDAs interference. In mammals,
MDAs inhibit all immune cells that react specifically to
antigens and antibodies, including germinal center B
cells, plasma cells (PCs) and memory B cells (MBCs)
(Bergstrom et al. 2017; De Vriese et al. 2010). However,
Maria Vono reported that only high levels of MDAs
block the generation of both antibodies and MBCs, while
low titers of MDAs do not hinder the development of
MBCs in mice (Vono et al. 2019). The difference be-
tween those studies is probably because different models
and antigens were used. In avian species, researchers
have not elucidated whether MDAs interfere with im-
mune cells. The present study clearly showed that
MDAs interfered with PCs, but a booster dose resulted
in a higher and faster humoral immune response, even
under the condition of MDA interference, indicating
that MDAs may not interfere with memory B cells
(MBCs) in chickens. Further research is needed to ex-
plore the mechanism by which MDAs interfere with vac-
cines in avian species in the future.
Based on the results from the present study, some sug-

gestions for vaccination protocols to control H9N2 AIV
in the field are provided. First, HI titers remained high
after the booster dose was administered at 14 d (Fig. 3),
therefore, we suggested that a third vaccination is un-
necessary in 21-day-old broilers according to the vaccin-
ation procedure in poultry farms mentioned above.
Second, vaccination of broilers in hatcheries is advised
since the second shot on their 14th days might induce a
higher and faster humoral immune response (Fig. 3).
Next, although a booster dose potentially induced a high
immune response in SPF chickens with PTAs in the la-
boratory, similar results may not be easily obtained in
broilers in the field since several other factors may affect
the vaccine efficacy mentioned above. Therefore, in
addition to vaccination, a good long-term surveillance
system, maintenance of environmental hygiene, and

training of poultry workers are also important. Finally,
the traditional H9N2 inactivated vaccine used in the
field requires updating with new vaccines that are able
to overcome/bypass MDAs or are mixed with other
types of vaccines from different generations.

Conclusions
Overall, this study suggested that H9N2-specific MDAs
were one of the factors contributing to H9N2 inactivated
vaccine failure in the field. High and medium titers of
MDAs interfered with the humoral immune response in
broilers, but a booster dose induced a higher and faster
humoral immune response, even under the condition of
MDA interference. Moreover, understanding the mech-
anism of MDA interference in avian species is essential
to explore new methods to tackle this problem in the
future.

Methods
Animals and viruses
The field experiment was conducted in the Biotechnol-
ogy Research Laboratory, Jiangsu Lihua Animal Hus-
bandry Co. Ltd. (JSLH), Changzhou 213,168, China.
Commercial chickens were hatched by the company at
their premises; SPF chicken eggs used in the field experi-
ment were purchased from Beijing Merial Vital Labora-
tory Animal Technology (Beijing, China) and hatched in
the laboratory of JULH. The laboratory experiment was
performed in SHVRI. The SPF chicken eggs used in the
laboratory experiment were purchased from Beijing
Merial Vital Laboratory Animal Technology and hatched
in the laboratory of SHVRI. All chickens were tagged
and housed in high-containment chicken isolators with a
good environment and sufficient space, and birds had
full access to feed and water.
The LPAIV H9N2 virus (A/Chicken/Shanghai/H514/

2017) was used in the laboratory of SHVRI and ab-
breviated as H514. It was isolated and stored by the
Research Team of the Etiologic Ecology of Animal In-
fluenza and Avian Emerging Viral Disease, SHVRI.
For experimental usage, the H9N2 virus was titrated
in 10-day-old SPF embryonated chicken eggs (ECEs)
(Beijing Merial Vital Laboratory Animal Technology
Co., Ltd.).

Vaccine and hyperimmune serum preparation
The commercial H9N2 (SS strain) water-in-oil inac-
tivated vaccine (Guangdong Wens Dahuanong Bio-
technology Co., Ltd.) is generally used in the field.
In laboratory experiments, H9N2 AIV (H514) (109.25

EID50/0.1 mL) was inactivated with 1:2000 β-
propiolactone (BPL) under constant shaking for 16 h
at 4 °C. The residual β-propiolactone was evaporated
at 37 °C for 2 h, and then 0.1 mL of the inactivated
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virus was inoculated into three eggs and incubated
for 48 h to confirm the loss of infectivity by per-
forming a hemagglutination (HA) assay. Based on
the phylogenetic analysis, the SS strain and H514
strain belong to antigenic Cluster 1 and Cluster 2,
respectively. The inactivated H514 virus was then
mixed with water-in-oil Montanide VG71 (0.85 g/
cm3) adjuvant (Lone et al. 2017) at a volume ratio of
3:7 according to the instructions.
Hyperimmune serum was collected from commercial

hens housed at poultry farms and contains IgY against
multiple antigens. The VG71 BPL-inactivated H514 vac-
cine was used to generate hyperimmune serum in SPF
chickens by vaccinating chickens three times, once every
two weeks in the laboratory. This hyperimmune serum
contains IgY only against H9N2 AIV.

Experimental design
Experiment one
The effect of MDAs on the efficacy of a commercial
H9N2 inactivated vaccine in the field was analyzed.
Three groups of chickens were used. Each group con-
sisted of 16 1-day-old chickens consisting of half com-
mercial broilers and half SPF chickens, and one group
was housed in one isolator. In Group 1, all chickens
were vaccinated subcutaneously in the neck with the
commercial H9N2 inactivated vaccine at a dose of 0.1
mL per chicken at day one after hatching; in Group 2,
all chickens were immunized with 0.3 mL per chicken of
the same vaccine at 21-day-old days of age according to
the company’s vaccination procedure in the field. In
Group 3, chickens were not vaccinated and served as a
negative control. Serum samples were collected from
each chicken at 0, 7, 14, 21 and 28 dpv.

Experiment two
MDAs were mimicked with PTAs in SPF chickens in the
laboratory. Four groups of chickens were used. A total
of 0.3 mL of hyperimmune serum with HI titers of 12
log2 against the H9N2 virus was administered by intra-
venous injection into 1-day-old SPF chickens. Chickens
that received 0.3 mL of phosphate-buffered saline (PBS)
as a vaccination served as a positive control (Group 1,
n = 5). Chickens that received 0.3 mL of hyperimmune
serum from SPF chickens without vaccination served as
a negative control (Group 2, n = 5). Chickens also re-
ceived hyperimmune serum from commercial poultry
hens (Group 3, n = 5) or from SPF chickens (Group 4,
n = 5). One day after administering PTAs, all chickens
were vaccinated with 0.1 mL of VG71 BPL-inactivated
H514 vaccine per chicken. Chickens in each group were
challenged intravenously with 0.1 mL 106 EID50/0.1 mL
of H514 at 28 dpv. Oropharyngeal and cloacal swabs
were collected at 3 and 5 d postchallenge, respectively.

Serum samples were collected from each chicken at 0, 7,
14, 21, 28, 35 and 42 dpv.

Experiment three
The effects of different titers of H9N2-specific PTAs on
the generation of antibodies was analyzed. For this ex-
periment, 0.3 mL of four different titers of antibodies
was transferred into 1-day-old SPF chickens (n = 10),
and then half of these chickens from each group were
vaccinated with 0.1 mL of VG71 BPL-inactivated H514
vaccine per chicken one day later (Group 1: HI = 12 log2;
Group 2: HI = 9 log2; Group 3: HI = 6 log2; Group 4:
HI = 0 (PBS)). Then, all chickens were vaccinated with
0.2 mL of the H514 vaccine 14 d later according to the
vaccination procedure in the field. Serum samples were
collected from each chicken at 0, 7, 14, 21 and 28 days
post vaccination (dpv).

Hemagglutination inhibition (HI) assay
The dynamics of antibodies were tested using HI assay
as previously described (Suarez et al. 1998). HI titers
were determined using the BPL-inactivated H514 virus.
The antigen was diluted to standard 8 HA units in
50 μL. Serum samples were serially diluted 2-fold.
Chicken red blood cells (RBCs, 0.5%) in PBS were used
in the HI assay.

Virus quantification in oropharyngeal and cloacal swabs
Viral shedding was measured by calculating the EID50 as
previously described (Klimov et al. 2012). Briefly, a series
of 10-fold dilutions of the samples were prepared in PBS
with 1 mg/mL penicillin & 1mg/mL streptomycin. Next,
0.1 mL of each dilution was inoculated into the allantoic
cavities of three 10-day-old ECEs, and then the ECEs
were incubated in an incubator at 37 °C for 48 h. During
the incubation, the ECEs that died within 24 h of incuba-
tion were discarded. Harvested allantoic fluid was tested
for HA activity using 0.5% chicken red blood cells
(RBCs) in PBS. The viral titers were calculated using the
Reed & Muench method (Ramakrishnan and Muthu-
chelvan 2018).

Statistical analysis
Statistical analyses were performed using GraphPad
Prism V. 6.0 software for Windows (GraphPad Software,
San Diego, CA) and SPSS 16 for Windows (SPSS Inc.,
Chicago, IL). Student’s t-test and Duncan’s multiple
range tests were used to compare the differences in
means among groups. P ≤ 0.05 was considered
significant.
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