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Abstract 

Small-scale preliminary studies are necessary to determine the feasibility of the 
machine learning (ML) algorithm and time-evolution kinetics to meet the design 
specification of the treatment unit. The train and test datasets were obtained from jar 
test experimentation on the petroleum industry effluent (PIE) sample using aluminum 
sulfate (AS) as the coagulant. The ML algorithm from scikit-learn was employed to 
determine the optimum operating condition for the removal of colloidal particles, 
causing turbidity in the PIE. The predictive capacity of four ML models was compared 
based on their statistical metrics for clean discharge. The predicted optimum condition 
corresponds to pH (10), dosage (0.1 g/L), and settling time (30 min) which transcends 
to residual turbidity ≤ 10 NTU and translates to 95% removal efficiency. The second-
order AS-sweep flocculation kinetic showed that at the predicted optimum condi-
tions, modeled rate constant of 1.33 × 10−3 L/g.min and flocculation period of 1.2 min 
reduced the combination of the monomer, dimmer, and trimmer class colloids from 
an initial 570 mg/L concentration to the residual counts of 24 mg/L corresponding to 
residual turbidity ≤ 10 NTU under the mixing regime 14 s−1 ≤ G ≤ 164 s−1 satisfied the 
EPA standard for clean effluent discharge. It incorporated the selected ML output with 
time-evolution and aggregation kinetics to define sedimentation tank geometry for 
cleaner discharge. The findings from the design-driven optimization recommended a 
flow rate (1000 m3s−1), coefficient of kinematic viscosity (0.841 mm/s), and the required 
detention time (30–60 min) to define the sedimentation tank geometry.

Keywords:  Petroleum effluent, ML algorithm, Time-evolution kinetics, Sedimentation 
tank geometry, Colloidal particles, Coagulation-flocculation

Introduction
Among the challenges facing the human race is the growing demand for energy needed 
for power generation, automobile energy for transportation, food processing, and elec-
tricity. Petroleum serves as feedstock for several consumer goods [1]. The primary 
source of energy around the globe remains petroleum and natural gas. According to the 
Environmental Impact Assessment (EIA) reports, petroleum accounts for 90% of the 
transportation sector’s energy consumed in 2020, which amounts to 23 quadrillion BTU 
[2]. As of 2021, the EIA estimated about 607,000 BPD of refined petroleum is produced 
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across the US state of Texas at Port Arthur [2, 3]. The oil and gas journal reported that 
the world’s largest refinery in India produces 1.2 million barrels per day of refined petro-
leum, with about 940,000 BPD and 350,000 BPD being produced across Venezuela and 
Algeria [2].

In 2020, total US primary energy consumption was equal to about 93 quadrillions BTU 
as reported in the oil and gas journal publication [2, 3]. A recent survey across sub-Saha-
ran Africa reported evidence of the growing demands, and production of refined petro-
leum is spurred by the 650,000 BPD target of the Dangote Refinery in Nigeria currently 
under construction [3]. The adverse effects of the increasing energy demands for petro-
leum products and natural gas account for the production of high volumes of petroleum 
industry effluent, posing a severe threat to source water and environmental pollution.

The petroleum refining and processing industry wastewater is vastly one of the major 
sources of point-blank environmental pollutants across the globe. Petroleum indus-
try effluents (PIE) generated from upstream, midstream, and downstream operations 
account for the pollution of groundwater. PIE contains heavy metals, the presence of 
hydrocarbons with high volatility, and concentrations of hazardous polycyclic aromatic 
compounds [4, 5]. These contaminants have a high tendency to pollute source water, 
leading to a scarcity of quality water available for domestic use. The contaminants can 
also render arable land and water bodies unfit for agricultural production. The contami-
nants such as suspended and dissolved solids are present in the PIE in form of colloidal 
particles [4]. The colloids are extremely small particles with low sedimentation speed. 
They can affect water clarity and transfer pollutants such as phenol present in the PIE 
over long distances into surface water. A high concentration of colloid particles present 
in discharges can affect soil fertility by depleting acidity or alkalinity [6]. Colloidal parti-
cles can also block membranes [7]. Depending on the compositions of the PIE, the col-
loids can also stick soil surfaces together and cause water bodies to become unfit for 
aquatic life.

The effective removal of colloidal particles from PIE is important for environmental 
sustainability. The colloid particles do not settle easily and are difficult to remove until 
coagulants are added to destabilize the particles in the water [8]. Treatment via coag-
ulation-flocculation is the best approach that allows the tiny colloidal particles to stick 
together and agglomerate into heavier floc [8–11] that settles easily and can be removed 
by filters. There are various traditional coagulants have been applied to treat wastewater, 
which includes sulfates and chloride of aluminum and iron [11, 12]. The finding from 
the literature shows that the effectiveness of the sources of coagulants is largely depend-
ent on several factors such as pH modification, mixing speed, the configuration of the 
coagulants, and the physical characteristics of the wastewater [13]. The application of 
aluminum sulfate to wastewater is dispersed by rapid mixing to remove hydrophilic col-
loids that have been tested over time [14–16]. Aluminum sulfate is usually offered at a 
low price per pound [14] and has been proven to be very effective in wastewater treat-
ment operations [16–20]. Various parameters such as the effluent stability and pH bal-
ance will determine the achievable quality of the finished water at optimum levels and 
will be cost-effective [13, 14].

Treatment units must be optimized to reduce costs while increasing efficiency. 
The optimal value of each experimental factor and their levels of significance on the 
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wastewater treatment process can be determined. Several methods of optimization of 
wastewater and effluent treatment processes are available in the literature. This includes 
the application of analytical techniques, response surface methodology (RSM), and 
machine learning (ML) algorithms. The traditional methodology of optimizing more 
than one experimental parameter by taking one factor at a time that is followed by keep-
ing other variables constant is very complicated [21]. The difficulties associated with the 
application of the analytical method of optimizing the operating conditions in the design 
process can be overcome by employing more statistical approaches such as machine 
learning algorithms.

Although the RSM is very instrumental to engineering applications, it is concerned 
with predictions and studying the relationship between variables to create a better 
understanding of how the production system works [20]. The RSM has been applied 
across wastewater treatment operations, modeling, and prediction performances in the 
design of treatment units [20, 21]. It has been shown successful when incorporated with 
batch-type laboratory procedures to estimate optimum settling time, dosage control, 
pH modification, and solid removal rate [20, 22]. One advantage of machine learning 
(ML) is that it reduces the uncertainty associated with determining optimum features 
on which kinetics and mechanism can be based [23]. The kinetics, destabilization mech-
anism [22, 24–26], and optimization of the treatment process are of paramount inter-
est to wastewater researchers and environmental technology experts. The applications 
of RSM have become increasingly common. The RSM also comes with limited robust-
ness and requires repetitive experimental validation based on the design of experiments 
(DOE) [23]. In terms of handling large and complex sets of data, the RSM cannot be 
ascertained with the adequacy of precision [21, 23]. The application of the nonlinear 
ML model has become imperative to industrial wastewater and effluent treatment pro-
cesses. Nonlinear regression in machine learning (ML) includes the decision tree (DT) 
model, support vector machine (SVM), polynomial regression, and random forest (RF) 
among other models. The application of the ML model is complex, whereby a limited 
amount of data is available. One advantage of predicting and interpreting optimum con-
ditions in wastewater treatment operations using ML is due to its adequacy of precisions 
in dealing with large sets of data without having to test reliability using the DOE [23]. 
The machine learning model and algorithm are designed to investigate the predicted 
response convergence levels with the observed values obtained from the experimenta-
tion. The random forest (RF), decision tree (DT), polynomial model (PM), and support 
vector machine (SVM) have been reportedly applied in making comparative prediction 
outcomes in wastewater treatment processes, and their performances were reported to 
be substantially feasible [23].

Sedimentation basin geometry has been estimated via traditional mathematical mod-
eling and empirical perspectives. In the theoretical computation of sedimentation tank 
design, particles are assumed to be spherical. The design of the type 2 sedimentation 
tank takes into account the settling of particles [27] in low concentration with floccula-
tion to increase the strength and mass of floc formed. The addition of chemical coagulant 
forms and causes heavier flocs to settle rapidly [20]. The settling efficiency of suspended 
particles is dependent on tank geometry (depth, tank plan, and area), rather than deten-
tion time [27–29]. The kinetics parameters and time evolution and aggregation of colloid 
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particles are consequential to the design of the treatment unit [20]. In recent times, the 
geometry of the sedimentation tank has been found to depend on temperature [28], ini-
tial and final particle concentrations, and flow velocity [27]. The application of design 
equations based on alternative sedimentation theory [29] enables the design of type 2 
sedimentation tank geometry. It involves the application of the conservation law, New-
ton’s second law, and the effect of particle concentration on the sedimentation rate of a 
suspension of uniform particles [29–31].

In this study, the performances of four machine learning (ML) models for predicting 
optimum operating conditions (pH, dosage, and settling time) required to minimize the 
concentration of the colloid particles causing turbidity in petroleum industry effluent 
(PIE) will be examined. The output of the selected ML will be integrated with the 2nd-
order coagulation-flocculation and time-evolution kinetics using the criterion (turbid-
ity ≤ 10 NTU) for cleaner effluent discharge. The kinetic output will be incorporated 
with the alternative sedimentation theory and adapted for the optimal design of type 
2 sedimentation tank geometry. It is believed the selected ML algorithm will serve as 
a decision-making tool regarding design specifications for environmental sustainability.

Methods
Field sampling and characterization

The authors collected the petroleum industry effluent sample in an attempt to investi-
gate the optimum operating conditions (pH, the dosage of coagulant, and settling time) 
for the treatment of the petroleum industrial effluent to satisfy discharge standards. We 
collected the industrial effluent sample from the facility of the Warri Refinery and Pet-
rochemical Company (WRPC), Ekpan, Nigeria. The conventional coagulant used for 
the PIE treatment consisted of 5 kg of industrial-grade aluminum sulfate (AS) coagulant 
with the specifications Al2(SO4)y.16H2O, MW = 666.42  g/mol. Consisting of 51–60%, 
Al2SO4 and pH (2.5–5.5) were bought from a local vendor Kincel Excel Nigeria Limited 
[14].

The sampling and preservation of the PIE were carried out following the standard 
method of examination of wastewater handling reported in the work of Greenberg 
et al. [32]. The chemical oxygen demand (COD) and biological oxygen demand (BOD) 
contents in the effluent were examined following ASTM and A.P.H.A method of water 
examination [32–34].

Data collection

In this research work, the authors used a coagulation-flocculation experimental dataset 
obtained from a standard nephelometric test procedure for the investigation of the PIE 
treatment process. The dosage of the coagulant was  varied from 0.1  g to 0.5  g/L. The 
pH of the medium was adjusted from 2 to 10 at 1 atm and 28 at °C. The stirring speed 
(120 rpm) was administered on the sample for 2 min and reduced to 10 rpm maintained 
for 20 min. The magnetic stirrer was stopped after 20 min to allow for the studying of 
settling characteristics of the colloidal particles at varying settling time of 3, 6, 10, 20, 
and 30 min. The residual turbidity present in the effluent medium after the coagulation-
flocculation treatment was measured in the nephelometric turbidity unit and converted 
to concentrations (mg/L) using a calibration method. The residual turbidity and removal 
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efficiency were calculated following Eqs. 1–2. The data were stored in a data repository 
ready for the optimization studies following the ML algorithm shown in Fig. 1.

where N0 and Nt are the values of the initial and final turbidities in NTU caused by 
the colloidal particles present in suspension expressed at time t (minutes), C0 (mg/L) is 
the initial concentration of the colloid particles present in the industrial effluent before 

(1)Residual turbidity (NTU) = N0 −Nt

(2)Removal Efficiency(%) =
C0 − Ct

C0
× 100

Fig. 1  Sequence of workflow for ML-driven optimization algorithm
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treatments, and Ci is the concentration of the i-th numbers of colloidal particles causing 
turbidity in the effluent in expressed in (mg/L) at time t (minute).

Experimental data training and testing methodology

In this study, the interactions of three variables pH, coagulant dosage, and settling time 
for the treatment of the PIE were each varied to 5 levels in a total of 125 experimen-
tal runs which were stored in a repository with their corresponding residual turbidities, 
were stored in a repository in the form of a central composite design matrix. The experi-
mental dataset was optimized using several machine learning models that include the 
random forest (RF), decision tree (DT), support vector machine (SVM), and polynomial 
regression model (PM). To overcome the over-fitting problem, 20% of the training data 
were used for validation and 80% for training the model. Additionally, to test the robust-
ness of each model, fivefold cross-validation was used and evaluated using the follow-
ing performance metrics: mean absolute error (MAE), root-mean-square error (Rmse), 
adjusted R-square (R2), and standard deviation (std.). The performances of the models 
used in the study are shown in Table 1. The scikit-learn library written in Python codes 
was used to conduct all ML optimizations, and NCSS-PASS software version 20.0 was 
used for data visualization. In the current study, all ML implementations were executed 
on a system with a 64-bit Intel Core i5 processor, and 12 GB of RAM. The workflow of 
the ML optimization process is shown in Fig. 1.

Development of the machine learning algorithm

The machine learning (ML) optimization algorithm was executed using the scikit-learn 
library in python programming. The sequence of sorting, training, testing, and valida-
tion of the datasets obtained from the pilot scale treatment of petroleum industry efflu-
ent follows the order described in Fig. 2. In the current research, four (4) ML models 
were selected based on their proven reliability in the literature. The optimization proce-
dures were implemented via an iterative approach involving a stepwise process of sorting 
out the experimental data, training and testing datasets, model validation and evalua-
tion using statistical tools. The data train-test procedure for each model follows the steps 
represented in flowchart Fig. 2. The RF model, DT, PM, and SVM models were executed 
using the scikit-learn library in python programming by employing a set of paramet-
ric codes containing special regressor functions. The normalization, splitting, shuffling, 
testing, and fitting of the model and final evaluation, validation metrics and discard of 

Table 1  Fivefold design developed for ML models

Type Output shape Parameter 
numbers

Dense (None, 3) 12

Dense (None, 64) 256

Dense (None, 128) 8320

Dense (None, 64) 8256

Dense (None, 1) 65
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the optimization procedures are summarized in the flowchart in Fig. 1 (“Experimental 
data training and testing methodology” section).

The dataset is divided into a y number of sections/folds, with each fold serving as a 
testing set at some point. In this research work, five fold cross-validation was employed, 
and the dataset is divided into fivefold (y = 5) as presented in Table 1. The first fold was 
used to test the model (20% of a dataset as testing data), while the remaining dataset 
was used the train it (80% of a dataset as training data) in the first iteration (denoted by 
x in the flowchart). The second iteration uses the second fold as the testing set and the 
rest as the training set. This procedure is repeated until each of the fivefold has been 
utilized as a test set. The predictive outputs across all the selected ML models were com-
pared based on statistical tools and model evaluation metrics (MAE, AAD, RMSE, and 
adjusted R2).

Fig. 2  Schematic of the machine learning model algorithm
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where y is the number of folds/section in which the testing data sets were divided to, and 
x denotes the numbers of iterations used to develop the prediction. The table shows that 
the ML model implemented with the machine codes in Python (scikit-learn library) was 
based on fivefold with minimum and maximum parameter number corresponding to 12 
and 8320 with an outshape dense (none, 3) and (none, 128) respectively at varying numbers 
of iterations.

Time‑evolution and particle distribution kinetics theory

Assuming N numbers of colloidal particles are present in suspension per cubic meter, the 
reversible coagulation reaction based on the removal of varying concentrations (C) mg/L of 
the colloids causing turbidity can be represented by the following:

The removal of colloidal particles causing turbidity from water by coagulation-floccula-
tion has been established to follow 2nd-order rate law [27, 35]. The second-order rate of 
removal of 2 N number of particles per cubic meter from the suspension can be described 
by ri = 1

/2
dC

dt
 which is further expressed as follows:

Integrating both sides of Eq. 3, to arrive at the following:

Equation 4 can be rearranged to arrive at the following:

where kt is the coagulation-flocculation constant at the time (t) expressed in (L/g.min), C0 
is the initial concentrations of the colloidal particles present in the water before treatment, 
and Ct represents the concentrations of the studied parameter present in PIE at a particular 
time (t) in minutes. The flocculation period (τ) following the kinetics of the removal of col-
loidal particles causing turbidity in the PIE can be determined by rearranging Eq. 4 above to 
arrive at Eq. 6 [24, 26] given by the following:

Equation 4 can be rewritten to arrive at the following:

Substituting Eq. 6 into Eq. 7 to obtain the following:

N +N ↔ 2C

(3)dC2

dt
= kiC

2

(4)
1

Ct
= kit +

1

C0

(5)ki =

1
Ct

− 1
C0

t

(6)τ =
1
C0k

(7)Ct =
C0

1+ t
(

1

/

C0
K
)
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For a coag-flocculation period (τ), where the total number of particles concentrated per 
cubic meter is halved, the average number of colloidal particles present per cubic meter in 
the petroleum industry effluent at a given time (t). The kinetic expression [22, 24] is given 
by the following:
Nt =

N0
2  and τ → t

2 , such that τ2 = 1
2C0K

Equation 8 can be rewritten so that the general expression for the n-th order of the parti-
cle aggregation [22, 35] is given by the following:

For the monomers or singlet particle in water medium (n = 1), the general expression [22, 
24, 35] for the aggregation of the colloidal particles causing turbidity in PIE becomes the 
following:

The aggregation of the monomers can be rewritten in terms of C0 and ki [22] given by the 
following:

Substituting Eq. 6 into Eq. 11, to obtain the following:

For dimmers or doublet particles substitute (n = 2) into Eq. 9 to obtain the following:

Substituting Eq. 6 into Eq. 13 to obtain the following:

Similarly, in terms of trimmers of triplet particles (n = 3), the aggregation at any given 
time (t) is given by the following:

(8)Nt =
C0

1+ t
τ

(9)
Nn(t)

C0
=

(

kC0t
2

)n−1

(

1+ KC0t
(2)

)n+1

(10)
N1(t)

C0
=

1
(

1+ KC0t
(2)

)1+1

(11)N1(t) =
C0

(

1+ KC0t
(2)

)2

(12)N1 =
C0

(

1+ t
(τ)

)2

(13)N2(t) =
C0

(

KC0t
(2)

)2

(

1+ KC0t
(2)

)3

(14)N2 =

C0

(

t
(τ )

)2

(

1+ t
τ

)3
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The overall or sum of all colloidal particles (n = 4) forming aggregates be it monomers, 
dimmers, and trimmers can thus be expressed by Eq. 16 [22, 35].

The flocculation stirring depth at any applied time was calculated based on the design 
model of Eq. 16 formulated by Argaman and Kaufman et al. [36] for batch experiments 
in terms of the stirring (N) rpm. The model indicated the influence of the velocity gradi-
ent (G) s−1 on hydrodynamics in terms of the mixing speed (rpm) in a substantial floc-
culation process is expressed in Eq. 17 [37].

Empirical theory of sedimentation tank geometry

The optimum flocculation conditions help to understand the unique cause of any sub-
optimal performances associated with the treatment process. The authors applied the 
principle of conservation of mass, the quantity of wastewater containing varying con-
centrations of solids C (mg/L); following the assumptions made by Sadyrbek et al. [38], 
the quantity of water entering the system can be expressed as a product of the density 
and volume of water given by Eq. 18 [31, 38]:

where ρwis density of the heavy particles, ρs is the density of the lighter fractions, 
and w is the volume of the wastewater. Expressing Eq.  18 in terms of change in den-
sity and volume of wastewater before and after treatment mI and mE  to arrive at the 
following:

whereρf is the final density of the water after treatment, ρi is the initial density of water 
before treatment, and w is the volume of the wastewater [35]. Modifying the model 
terms in Eqs. 19 and 20, by taking CI = mI/ρI and CE = mE/ρE and expressing the den-
sity parameters in Eqs. 19 and 20 in terms of concentrations of influent CI (mg/L) and 
effluent CE (mg/L), to arrive at the following:

Substituting Eqs. 21 and 22 into Eq. 18 to arrive at the following:

(15)N3 =

C0

(

t
(τ)

)3

(

1+ t
τ

)4

(16)
∑

Ni =
C0

(

1+ t
τ

)4

(17)G = 0.12(S)1.54

(18)m = �ρ.w = (ρS − ρW )w

(19)mI =
(

ρf − ρI
)

w

(20)mE =
(

ρf − ρE
)

w

(21)ρI = (ρ + CI )

(22)ρE = (ρ + CE)



Page 11 of 24Ugonabo et al. Journal of Engineering and Applied Science          (2022) 69:108 	

Expanding the brackets, to arrive at the following:

Consequently, design equation for the sedimentation basin sludge height [38] becomes 
the following:

The Eq. 26 can be rewritten in terms of sedimentation tank sludge depth H0, influent 
and effluent concentrations CI and CE, kinematic viscosity (v), and theoretical settling 
time (t). The sedimentation depth is divided into two zones, the settling zone and the 
sludge zone. Sadyrbek et  al. [38] gave the thickness of the boundary for laminar flow 
regime is given by 2

√

v.L
µ

 , such that movement around the thin plate can be represented 

by Eq. 27 given by the following:

The height of the settling zone HS becomes the following:

Sedimentation depth depends on flow velocity, assuming the tank is divided into two 
zones, Hs settling zone and sludge zone H0. To determine the depth of the sedimentation 
zone H, we use the following:

The height of settling zone Hs in practice can be obtained as a function of the sedi-
mentation depth in accordance to the research work of Sadyberk et al. [38] given by the 
following:

The width of the sedimentation tank was found to depend on the height of the tank 
and flow through the tank [31, 38] given by the following:

Expressing length of the tank (L) in terms of settling depth H (m), flow velocity U 
(m/s), and concentration profile, to arrive at the following:

(23)mI = (ρ + CI )− (ρ + CE)

(24)mE = [(ρ + CI )− (ρ + CE)]w

(25)mE = (CI + CE)w

(26)H0 =

√

√

√

√

v.t

In
(

CI
CI−CE

)

(27)δ = 5.2 ∗

√

v.L

µ ∗∅

(28)HS = 5.2





ν.L

µ.Lin
�

Ci
CI−CE

�





0.5

(29)H = HS +H0

(30)Hs = 0.12H0

(31)W =
Q

3.6v
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Equation 32 can be used to establish the sedimentation tank length.

Results and discussion
Characteristics of the effluent

The analysis of the PIE characteristics presented in Table  2 shows that the total sus-
pended solids and dissolved solid content present in the industrial effluent correspond 
to 60 mg/L and 10 mg/L. The total suspended solid (TSS) content is > 30 mg/L, indicat-
ing the effluent does not satisfy the criterion for industrial effluent discharge [22, 39, 
40]. This characteristic suggests the presence of residual contamination of the effluent. 
The turbidity composition of the PIE was 220 NTU, corresponding to 517 mg/L in con-
centrations of colloidal particles. The value of the turbidity is > 10 NTU, suggesting the 
PIE does not satisfy the EPA turbidity standard for clean effluent discharge in Ovuoraye 
et al. (2021). Consequently, the authors reasoned that the concentration level of the col-
loid particles causing turbidity in the PIE does not satisfy the baseline for residual col-
loid concentration required for environmental sustainability. The calculated COD-BOD 
ratio of the PIE is equal to 18. This proportion is greater than 3.5, suggesting that the 
inert fraction of the PIE is prevalent, eliminating the option for a biological method of 

(32)L =
H2U

27.04v
In

(

CI

C1 − CE

)

Table 2  Characteristics of the petroleum industrial effluent

Wastewater parameters Reference Values

pH APHA 4500-H 7.08

Turbidity ASTM-D1889 220 NTU

Total dissolved solids ASTM D-1888 10 mg/L

Total suspended solids APHA 2540-C 60 mg/L

Chemical oxygen demand (BOD) APHA 5210-B 266 mg/L

Biological oxygen demand (COD) APHA 5220-D  < 14.3 mg/L

Electrical conductivity, s/cm APHA 2510-C Nil

Zinc ASTM-D4691 0.45 mg/L

Calcium ASTM-D-3511–09 25.64 mg/L

Silicon ASTM-D4691 1.87 ppm

Ammonia ASTM-D1426-03 3.92 mg/L

Arsenic ASTM-D4691 4.82 mg/L

Aluminum ASTM-D4691 9.72 mg/L

Iron ASTM-D4691 1.15 mg/L

Mercury ASTM-D3223-17 1.50 mg/L

Lead ASTM-D4691 0.63 ppm

Nitrate ASTM-D3867-09 5.94 mg/L

Phenol ASTM-D258-06 0.59 mg/L

Nickel ASTM-D4691 0.02 ppm

Sulfate A.P.H.A-4500-SO42 287.70 mg/L

Phosphate A.P.H.A-4500P 0.01 mg/L

Phosphorus ASTM-D515 2.80 mg/L

Copper ASTM-D1688-12 0.04 ppm

Sodium A.P.H.A-3500 0.13 mg/L
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treatment [41]. The finding supports the fact that the coagulation-flocculation treatment 
method is sufficient for treating PIE. The concentration of phenol is ≤ 0.59 mg/L. It can 
also be observed from the effluent characteristics presented in Table 1 that, at the initial 
pH of 7.04, the concentrations of ammonia, sulfate, and nitrate content are ≤ 28 mg/L, 
with calcium, iron, arsenic, mercury, nickel, and lead concentrations ≤ 5 mg/L. It can be 
concluded from the PIE characterization result that the medium contains predominantly 
heavy metals. This outcome confirmed the presence of hydrophilic colloids causing tur-
bidity in the PIE, as a significant factor that affects water clarity [9, 14] with a strong ten-
dency to pose difficulty to unit operations [8, 20]. It can also be inferred from the effluent 
characteristics that further treatment is needed to be administered to improve upon the 
discharge quality for cleaner production that guarantees environmental sustainability.

Machine learning optimization and evaluation metrics

The optimization of the aluminum sulfate-driven coagulation-flocculation treatment 
of the petroleum industry effluent (PIE) was executed via the application of a machine 
learning (ML) algorithm using the scikit-learn library in the python program. In this 
study, a polynomial regression model (PM), random forest (RF), decision tree (DT), and 
support vector machine (SVM) were implemented for the determination of the opti-
mum operating conditions for the removal of colloidal particles precipitating turbidity in 
the PIE. The ML model and algorithm were applied to minimize the residual concentra-
tion of the colloids, causing turbidity in the effluent. The selected ML result was adopted 
considering its proven flexibility and robust application to reducing the uncertainty 
associated with determining optimum features on large datasets [23, 42, 43] from which 
kinetic parameters and design can be based. The statistical metrics across the selected 
models shown in Table 3 were adopted as a criterion to describe the reliability of the ML 
algorithm. The assessment of the ML performance output was based on the minimal 
qualities of the validation metrics identified with their prediction outputs.

Table 3 shows the results obtained across the ML algorithm in terms of the statisti-
cal metrics (adjusted R2, Rmse, AAD, and MAE values). The results from the evaluation 
metrics proved that the SVM yielded MAE = 55, with an AAD value corresponding to 
77.30. The output from this model indicated a very low adequacy of precision, resulting 
in a high Rmse value of 90.72. The findings suggest that the SVM assumptions are prob-
ably violated due to noise [42]. Consequently, the model may require a large amount 
of training and testing datasets to increase the adequacy of the signal-to-noise ratio, 
thereby reducing the associated model constraint [43]. The statistics obtained from the 
PM correspond to MAE = 44.67, with an AAD of 65 and Rmse equal to 44. The model 

Table 3  ML model statistical evaluations using fivefold cross-validation

fivefold validation metrics

ML model MAE RMSE pred-R2 AAD Std. dev

Random forest regression (RF) 26.21 40.92 0.90 27.10 40.97

Decision tree regression (DT) 26.23 41.15 0.81 29.10 41.11

Support vector machine (SVM) 55.10 77.37 0.33 72.29 77.42

Polynomial regression (PM) 44.68 60.89 0.58 50.97 60.92
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statistical output indicated that the error associated with the PM metrics is lower than 
that of the SVM. The output indicates a slight deviation of the predicted values from 
the actual observation obtained from the experimentation, although the PM yielded 
lower statistical error metrics compared to the SVM. The findings also indicated that the 
model assumptions are associated with a lower confidence interval [23, 43]. Hence, the 
predicted outputs are less significant and require some degree of stability [42]. To obtain 
better model stability, the adequacy of precision which measures the signal-to-noise 
ratio of the model [20] can be improved upon by increasing the magnitude of training 
datasets, thereby reducing constraints and complexity associated with the lack of fit [23, 
42]. The outputs from the SVM and PM performance indicated a poor correlation of 
their predicted output with the actual observation practicable. Consequently, optimiza-
tion analysis based on the SVM and PM will be ignored due to the low reliability result-
ing from their constraint variance.

However, the DT model recorded an MAE of 26.23 and an Rmse of 41.10. The adjusted 
R2 of the DT corresponds to 0.81. The evaluation metrics of the DT model indicated a 
better performance output than the SVM and PM. The MAE value equal to 26.21, and 
an Rmse of 40.90 was recorded for the RF model with an adjusted R2 corresponding to 
0.90. It can be inferred from the outputs of the DT and RF model that the statistical met-
rics associated with both ML were ≤ 42 indicating more reliable adequacy of precision, 
and a higher confidence level is associated with the performance output of both ML [23, 
43, 44].

A comparative analysis of the statistical metrics across the selected machine learning 
models shows that lower Rmse, AAD, and MAE outputs correspond to better perfor-
mance of the ML algorithm [23, 44]. Lower values of the DT and RF model statistical 
metrics can be attributed to a higher degree of precision [42, 44] confirming there is a 
probability of a higher confidence level associated with the RF and DT model assump-
tion [20, 42, 43]. The ML evaluation metrics proved that the DT and RF model fits the 
ML optimization algorithm compared to SVM and PM. It can be concluded from the 
model summary and statistical outputs presented in Table  3 that the performance of 
the RF model yielded the most significant prediction outputs with minimal errors and 
improved validation metrics. The reliability of the RF model performance is consistent 
with the findings reports from the research work of Dong et al. [44] and Hong et al. [43].

Optimization process and model performance validation

The objective of the ML optimization is to minimize the residual colloidal particles caus-
ing turbidity in the PIE at the predicted optimum conditions (pH, dosage, and settling 
time). The validation of the ML model performance was expressed in terms of the stand-
ard deviation (std) of the predicted residual concentration from the actual observation 
practicable.

Table 4 shows the variation of the predicted outputs from the ML algorithm with the 
actual observation obtained from experiments. The results proved that the performances 
of the selected machine learning vary intermittently across the predictive capacities of 
the models implemented with the ML algorithm shown in (Fig. 2) in “Development of 
the machine learning algorithm” section.
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It can be observed from Table  4 that the validation of the predicted optimum con-
ditions across the selected ML models was consistent with experimentally determined 
optimum values following the jar test procedure. The experimentally determined opti-
mum operating conditions correspond to pH of 10, the dosage of 0.1 g/L, and a settling 
time of 30 min, respectively, while the actual observation translates to residual turbid-
ity of 9 NTU. The results presented in Table 4 confirmed the predicted residual turbid-
ity (NTU) and colloid concentration (mg/L) obtained at the optimum conditions vary 
across selected models implemented with the ML algorithm. The authors reasoned that 
the disparity in the predicted residuals across the ML might be due to the relative differ-
ences observed across the model evaluation statistics.

The plots in Fig. 3 were drawn to show the distribution of the predicted outputs of the 
ML versus actual observation obtained from coagulation-flocculation experimentation. 
Figure 3 a–d shows the correlation between the predictive performances of the selected 
ML model versus the actual observation practicable.

Figure 3 a–b represents the predictive outcome of the RF and DT model. The outline 
of the plots indicated a normal distribution of the predicted outputs along the regression 
line. The findings confirmed that the outputs from the RF and DT models correlated 
with the actual observation practicable. The results transcend to adjusted R2 values of 
0.90 and 0.80, respectively. The performance of the models confirmed that a minimal 
magnitude of statistical errors and standard deviation is associated with the model prob-
ability [20, 23]. The predictive capacities of the RF and DT model recorded residual tur-
bidity of 10 NTU and 14 NTU, respectively. The predicted outputs transcend to modeled 
concentrations of 24 mg/L and 33 mg/L of residual colloid particles in the PIE after the 
coagulation-flocculation treatment. The modeled performances translate to the removal 
efficiency of 95%, and 93%, corresponding to standard deviations of 40.97 and 41.11 for 
the RF and DT, respectively.

Figure 3 c–d shows the correlations of the predicted outputs of the PM and SVM 
versus the actual observation obtained from experimentation. The outline of Fig.  3 
c–d indicated a weak correlation between the actual observations practicable and 
predicted outputs obtained from the PM and SVM. The plots in Fig. 3 c–d indicated 
a considerable deviation in their predicted residuals from the normal distribution 
line. The model output corresponds to low adjusted R2 of 0.58 and 0.33 for the SVM 
and PM, respectively. The PM and SVM performance outputs translate to predicted 
residual turbidities of 43 NTU and 159 NTU, respectively, with a corresponding mod-
eled concentration of 101  mg/L and 374  mg/L of the colloidal particle at predicted 

Table 4  ML model performance in terms of predicted optimum

ML model Dosage
(g/L)

pH Settling time
(Minutes)

Residual conc
(mg/L)

Residual 
turbidity
(NTU)

Actual observation 0.1 10 30 21 9

Support vector machine 0.1 10 30 374 159

Random forest 0.1 10 30 24 10

Decision tree 0.1 10 30 33 14

Polynomial regression 0.1 10 30 101 43
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optimum conditions pH (10), dosage (0.1  g/L), and settling time (30 min). The pre-
dicted residuals of the PM and SVM transcend to a removal efficiency of 54% and 
45% indicating standard deviations of 60.92 and 72.42 from the actual observation 
practicable. The results proved that the PM and SVM performance yielded relatively 
low removal efficiencies and translates to residual turbidity ≥ 40 NTU. The outcome 
suggests the predicted outputs do not align well with the actual observation, resulting 
from the low degree of stability. Consequently, the model performance does not guar-
antee residual concentrations of colloidal particles for clean effluent discharge.

Analysis of Fig.  4 shows the hierarchy-based overall performance evaluation of 
the selected ML model applied to minimize residual turbidity following the treat-
ment of the petroleum industry effluent (PIE). It can be observed from Fig. 4 that the 

Fig. 3  a Comparisons between experimental based output (actual) versus random forest (RF) model 
predictions, b comparisons between experimental-based output (actual) versus decision tree (DT) model, 
c polynomial regression model (PM), and d support vector machine (SVM)
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predictive capacities across the selected ML algorithm used for the interpretation of 
the AS-driven coagulation-flocculation treatments of the PIE in terms of their perfor-
mances and evaluation statistics follow this respective order:

The criterion used for the ML optimization output was based on the maximum resid-
ual turbidity (≤ 10 NTU) recommended by the environmental protection agency (EPA) 
for clean water discharge [24]. The results based on the selected criterion showed that 
the SVM (374 mg/L, 43 NTU), PM (101 mg/L, 43 NTU), and DT (33 mg/L, 14 NTU) 
do not satisfy the EPA standard for industrial effluent discharge. The RF model yielded 
the best performance with a minimum residual that satisfied the EPA criterion (turbid-
ity ≤ 10NTU) for clean discharge. Consequently, the authors reasoned that the predicted 
residual concentration of 24 mg/L obtained from the RF model is substantially feasible 
to achieve environmental sustainability.

However, the predicted optimum pH of 10 is consistent with the results reported with 
the application of AS in the treatment of cosmetics wastewater [14]. The maximum 
removal performance transcends to the reduction of the turbidity present in PIE from 
an initial 220 NTU to a residual of turbidity ≤ 10 NTU. The removal efficiency tran-
scends 210 NTU of turbidity removed from the PIE. This optimum removal (210 NTU) 
recorded in the present study is consistent with the results (200 NTU) removed from 
brewery industry wastewater using aluminum sulfate reported in previous research work 
[13]. The predicted optimum dosage (0.1 g/L) is considerably lesser than 0.5 g/L, sug-
gesting the finished effluent is stable, with a negligible tendency to blind filters [26, 45]. 
The optimum dosage recorded in the present study is consistently lesser than 2000 mg/L 
reported by Elsayed et al. [46]. The optimization results translate to a reduction of the 
colloidal particles present in PIE from an initial concentration of 520 mg/L to a residual 

RF > DT > PM > SVM

Fig. 4  Statistical evaluation metrics across the selected ML algorithm



Page 18 of 24Ugonabo et al. Journal of Engineering and Applied Science          (2022) 69:108 

of 24 mg/L at the predicted operating conditions. There is currently no threshold speci-
fied for colloid counts’ industrial discharge. The authors reasoned that the value of the 
residual turbidity is ≤ 10 NTU is the maximum recommended by the EPA [39] for envi-
ronmentally viable effluent discharge. The predicted residual (24 mg/L) corresponding 
to 10 NTU recorded at optimum dosage of 0.1 g/L indicates that the predicted colloid 
concentration for the finished PIE is feasible for clean water discharge without compro-
mising coagulant wastage and environmental sustainability. The predicted pH of 10 is 
prevalently alkaline [14, 20], and floc reached optimum size [13, 18, 37]. The optimum 
settling time (30 min) was consistent with the results reported by Nomantodazo et al. 
[15] and Ovuoraye et al. [20].

Coagulation‑flocculation kinetics evaluation and validation of ML model performance

Microscale kinetics model validation proposed for the removal of colloidal particles 
from suspension by coagulation was based on the perikinetic model [20, 22, 24]. The 
values of the C0 = 520 mg/L, and predicted values of residual concentration (Ct), at opti-
mum settling time t = 30 min were obtained from the ML optimization result presented 
in Table  3 (see “Optimization process and model performance validation” above) and 
were substituted into Eq. 5 to obtain values for rate constant kt (L/g.min).

The aluminum sulfate-driven coagulation-flocculation outcome based on the 
selected ML performance is shown in Fig. 5. The kinetics results confirmed that, at the 
second-order coagulation-flocculation rate, constant kt increased as the residual colloid 
concentrations after the treatment decreased. The rate constant k = 1.33 × 10−3 L/g.min 
and 4.32 × 10−3 L/g.min were recorded for the RF (std. = 27.10) and DT (std. = 29.00), 
while rate constants and 9.52 × 10−4 L/g.min and k = 5.8 × 10−5 L/g.min were recorded 
for the PM (60.90) and SVM (std. = 77.42), respectively. The rate constant decreased 
consistently from k = 1.33 × 10−3 L/g.min to k = 5.8 × 10−5 L/g.min as the AAD metrics 
increased from 27 to 120. The outcome indicates that the higher the rate constant, the 
more stability of the finished water to meet the requirement for effluent discharge. The 

Fig. 5  Modeled coagulation-flocculation rate constant across selected ML
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maximum value of k = 1.33 × 10−3 L/g.min was obtained at the minimum concentration 
of 24 mg/L, corresponding to 10 NTU residual turbidity.

The authors reasoned that the higher value of rate constants conforms to the better 
performance of the ML model. The best performance was reported for the RF model 
corresponding to residual 24  mg/L. The least value of k = 5.8 × 10−5 L/g.min was 
obtained for the SVM. The output of the RF proved that 0.1 g/L of the aluminum sulfate 
(AS) aligns well with the colloidal particles present in the water [14, 20], inducing the 
very tiny colloids to floc into aggregates. At a dosage > 0.1 g/L, there is a tendency for AS 
to cause scaling in the medium [14, 45]. The findings from the predictive capacity of the 
RF model suggest superb aggregation, and mild floc breakage occurred [13, 20] leading 
to a low residual ≤ 10 NTU, which accounted for the high removal efficiency, translating 
to 95% efficiency of removal. The findings proved hierarchy of the performance output 
of the ML algorithm is consistent with the kinetics results.

Colloidal particle aggregation kinetics and distribution analysis

The optimization and kinetics reports confirmed the outputs of the RF model as most 
significant for the design specification. The influence of mixing intensity (G) is a key 
factor in the acknowledgment of the design [36, 37, 45]. The implications of G cut 
across low sensitivity to operational upsets and eventually its contributions to the dis-
appearance of the primary particles [37]. Investigating the effect of shear and mixing 
intensity on the aggregation of the colloidal particles that transcend to the removal effi-
ciency ≥ 90% and minima residual ≤ 10 NTU, is largely dependent on the understanding 
of the hydrodynamics of the floc formation and aggregation process. The values of G 
(s−1) were evaluated by substituting the values of the slow and high stirring speeds (rpm) 
used for the coagulation experiment into model Eq. 17.

The results obtained showed that slow mixing (10 rpm) corresponds to G = 4.16  s−1 
and 167 s−1 for high stirring (120 rpm). The range of values of G has a direct bearing on 
the design of the clarifier/flocculation unit [20, 45]. The analysis of the range of values 
of G confirmed that the degree of mixing effect for the removal of the colloidal particles 
laid in the regime 4.16 s−1 ≤ G ≤ 167 s−1. The outcome suggests the velocity gradient falls 
into the moderate mixing regime [45], indicating that the floc formed was heavy [37, 45], 
and the flocculation process was flexible enough to keep the floc out of suspension [9, 
13]. The optimization output from the RF algorithm indicated the mixing regime was 
effective in the removal of colloidal particles from the PIE [48]. This outcome suggests 
that the mixing promoted floc formation, which translates to residual turbidity (≤ 10 
NTU) and corresponds to 95% removal efficiency due to a small shear force [22, 24]. The 
reduced shearing of the floc probably resulted in optimum coagulation [20, 24] yielding 
24 mg/L of residual colloids.

However, the time evolution and aggregation distribution [22, 24] of the concentra-
tion number of colloidal particles causing turbidity in the PIE were expressed in terms 
of monomers, dimmers, trimmers, and the cumulative of all colloidal particles per cubic 
meter [22]. The values of the corresponding concentration number of the colloidal par-
ticles causing turbidity in the industrial effluent were derived following the analysis of 
Eqs. 11,  12, 13, 14, 15. The value of flocculation period (0.83 min) was evaluated from 
Eq.  6. The concentration number of colloidal aggregates  [49] (N1, N2, N3, and ƩNi) 
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formed per cubic meter [22] was evaluated by substituting the values of C0 = 520 mg/L 
and kt = 3.2 × 10−3 L/mg.min obtained from the predicted rate constant of the RF algo-
rithm into Eqs. 12, 13, 14, 15, 16.

The time evolution and distribution of the colloidal particle per cubic meter under the 
influence of the mixing regime (4.16 s−1 ≤ G ≤ 167 s−1) is shown in Fig. 6. The trend of 
the distribution curves in Fig. 6 showed that the monomer, dimmer, and trimmer class 
colloid particles floc into aggregates rapidly as the flocculation period increased beyond 
10 min. The curvatures of the red and black curves indicated the cumulative number of 
particles (ƩN), and the monomers class colloid particles decreased rapidly at the floc-
culation period of ≤ 10 min. This outcome indicated the good overall performance of the 
AS sweep-flocculation kinetics [24]. The AS coagulant under the slow hydrodynamics 
(4.16 s−1) captured the cumulative and monomer class colloids, reducing turbidity to 9 
NTU, with impressive stability ≤ 10 mg/L, and transcends to 95% removal efficiency. The 
findings are consistent with the results reported in P. S. Nomthandazo et al. [15], Ovuor-
aye et al. [20], and Nadia et al. [10].

The slope of the curves in Fig. 6 also indicated that the aluminum sulfate sweep floc-
culation captured considerable quantities of the dimmer and trimmer classes of colloi-
dal particles present in the medium, resulting in lesser residuals. However, the kinetic 
was slow, with the flocculation period higher than the optimal (30 min). These results 
confirmed the destabilization deteriorated under the dominant kinetic switch to higher 
hydrodynamics [22] resulting from higher stirring (G = 167  s−1). The findings sug-
gest increasing the residence time beyond 30 min will minimize fine counts present in 
the system. The kinetic results confirmed the optimization report obtained with the 
machine learning model.

Machine learning optimized sedimentation tank specifications

The optimal performance of the AS-driven coagulation treatment of the PIE was incor-
porated into the design of the type 2 sedimentation tank. The sedimentation tank was 
assumed to be a rectangular structure. The aggregation kinetics proved that the range 
of the theoretical detention time t = 30–60 min (Fig. 4) is feasible [34], allowing for the 
colloidal fines count to settle. The high-flow velocity drag to the flow deflection of the 

Fig. 6  Time-evolution aggregation and distribution of colloidal particles at predicted optimum
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sedimentation zone through the density of water can be expressed via the Prandtl num-
ber [29, 38].

The dimensions of the tank geometry were deduced following the expression of 
the mass concentration of the PIE in terms of initial concentration before treatment 
CI = 520 mg/L and modeled concentration CE = 23 mg/L. For a mixed liquid (suspension) 
with varying density, the model equation is expressed in terms of the law of conservation 
of mass and arbitrary fixed over-flow rate [33]. The inlet flow velocity (U = 0.048 cm/s) 
was set at a volumetric capacity Q (1000 m3/s). The coefficient of viscosity of the effluent 
at 28 °C is taken to be 0.84 mm2/s and the value for specific gravity (1.002) at Re < 4 [29].

The theoretical computation of the tank depth H0 = 1349.3 = 1.30  m was calculated 
using Eq. 26. The sludge height Hs = 162 mm was obtained by substituting the value of 
H0 into Eq. 30. The total depth of the sedimentation tank H = 1151 mm and correspond-
ing to 1.20  m was evaluated from Eq.  29. The theoretical length of the sedimentation 
tank L = 5417 mm corresponding to 5.40 m was obtained from Eq. 32. The theoretical 
width of the tank W = 1.53 m was evaluated from Eq. 31. The summary of the theoretical 
sedimentation tank geometry is presented in Table 5. The finding indicates a practical 
approach to determining the sizing for an economical treatment unit [47].

Conclusions
This study aimed at optimization for the removal of colloidal particles, causing turbid-
ity from PIE to guarantee cleaner effluent discharge via the machine learning algorithm. 
The performance of the selected ML model (DT, SVM, PM, and RF) was compared using 
the criterion (≤ 10 NTU) to determine the optimum operating conditions. The train 
and test datasets were derived from the coagulation-flocculation experiment. The pre-
dictive outcomes were compared with the experimentally determine optimum practi-
cable. The results shown at optimum operating conditions (pH 10, dosage of 0.10 g/L, 
and settling time of 30 min) correspond to residual turbidity ≤ 10 NTU and translate to 
23 mg/L concentration. The selected RF regression yielded the most significant outcome 
with MAE, AAD, and Rmse ≤ 40.10. The removal efficiency decreased significantly as 

Table 5  Machine learning optimized sedimentation tank dimensions

RF model
turbidity

Dosage
(g/L)

pH Settling time
(Minutes)

Residual 
concentration
(mg/L)

Residual
(NTU

Optimum conditions 0.1 10 30 24 10

Theoretical sedimentation tank 
geometry

Value

Number of unit 1.00

Tank height (H) 1.20 m

Sludge height (H0) 1.30 m

Height of settling zone (HS) 0.16 m

Tank width (W) 1.50 m

Length of tank (L) 5.40 m

Tank surface area (A) 8.10 m2

Volumetric flow rate (Q) 1000 m3/s

Detention time (t) 3600 s



Page 22 of 24Ugonabo et al. Journal of Engineering and Applied Science          (2022) 69:108 

the values of statistical metrics increased. The modeled kinetic rate constant established 
that the removal of colloidal particles occurred via a sweep flocculation corresponds 
to 95% removal efficiency. The predictive outputs of the RF model were incorporated 
to define the type 2 sedimentation tank geometry. It can be inferred from the finding 
that the predictive capacity of RF is the most reliable. The modeled output confirmed an 
empirical detention time (60 min) is required to reduce the turbidity in the PIE from 220 
to 9 NTU. The finding recommended the ML algorithm as a potential approach to opti-
mizing effluent treatment. The modeled results incorporated into the design equations 
yielded tank specifications corresponding to a length of 5.40 m, a width of 1.50 m, and 
a height of 1.20 m will guarantee water recovery with a sludge height of 0.16 m and can 
be adopted for the design of settling units to guarantee discharged for environmental 
sustainability.
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