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Abstract 

Knowing human papillomavirus (HPV) status has important consequences for treat-
ment selection in oropharyngeal cancer. The gold standard is to perform a biopsy. The 
objective of this paper is to develop a new computed tomography (CT) radiomics-
based non-invasive solution to HPV status determination and investigate if and how 
it can be a viable and accurate complementary technique. Two hundred thirty-eight 
patients’ CT scans were normalized and resampled. One thousand one hundred forty-
two radiomics features were obtained from the segmented CT scans. The number 
of radiomic attributes was decreased by applying correlation coefficient analysis, 
backward elimination, and random forest feature importance analysis. Random over-
sampling (ROSE) resampling algorithm was performed on the training set for data 
balancing, and as a result, 161 samples were obtained for each of the HPV classes 
of the training set. A random forest (RF) classification algorithm was used as a predic-
tion model using five-fold cross-validation (CV). Model effectiveness was evaluated 
on the unused 20% of the imbalanced data. The applicability of the model was inves-
tigated based on previous research and error rates reported for biopsy procedures. 
The HPV status was determined with an accuracy of 91% (95% CI 83–99) and an area 
under the curve (AUC) of 0.77 (95% CI 65–89) on the test data. The error rates were 
comparable to those encountered in biopsy. As a conclusion, radiomics has the poten-
tial to predict HPV status with accuracy levels that are comparable to biopsy. Future 
work is needed to improve standardization, interpretability, robustness, and reproduc-
ibility before clinical translation.
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Introduction
The seventh most prevalent type of cancer worldwide and the ninth most common type 
of cancer in the USA, head and neck cancer (HNC), refer to a variety of upper aerodi-
gestive tract tumors [1]. Around 644,000 new HNC cases are projected to be diagnosed 
annually worldwide, with two thirds of these occurrences taking place in the develop-
ing nations [2]. The American Joint Committee on Cancer defines HNC as a tumor 
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originating from both major and minor salivary glands as well as malignancies com-
ing from mucosal areas of the oral cavity, larynx, paranasal sinuses, and pharynx [3]. 
Important risk factors for HNC include smoking drinking alcohol, being overexposed to 
sunlight, gamma, and ultraviolet radiation, having cancer in the family [4]. Additionally, 
human papillomavirus (HPV) has been linked to oropharyngeal cancer (OPC), which 
is a type of HNC. This type of cancer linked to HPV makes up approximately 25% of all 
HNCs [5]. The National Comprehensive Cancer Network (NCCN) recommends HPV 
testing for all oropharyngeal tumors in their guidelines [6]. In the USA, the percent-
age of head and neck cancers diagnosed as OPC that tested positive for HPV increased 
from 16.3% in the 1980s to more than 72.7% in the 2000s. This seems to be a result of 
increased awareness, the discovery of the link between HPV and cancers of the head and 
neck, and improved diagnostic HPV testing [7].

Importance of knowing the HPV status

Planning a course of treatment requires knowledge of the HPV status in OPC patients. 
HPV-positive OPC has a lower mortality rate than HPV-negative illness, with a 60% 
mortality rate with N3 or M1 sickness and an 80–90% 5-year survival rate even with 
lymph node involvement. Both overall mortality from all causes (10.4% vs. 33.3%) and 
mortality primarily from head and neck cancer (4.8% vs. 16.2%) are lower for HPV-pos-
itive patients. Despite having a poor 5-year survival rate of about 67%, OPSCC, which 
tests negative for HPV, has a poor prognosis [8, 9]. Therefore, knowing a patient’s HPV 
status aids in identifying those who may have a better prognosis and may not need an 
aggressive course of therapy. According to studies, radiation and chemotherapy treat-
ments have a stronger tendency to decrease and control HPV-positive tumors’ growth. 
Contrarily, HPV-negative cancers might be more resistant to conventional therapies, 
requiring more intensive or unconventional therapeutic modalities [10]. Additionally, 
there is significant interest in de-escalating treatment intensity for patients with HPV-
positive oropharyngeal cancer in order to reduce treatment-related toxicities while pre-
serving outstanding results due to the favorable prognosis of this kind of disease [11]. 
Identifying patients who may be candidates for treatment de-escalation methods, such 
as lowering radiation dosage or chemotherapy intensity, is made easier with the use of 
HPV status information. This strategy aims to achieve the best possible compromise 
between reducing adverse effects from the treatment and controlling the tumor effec-
tively [12]. Eligibility for particular clinical trials and targeted therapy is influenced by 
HPV status in oropharyngeal cancer. For individuals who are HPV-positive, several stud-
ies and cutting-edge treatments explicitly targeting HPV-related biological pathways 
may be beneficial. Clinicians can find suitable clinical trial choices and possibly inves-
tigate targeted treatments based on the underlying genetic features of the tumor by 
determining the HPV status [13]. The presence of HPV may also affect post-treatment 
surveillance plans. A more targeted and unique approach to post-treatment monitoring 
is made possible by modifying the surveillance procedures based on HPV status [14]. In 
the end, determining HPV status enhances the accuracy of therapy selection and helps 
to improve patient outcomes in oropharyngeal cancer.
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Diagnostic and characterization methods

For oropharyngeal cancer, a variety of diagnostic and characterization techniques are 
currently available and in use [15]. Rapid diagnosis and treatment increase a patient’s 
likelihood of recovering from an illness [16]. Oropharyngeal tumors are routinely diag-
nosed and characterized using a variety of traditional techniques, such as physical 
examination, imaging studies, and tissue samples [17]. A physical examination will be 
performed, during which a medical practitioner will carefully inspect the head, neck, 
and oropharynx. Any abnormal growths or other symptoms that might point to the 
presence of a tumor will be examined by medical professionals [18]. The oropharyngeal 
region can be seen, and tumors can be detected using a variety of imaging modalities 
such as magnetic resonance imaging (MRI), computed tomography (CT), positron emis-
sion tomography (PET), and endoscopy [19]. For establishing the existence of a tumor 
and identifying its features, biopsy tissue sampling is essential. An oropharynx biopsy 
entails the removal of a tiny sample of tissue, which is then sent to a lab for examina-
tion. HPV molecular testing is possible on this tissue [20]. Conventional laboratory tech-
niques like p16 immunohistochemistry (IHC) and polymerase chain reaction (PCR) can 
be utilized to determine the HPV status of a patient. The 8th edition of the American 
Joint Commission on Cancer (AJCC) recommended P16 IHC as a diagnostic test for 
oropharyngeal cancer staging [21]. However, this may increase the effort and cause a 
delay in clinical applications. It is crucial to remember that the diagnostic procedure can 
change based on the particular instance, the preferences of the healthcare professional, 
and the accessibility of resources. To guarantee a precise diagnosis and thorough under-
standing of oropharyngeal tumors, a multidisciplinary strategy comprising numerous 
specialists, such as otolaryngologists, radiologists, and pathologists, is frequently used.

A new alternative: radiomics

In addition to all of the classic diagnostic techniques mentioned above, new technique 
known as radiomics has recently attracted interest. The field of radiomics has advanced 
swiftly toward practical application in the hopes of improving cancer treatment and 
accurate detection. Radiomics is a quantitative approach to medical imaging that makes 
use of sophisticated mathematical analysis to enhance the data already available to doc-
tors [22]. Radiomics quantifies textural information by mathematically extracting the 
spatial distribution of signal intensities and pixel interrelationships using analysis meth-
ods from the field of artificial intelligence [23]. Due to their potential prognostic value 
for treatment outcomes radiomic features have recently gained a lot of attention and 
may be useful in personalized medicine.

The application of radiomics in oropharyngeal malignancy diagnosis and precision 
medicine has shown promise since it enhances characterization and diagnosis. This 
improved characterization can help in making the distinction between benign and 
malignant tumors, determining how aggressive the tumor is, and guiding treatment 
choices [22]. Radiation oncologists can optimize radiation dose distribution and inten-
sity modulation to target the tumor more precisely while preserving healthy tissues by 
incorporating radiomic characteristics into treatment planning algorithms. Radiation 
therapy when guided by radiomics attempts to provide a more individualized type of 
care that maximizes tumor control while minimizing adverse effects [24].



Page 4 of 14Sarac and Guvenis ﻿Journal of Engineering and Applied Science           (2024) 71:11 

Radiomics can also help in calculating the likelihood of metastasis, disease recurrence, 
or overall survival, which can inform treatment choices and follow-up plans [25].

In some circumstances, radiomics may be used in addition to or in very exceptional 
cases as a substitute for biopsy [26]. Radiomics can also be used to track a cancer 
patient’s reaction to treatment. The success of treatment and tumor development or 
regression may be determined by tracking changes in radiomic characteristics over 
time [22]. In summary, the radiomics technique has the ability to capture complex 
tumor properties, in addition to what can be learned from a biopsy sample alone [26].

By identifying the most questionable or important locations for the sample, radiol-
ogy can help direct the biopsy procedure. Radiomics can increase the precision and 
diagnostic yield of biopsies by examining radiomic characteristics, imaging-based 
biomarkers, or tumor heterogeneity patterns, ensuring that the most representative 
tissue samples are obtained [27].

Biopsy and radiomics are two different methods that have advantages and draw-
backs. Radiomics’ non-invasive nature is undoubtedly one of its advantages. Both 
geographically and temporally diverse tumors exist in solid tumors. As a result, the 
use of invasive biopsy-based molecular assays is constrained.

Radiomics, which may non-invasively detect intra-tumoral heterogeneity, now has a 
wide range of applications [28].

In summary, radiomics provides a non-invasive whole-lesion assessment with the 
possibility of temporal monitoring and multi-dimensional analysis. However, it is 
deficient in tissue confirmation and thorough histological data.

Contribution

In the literature, a number of algorithms have been proposed for radiomics-based 
HPV status determination [29–41]. This work is different in that the developed 
method is based on a not-yet-tried machine-learning algorithm combination. Addi-
tionally, a thorough comparison of our approach and results with the biopsy tech-
nique was conducted for the first time.

The advantages and disadvantages of each approach and typical error rates encoun-
tered are given. Finally, the future work needed to translate the non-invasive radiom-
ics approach to routine clinical practice is outlined.

Material and methods
Data set

Four hundred ninety-five patients in the collection of data from The Cancer Imaging 
Archive (TCIA) [42] were included in the study. The study only examined 238 indi-
viduals’ contrast-enhanced CT scans, 204 of whom were HPV positive and had been 
given an OPC diagnosis. The gross primary tumor volume (GTVp) (see Fig. 1), which 
is divided by experts, is taken into account in radiomic research [35].
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Image pre‑processing

Prior to the radiomic feature extraction procedure, all patients’ CT images were resa-
mpled and normalized. Resampling CT images produced 1 mm × 1 mm × 1 mm vox-
els [43]. The three-dimensional (3D) slicer program (version 5.0.3) was used to do 
resampling and interpolation methods using the Python-based pyradiomics [44].

Feature extraction

After performing image preprocessing, the feature extraction process was carried 
out using 3D Slicer software (version 5.0.3) [45]. A standard bin width of 10 was 
set in order to implement gray-level discretization and reduce variability [46]. These 

Fig. 1  One slice of CT image of a patient with OPC. Green-colored segmentation represents the tumor area

Fig. 2  Feature extraction process
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included characteristics of the original images, wavelet-transformed images, and 
Laplacian of Gaussian (Log)-filtered images (see Fig. 2). After the images have been 
converted into features, the newly generated data were utilized to train and evaluate 
machine learning (ML) models. These characteristics can be used to perform quan-
titative image comparisons [47]. van Griethuysen et  al. [48] have detailed explana-
tions of the radiomics technique.

Data pre‑processing and resampling

The 1142 features were subject to Z-score normalization. Twenty percent of the data was 
designated for testing, while the remaining 80% was designated for training. There was 
an uneven distribution of HPV classes between the training set and the test set. The test 
set contained 48 instances (43 HPV positive, 5 HPV negative), while the training set con-
tained 190 cases (161 HPV positive, 29 HPV negative).

Since the number of cases with HPV status was imbalanced, the random over-sam-
pling (ROSE) [49] resampling method was utilized. Only the training set was subjected 
to a resampling technique, and 161 samples for each positive and negative HPV class 
were obtained (see Fig. 3).

Feature selection

Radiomics approaches typically produce high dimensional data, which increases the 
risk of over-fitting, worsens model confusion, and degrades prediction accuracy. In this 
research, correlation coefficient analysis (CCA), random forest (RF) feature importance 
analysis, and backward elimination methods were used in order to choose functional 
features (see Fig. 4). CCA was initially employed as a filter-based technique to subtract 
unneeded characteristics that were extremely closely related (absolute correlation coef-
ficient > 0.9). The Gini impurity metric, which offers a better way to gauge feature impor-
tance, was used to run the random forest model [50].

The fifty most crucial traits were chosen using the sequential backward selection 
approach, with the k-nearest neighbor serving as a forecaster. The feature selection 

Fig. 3  Random over-sampling application on training data
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Fig. 4  Flowchart for the feature selection process
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techniques were carried out in Python (version 3.9) using the MLxtend and Scikit-learn 
libraries [51].

Results
Model training and evaluation

A random forest (RF) classification ML algorithm was used as a prediction ML model 
utilizing five-fold cross-validation (CV). Five hundred different combinations of hyper-
parameters were tried on the RF model utilizing the randomized search CV method on 
training feature sets to determine the best ones that maximize model efficiency. This 
operation (five-fold nested cross-validation) was run five times for various training and 
testing sets. On the 20% of the initial unbalanced data that was not used, the model’s 
performance was assessed separately. HPV status was predicted by an RF algorithm with 
an accuracy of 91% (95% CI 83–99) and an area under the curve (AUC) of 0.77 (95% CI 
65–89) on the test data. The confusion matrix and ROC curve (receiver operating char-
acteristic curve) for the random forest model with ROSE resampling algorithm perfor-
mance result on the test data are demonstrated in Figs. 5 and 6, respectively.

Discussion
The objective of this paper was to develop a new radiomics-based solution to the prob-
lem of HPV determination for OPC patients and make a thorough analysis of its applica-
bility in routine clinical practice.

The RF algorithm in combination with resampling allowed us to identify the HPV situ-
ation with an accuracy of 91% (95% CI 83–99) AUC of 0.77 (95% CI 65–89) on the inde-
pendent test data.

The RF algorithm has several known advantages such as good predictions that can be 
understood easily and a higher level of accuracy with respect to decision trees. It can 

Fig. 5  Confusion matrix of random forest model with the ROSE re-sampling algorithm
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also handle large datasets that may be available in the future. Other algorithms and dif-
ferent datasets have been investigated in several previous studies [29–41]. In the present 
study, the results were comparable to previous findings although the data size was small 
and highly imbalanced. Another limitation is that no testing has been done to determine 
the sensitivity of radiomic characteristics with respect to segmentation alterations. The 
results have been obtained using an independent test dataset but not have been verified 
with data obtained from other institutions.

Comparison with biopsy and future work for widespread application

Radiomics and biopsy can be complementary to each other. Some of the shortcom-
ings of the biopsy are missing the most aggressive or representative areas of the tumor 
[52] and failing to detect cancer cells in the sample because the tumor can be small or 
located in a challenging anatomical site [53]. Furthermore, there can be inter-observer 
variability, where different pathologists may interpret the same biopsy sample differently, 
leading to variations in treatment decisions [54]. Biopsy samples may not fully capture 
the complexity of the tumor, including variations in genetic mutations, protein expres-
sion, or cellular characteristics. Besides, biopsies, especially those performed using 
invasive techniques such as surgical excision or fine needle aspiration, carry some risks 
and potential complications. These can include bleeding, infection, damage to nearby 
structures, and patient discomfort [55]. In [54], the sample error accounted for 60.0% 
of inconsistent findings, and pathologist inconsistency accounted for 23.3%. The error 
rates can change depending on the specific biopsy procedure and the condition being 
evaluated.

It is important to acknowledge these limitations when interpreting biopsy results in 
oropharyngeal cancer. Clinicians may want to consider a complementary approach such 

Fig. 6  ROC curve of random forest model with the ROSE re-sampling algorithm
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as radiomics in order to obtain additional evidence, in particular when biopsy conditions 
are not optimal.

Radiomics has also its own disadvantages. There is a lack of standardized protocols 
and guidelines for feature extraction, leading to variability in the methods used across 
different studies and institutions. This lack of standardization can impact the reproduci-
bility and comparability of radiomic results, making it challenging to establish consistent 
and reliable radiomic models. Radiomics heavily relies on the quality and consistency of 
the medical images used for analysis. However, imaging techniques, acquisition param-
eters, and equipment can vary between institutions, scanners, and even individual radi-
ologists. These variations in image acquisition can introduce variability and bias in the 
radiomic features, affecting the accuracy and generalizability of the results. Moreover, 
radiomics relies on the availability of large and diverse datasets for training and valida-
tion purposes. However, obtaining high-quality imaging data with corresponding clini-
cal annotations can be challenging due to issues such as data privacy, limited sample 
sizes, and variations in data collection across institutions. Limited data availability and 
potential biases in the data can impact the development and validation of robust radi-
omic models [56]. Furthermore, while radiomics studies have shown promising results 
in research settings, there is a need for robust validation and clinical translation. The 
performance of radiomic models in real-world clinical settings may differ from the initial 
research findings. Further validation studies, preferably in multi-institutional settings, 
are needed to establish the clinical usefulness and effectiveness of radiomics in various 
disease contexts. The radiomics results should also provide a probability for the likeli-
hood of a correct result for a particular patient. Also, radiomic models often provide 
quantitative and statistical measures, but the interpretation of these measures and their 
integration into clinical decision-making can be challenging [27]. The clinical relevance 
and meaningfulness of radiomic features need to be further explored and validated to 
ensure their utility in guiding treatment decisions and patient management. Address-
ing these reported issues requires ongoing research and collaboration among radiom-
ics researchers, imaging experts, and clinicians. The Image Biomarker Standardization 
Initiative (IBSI), founded by study participants [57], was created to overcome these diffi-
culties by creating the goals, which are nomenclature and descriptions for frequently uti-
lized radiomic characteristics; a common image processing using radiomics plan for the 
computation of imaging-based characteristics; and data collection and related reference 
values for the calibration and testing of image processing software implementations.

Future ML work

In spite that our models are able to forecast HPV status with a good level of AUC and 
relative accuracy, more research needs to be done utilizing larger clinical datasets to ver-
ify the effectiveness of the created ML model. All the above-mentioned concerns about 
radiomics should also be addressed (interpretability, standardization, reproducibility).
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Conclusion
In conclusion, this work demonstrates that it is clinically important and possible to 
develop a new CT radiomic-based non-invasive complementary solution for the deter-
mination of HPV status with accuracy rates that can challenge those obtained from 
biopsy. However, further research is needed to improve accuracy, safety, standardization, 
interpretability, and reproducibility for widespread clinical acceptance.
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