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Introduction
Nowadays, groundwater has become an important source of water in Egypt. Water crises 
and quality are serious concerns in a lot of countries, particularly in arid and semi-arid 
regions where water scarcity is widespread, and water quality assessment has received 
minimal attention [3, 9]. So, it is important to assess the quality of water to be used, 
especially for drinking purposes.

Poor hydrogeological conditions have been encountered causing adverse impacts on 
threatening the adjacent groundwater aquifer under the Ismailia Canal. The groundwater 
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quality degradation is due to rapid urban development, industrialization, and unwise 
water use of agricultural water, either groundwater or surface water.

As groundwater quality is affected by several factors, an appropriate study of 
groundwater aquifers characteristics is an essential step to state a supportable utili-
zation of groundwater resources for future development and requirements [11, 12]. 
It is important that hydrogeochemical information is obtained for the region to help 
improving the groundwater management practices (sustainability and protection from 
deterioration) [17].

Many researchers have paid great attention to groundwater studies. In the current 
study area, the hydrogeology and physio-hydrochemistry of groundwater in the current 
study area had been previously discussed by El Fayoumy [15] and classified the water to 
NaCl type; Khalil et al. [27] stated that water had high concentration of Na, Ca, Mg, and 
K. Geriesh et  al. [21] detected and monitored a waterlogging problem at the Wadi El 
Tumilate basin, which increased salinity in the area. Singh [34] studied the problem of 
salinization on crop yield. Awad et al. [7] revealed that the groundwater salinity ranges 
between 303 ppm and 16,638 ppm, increasing northward in the area.

Various statistical concepts were used to understand the water quality parameters 
[24, 28, 35].

Armanuos et al. [4] studied the groundwater quality using WQI in the Western Nile 
Delta, Egypt. They had generated the spatial distribution map of different parameters 
of water quality. The results of the computed WQI showed that 45.37% and 66.66% of 
groundwater wells falls into good categories according to WHO and Egypt standards 
respectively.

Eltarabily et al. [19] investigate the hydrochemical characteristics of the groundwater 
at El-Khanka in the eastern Nile Delta to discuss the possibility of groundwater use for 
agricultural purposes. They used Pearson correlation to deduce the relationship between 
13 chemical variables used in their analysis. They concluded that the groundwater is 
suitable for irrigation use in El-Qalubia Governorate.

The basic goal of WQI is to convert and integrate large numbers of complicated data-
sets of the physio-hydrochemistry elements with the hydrogeological parameters (which 
have sensitive effect on the groundwater system) into quantitative and qualitative water 
quality data, thus contributing to a better understanding and enhancing the evaluation 
of water quality [38]. The WQI is calculated by performing a series of computations 
to convert several values from physicochemical element data into a single value which 
reflects the water quality level’s validity for drinking [16].

Based on the physicochemical properties of the groundwater, it should be appraised 
for various uses. One can determine whether groundwater is suitable for use or unsafe 
based on the maximum allowable concentration, which can be local or international. 
The type of the material surrounding the groundwater or dissolving from the aquifer 
matrix is usually reflected in the physicochemical parameters of the groundwater. These 
metrics are critical in determining groundwater quality and are regarded as a useful tool 
for determining groundwater chemistry and primary control mechanisms [18].

The objective of this research is to assess suitability of groundwater quality of 
the study area around Ismailia Canal for drinking purpose and generating WQI 
map to help decision-makers and local authorities to use the created WQI map for 
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groundwater in order to avoid the contamination of groundwater and to facilitate in 
selection safely future development areas around Ismailia Canal.

Description of study area

The study area lies between latitudes 30° 00′ and 31° 00′ North and longitude 31° 00′ 
and 32° 30′ East. It is bounded by the Nile River in the west, in the east there is the 
Suez Canal, in the south, there is the Cairo-Ismailia Desert road, and in the north, 
there are Sharqia and Ismailia Governorates as shown in Fig. 1. Ismailia Canal passes 
through the study area. It is considered as the main water resource for the whole East-
ern Nile Delta and its fringes. Its intake is driven from the Nile River at Shoubra El 
Kheima, and its outlet at the Suez Canal. At the intake of the canal, there are large 
industrial areas, which include the activities of the north Cairo power plant, Amyeria 
drinking water plant, petroleum companies, Abu Zabaal fertilizer and chemical com-
pany, and Egyptian company of Alum. Ismailia Canal has many sources of pollution, 
which potentially affects and deteriorates the water quality of the canal [22].

The topography plays an important role in the direction of groundwater. The ground 
level in the study area is characterized by a small slope northern Ismailia Canal. It 
drops gently from around 18 m in the south close to El-Qanater El-Khairia to 2 amsl 
northward. While southern Ismailia Canal, it is characterized by moderate to high 
slope. The topography rises from 10 m to more than 200 m in the south direction.

Fig. 1 Map of the study area and location of groundwater wells
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Geology and hydrogeology

The sequence of deposits rocks of wells was investigated through the study of hydro-
geological cross-section A-A′ and B-B′ located in Fig. 2a, b [32]. Section B-B′ shows 
that the study area represents two main aquifers that can be distinguished into the 
Oligocene aquifer (southern portion of the study area) and the Quaternary aquifer 
(northern portion of the study area). The Oligocene aquifer dominates the area of 
Cairo-Suez aquifer foothills. The Quaternary occupies the majority of the Eastern 
Nile Delta. It consists of Pleistocene sand and gravel. It is overlain by Holocene clay. 
The aquifer is semi-confined (old flood plain) and is phreatic at fringes areas in the 
southern portion of eastern Nile Delta fringes. The Quaternary aquifer thickness var-
ies from 300 m (northern of the study area) to 0 at the boundary of the Miocene aqui-
fer (south of the study area). The hydraulic conductivity ranges from 60 m/day to 100 
m/day [8]. The transmissivity varies between 10,000 and 20,000  m2/day.

Groundwater recharge and discharge

The main source of recharge into the aquifer under the study area is the excess drain-
age surplus (0.5–1.1 mm/day) [29], in addition to the seepage from irrigation system 
including Damietta branch and Ismailia Canal.

Groundwater and its movements

In the current research, it was possible to attempt drawing sub-local contour maps 
for groundwater level with its movement as shown in Fig. 3. Figure 3 shows the main 
direction of groundwater flow from south to north. The groundwater levels vary 
between 5 m and 13 m (above mean sea level). The sensitive areas are affected by 
(1) the excess drainage surplus from the surface water reclaimed areas which located 
at low lying areas; (2) the seepage from the Ismailia Canal bed due to the interac-
tion between it and the adjacent groundwater system, and (3) misuse of the irrigation 
water of the new communities and other issues. Accordingly, a secondary movement 
was established in a radial direction that is encountered as a source point at the low-
lying area (Mullak, Shabab, and Manaief ). Groundwater movement acts as a sink at 
lower groundwater areas (the northern areas of Ismailia Canal located between km 80 
to km 90) due to the excessive groundwater extraction. The groundwater level reaches 
2 m (AMSL). The groundwater levels range between + 15 m (AMSL) (southern por-
tion of Ismailia Canal and study area near the boundary between the quaternary and 
Miocene aquifers).

Methods
The assessment of groundwater suitability for drinking purposes is needed and 
become imperative based on (1) the integration between the effective environmental 
hydrogeological factors (the selected 9 trace elements Fe, Mn, Zn, Cu, Pb, Co, Cr, Cd, 
Al) and 11 physio-chemical parameters (major elements of the anions and cations pH, 
EC, TDS, Na, K, Ca, Mg, Cl,  CO3,  SO4,  HCO3); (2) evaluation of WQI for drinking 
water according to WHO [36] and drinking Egyptian standards limit [14]; (3) GIS is 
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Fig.2 a Geology map of the study area. b Hydrogeological cross‑section of the aquifer system (A‑A′) and 
geological cross‑section for East of Delta (B‑B′)
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used as a very helpful tool for mapping the thematic maps to allocate the spatial dis-
tribution for some of hydrochemical parameters with reference standards.

The groundwater quality for drinking water suitability is assessed by collecting 53 
water samples from an observation well network covering the area of study, as seen 
in Fig. 1. The samples were collected after 10 min of pumping and stored in properly 
washed 2 L of polyethylene bottles in iceboxes until the analyses were finished. The 
samples for trace elements were acidified with nitric acid to prevent the precipitation 
of trace elements. They were analyzed by the standard method in the Central Lab of 
Quality Monitoring according to American Public Health Association [2].

The water quality index is used as it provides a single number (a grade) that 
expresses overall water quality at a certain location based on several water quality 
parameters. It is calculated from different water parameters to evaluate the water 
quality in the area and its potential for drinking purposes [13, 25, 31, 33]. Horton [23] 
has first used the concept of WQI, which was further developed by many scholars.

The first step of the factor analysis is applying the correlation matrix to measure the 
degree of the relationship and strength between linearly chemical parameters, using 
“Pearson correlation matrix” through an excel sheet. The analyses are mainly based 
on the data from 53 wells for physio-chemical parameters for the major elements and 
trace elements. Accordingly, it classified the index of correlation into three classes: 95 
to 99.9% (very strong correlation); 85 to 94.9% (strong correlation), 70 to 84.9% (mod-
erately), < 70% (weak or negative).

Fig. 3 Groundwater flow direction map in the study area (2019)
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Equation (1) [4] is used to calculate WQI for the effective 20 selected parameters of 
groundwater quality.

In which Qi is the ith quality rating and is given by equation (2) [4], Wi is the ith rela-
tive weight of the parameter i and is given by Eq. (3) [4].

Where Ci is the ith concentration of water quality parameter and Si is the ith drink-
ing water quality standard according to the guidelines of WHO [36] and Egypt drinking 
water standards [14] in milligram per liter.

Where Wi is the relative weight, wi is the weight of ith parameter and n is the number 
of chemical parameters. The weight of each parameter was assigned (wi) according to 
their relative importance relevant to the water quality as shown in Table 2, which were 
figured out from the matrix correlation (Pearson correlation, Table  1). Accordingly, it 
was possible assigning the index for weight (wi). Max weight 5 was assigned to very 
strong effective parameter for EC, K, Na, Mg, and Cl; weight 4 was assigned to a strong 
effective parameter as TDS,  SO4; 3 for a moderate effective parameter as Ca; and weight 
2 was assigned to a weak effective parameter like pH,  HCO3,  CO3, Fe, Cr, Cu, Co, Cd, Pb, 
Zn, Mn, and Al. Equation (2) was calculated based on the concertation of the collected 
samples from representative 53 wells and guidelines of WHO [36] and Egypt drinking 
water standards [14] in milligram per liter. This led to calculation of the relative weight 
for the weight (Wi) by equation (3) of the selected 20 elements (see Table 2). Finally, Eq. 
(1) is the summation of WQI both the physio-chemical and environmental parameters 
for each well eventually.

The spatial analysis module GIS software was integrated to generate a map that 
includes information relating to water quality and its distribution over the study area.

Results and discussion
The basic statistics of groundwater chemistry and permissible limits WHO were 
presented in Table 3. It summarized the minimum, maximum, average, med. for all 
selected 20 parameters and well percentage relevant to the permissible limits for each 
one; the pH values of groundwater samples ranged from 7.1 to 8.5 with an average 
value of 7.78 which indicated that the groundwater was alkaline. While TDS ranged 
from 263 to 5765 mg/l with an average value of 1276 mg/l. Sodium represented 
the dominant cation in the analyzed groundwater samples as it varied between 31 
and 1242 mg/l, with an average value of 270 mg/l. Moreover, sulfate was the most 
dominant anion which had a broad range (between 12 and 1108 mg/l), with an aver-
age value of 184 mg/l. This high sulfate concentration was due to the seepage from 
excess irrigation water and the dissolution processes of sulfate minerals of soil com-
position which are rich in the aquifer. Magnesium ranged between 11 and 243 mg/l, 
with an average value of 43 mg/l. The presence of magnesium normally increased the 

(1)WQI = � Qi x Wi

(2)Qi = (Ci/Si) x 100

(3)Wi = wi/
n

i=0
wi
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alkalinity of the soil and groundwater [10, 37]. Calcium ranged between 12 and 714 
mg/l with a mean value of 119 mg/l. For all the collected groundwater samples, cal-
cium concentration is higher than magnesium. This can be explained by the abun-
dance of carbonate minerals that compose the water-bearing formations as well as ion 
exchange processes and the precipitation of calcite in the aquifer. Chloride content 
for groundwater samples varies between 18 and 2662 mg/l with an average value of 
423 mg/l. Carbonate was not detected in groundwater, while bicarbonate ranged from 
85 to 500 mg/l. Figures 5, 6, and 7 were drawn to show the extent of variation between 
the samples in each well.

Piper diagram [30] was used to identify the groundwater type in the study area as 
shown in Fig. 4. According to the prevailing cations and anions in groundwater sam-
ples Na–Cl water type in the southern area due to salinity of the Miocene aquifer, 
Mg–HCO3 water type in the northern area due to seepage from Ismailia Canal and 
excess of irrigation water and there is an interference zone which has a mixed water 
type between marine water from south and fresh water from north.

Atta, et al. [5] revealed that the abundance of Fe, Mn, and Zn in the groundwater 
is due to geogenic aspects, not pollution sources. Khalil et al. [26] and Awad et al. [6] 
revealed that the source of groundwater in the area is greatly affected by freshwater 
seepage from canals and excess irrigation water which all agreed with the study.

Table 2 Limits of WHO, Egyptian standards and assigned weight, and relative for chemical 
parameters

Parameters WHO desirable 
limit (mg/l) (a)

WHO allowable 
limit (mg/l) (b)

Egypt limit (mg/l) Weight (wi) Relative 
weight  
(Wi)

(wi) (Wi)

EC 1000 (mmhos) 1500 (mmhos) – 5 0.082

TDS 500 1000 1000 4 0.066

pH 6.5–8.5 8.5 6.5–8.5 2 0.033

K 10 12 12 5 0.082

Na 200 200 200 5 0.082

Ca 75 75 200 3 0.049

Mg 50 50 150 5 0.082

HCO3 250 500 – 2 0.033

CO3 100 100 – 2 0.033

Cl 250 250 250 5 0.082

SO4 250 250 250 4 0.066

Fe 0.3 1 0.3 2 0.033

Mn 0.05 0.1 0.4 2 0.033

Cd 0.005 0.1 0.003 2 0.033

Zn 5 5 3 2 0.033

Pb 0.01 0.01 0.01 2 0.033

Cr 0.05 0.05 0.05 2 0.033

Co 0.05 0.05 1 2 0.033

Cu 1 2 2 2 0.033

Al 0.2 0.2 0.2 2 0.033

∑wi = 61 ∑Wi = 1
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Table 3 and Fig. 8 showed that 100% of wells for EC were assigned at desirable lim-
its. 43.79% of wells for TDS were assigned at the desirable limit and 27.05% of them at 
the undesirable limits. While pH, 81.25% were assigned at the desirable limit. The per-
centage of wells for the aerial distribution of cations concentration assigned at desir-
able limits ranged between 64.6% for K, 85.45% for Mg, 68.73% for Na, and 70.8% for 
Ca. While the percentage of wells for the aerial distribution of cations concentration 

Fig. 4 Piper trilinear diagram for the groundwater samples

Fig. 5 Concentration of selected physio‑chemical parameters
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assigned at the undesirable limits ranged between 8.3% for Mg, 31.27% for Na, 14.6% 
for K, and 16.7% for Ca.

The percentage of wells for the aerial distribution of anions concentration assigned 
at desirable limits ranged between 72.9% for Cl, 66.7% for  HCO3, and 79.2% for  SO4. 
While the percentage of wells for the aerial distribution of anions concentration 
assigned at the undesirable limit ranged between 4.2% for Cl, 0% for  HCO3, and 20.8% 
for  SO4 as shown in Table 3 and Fig. 8.

Fig. 6 Concentration of major elements

Fig. 7 Concentration of trace element

Fig. 8 Concentration for 20 elements by percentage of wells (relevant to their limits of WHO for each 
element)
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Table 3 and Fig. 8 presented the aerial distribution concentration for 8 sensitive trace 
elements. The percentage of wells assigned at desirable limits ranged between 100% for 
(Zn, Cr, and Co), 86% for Fe, 27.3% for Mn, 77.4% for Cd, 27.2% for Pb, and 96% for Al, 
while the percentage of wells assigned at undesirable limits ranged between 0% for (Fe, 
Zn, Cr, and Co), 50% for Mn, 13.6% for Cd, 36.4% for Pb, and 4% for Al.

Figure 8 summarizes the results of the concentration for the selected 20 elements 
(11 physio-hydrochemical characteristics, and 9 sensitive environmental trace ele-
ments) by %wells relevant to the limits of WHO for each element.

The water quality index is one of the most important methods to observe ground-
water pollution (Alam and Pathak, 2010) [1] which agreed with the results. It was 
calculated by using the compared different standard limits of drinking water quality 
recommended by WHO (2008) and Egyptian Standards (2007). Two values for WQI 
were calculated and drawn according to these two standards. It was classified into six 
classes relevant to the drinking groundwater quality classes: excelled water (WQI < 
25 mg/l), good water (25–50 mg/l), poor water (50–75 mg/l), very poor water (75–100 
mg/l), undesirable water (100–150 mg/l), and unfit water for drinking water (> 150 
mg/l) as shown in Fig. 9a, b. Figure 9a (WHO classification) indicated that in the most 
parts of the study area, the good water class was dominant and reached to 35.8%, 
28.8% was excellent water; 7.5% were poor water, 11.3% very poor water quality, and 
13.3% were unfit water for drinking water. Similarly, for Egyptian Standard classifica-
tion via WQI, the study area was divided into six classes: Fig. 9b indicated that 35.8% 
of groundwater was categorized as excellent water quality, 34% as good water quality, 
9.4% as poor water, 5.7% as very poor water, 1.9% as undesirable water and 13.3% as 
unfit water quality. This assessment was compared to Embaby et  al. [20], who used 
WQI in the assessment of groundwater quality in El-Salhia Plain East Nile Delta. The 
study showed that 70% of the analyzed groundwater samples fall in the good class, 
and the remainder (30%), which were situated in the middle of the plain, was a poor 
class which mostly agreed with the study.

Conclusions and recommendation
This research studied the groundwater quality assessment for drinking using WQI and 
concluded that most of observation wells are located within desirable and max. allow-
able limits.

The groundwater in the study area is alkaline. TDS in groundwater ranged from 263 to 
5765 mg/l, with a mean value of 1277 mg/l. Sodium and chloride are the main cation and 
anion constituents.

The water type is Na–Cl in the southern area due to salinity of the Miocene aquifer, 
Mg–HCO3 water type in the northern area due to seepage from Ismailia Canal and 
excess of irrigation water and there is an interference zone which has a mixed water type 
between marine water from south and fresh water from north.

The WQI relevant to WHO limits indicated that 23% of wells were located in excel-
lent water quality class that could be used for drinking, irrigation and industrial uses, 
38% of wells were located in good water quality class that could be used for domestic, 
irrigation, and industrial uses, 11% of wells were located in poor water quality class that 
could be used for irrigation and industrial uses, 8% of wells were located in very poor 
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water quality class that could be used for irrigation, 6% of wells were located in unsuita-
ble water quality class which is restricted for irrigation use and 15% of wells were located 
in unfit water quality which will require proper treatment before use.

The WQI relevant to Egyptian standard limits indicated that 25% of wells were located 
in excellent water quality class that could be used for drinking, irrigation, and indus-
trial uses, 43% of wells were located in good water quality class that could be used for 
domestic, irrigation, and industrial uses, 8% of wells were located in poor water quality 
class that could be used for irrigation and industrial uses, 6% of wells were located in 

Fig. 9 a, b WQI aerial distribution for drinking groundwater suitability for WHO (a) and Egyptian standards (b)
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very poor water quality class that could be used in irrigation, 6% of wells were located in 
unsuitable water quality class which is restricted for irrigation use and 13% of wells were 
located in unfit water quality which will require proper treatment before use.

The percentage of wells located at unfit water for drinking were assigned in the 
Miocene aquifer, and north of Ismailia Canal between km 67 to km 73 and from km 
95 to km 128.

It is highly recommended to study the water quality of the Ismailia Canal which may 
affect the groundwater quality. It is recommended to study the water quality in detail 
between km 67 to 73 and from km 95 to km 128 as the WQI is unfit in this region and 
needs more investigations in this region. A full environmental impact assessment should 
be applied for any future development projects to maximize and sustain the groundwa-
ter as a second resource under the area of Ismailia Canal.
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