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Abstract

The present work aimed to examine the performance of a thermoelectric generator
(TEG) augmented with a hydronic evacuated tube solar collector heat exchanger
used to heat a cold zone. TEGs were operated on the temperature difference
between hot water circulated through the heat exchanger and the cold temperature
of the surrounding space. The setup model of a heat exchanger with TEGs installed
on the outer surface was examined numerically under steady state conditions for
natural and forced convection modes. The results obtained show that 1.03 W of
electricity could be produced when the temperature differences across the TEG and
air velocity are 60 °C and 0.5 m/s, respectively. Also, an increase of 17.47% of TEG
power was achieved for each 5 °C drop in surrounding space temperature and by
11% for each 5 °C rise in circulated hot water temperature. Besides the importance
of improving TEG efficiencies, the amount of generated electricity may be valuable
when large-surface area heat exchanger units are installed in large systems.
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Introduction
Electrical energy is the most fascinating form of energy resulting from the flow of elec-

tric charge and can be used easily in various applications and needs, especially for resi-

dential, commercial, and industrial applications [1]. Electrical energy can be produced

from various sources, either renewable or non-renewable. The main problem facing

energy in general is the storage of energy. Heating consumes approximately one-third

of the electrical energy used in residential applications [2].

Thermoelectric generators (TEGs) are thought of as direct, small solid-state energy

conversion devices that can be used to directly convert waste heat into electricity as a

heat recovery system [3]. The Seebeck effect is the basis of the electricity generated

from the TEGs. When a heat flux passes through a junction of two completely differ-

ent conductors or semiconductors, an electrical current will be generated. The Seebeck

coefficient is defined as the voltage generated per 1 K difference in temperature [4]. Ig-

noring the hydraulics-thermal behavior associated, one-dimensional heat conduction
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theory is used to analyze the performance of TEGs when installed on a heat exchanger,

especially in solar cell/module applications [5].

HVAC is the operation of adding or eliminating heat to obtain a more comfortable

environment, and this could be achieved by using “air conditioners” through negative

cooling or ventilation cooling technologies that provide heating, ventilation, and air

conditioning (HVAC) [6]. In 2018, it was found that 20% of rated energy use in build-

ings was consumed by air conditioners, and the value was estimated to increase by

three times by 2050. To that end, the United Nations encourages the development of

new modified sustainable heating and cooling strategies and technologies to address

global climatic changes and increased energy demand [7].

There is a wide range of equipment that could be used in thermal processes and sys-

tems where heat is dissipated into the environment as waste energy. In such devices,

like heat exchangers, etc., TEGs may be installed to recover the waste energy and con-

vert it into electricity, improving the efficiency of the thermal systems [8]. Air and

water heating or cooling systems are the types that will be used to decrease or eliminate

environmental impacts and can be used instead of one-time heating or cooling systems

to reduce water usage or thermal water pollution [9].

Using renewable energy has become of great interest in thermal system applications,

especially in heating, cooling, and power generation. But these technologies suffer from

specific disadvantages related to the thermal efficiency or coefficient of performance of

the system due to heat lost from the system during operation. To overcome these prob-

lems and to improve their performance, energy recovery technologies like TEGs are an

excellent choice [10].

A hybrid photovoltaic-thermal water heating system was developed by Chow et al.

for domestic applications. The thermal efficiency of the hybrid system was found to be

in the range of 37.6–48.65% while the electrical efficiency was in the range of 10.3–

12.3% [11, 12].

To improve the thermal efficiency of the solar system, a new design system that com-

bines the traditional solar cell made of silicon with TEGs and a heat collector was de-

veloped. The integrated system shows a good improvement in efficiency compared to

the PV system alone [13]. For mini and micro power applications, a solar TEG was pro-

posed by using inexpensive solar concentrators like evacuated tube collectors and para-

bolic or compound parabolic solar concentrators. The incorporated system was studied

and showed a noticeable improvement in performance [14–17].

Recently, because of their flexibility, reliability, small size and weight, and modular

scalability, TEGs are being used in a wide range of applications as heat recovery sys-

tems. In sensors as low-power supply applications [18, 19], medium-power supply sys-

tems include batteries [20], automotive heat systems [21, 22], stoves [23, 24], chiller

systems [25], and combined TPV [26] or PV [27] systems. In heavy industries [28], geo-

thermal systems [29, 30] serve as high-power supply applications.

The electric current, voltage, and hence power generated by the TEG depend

mainly on the temperature difference across the TEG. The system is considered as

a thermally steady-state model with a voltage source integrated in series with an

internal resistance [31, 32]. To enhance the generated power by the TEG for a

constant temperature difference across it, the TEG load’s impedance should be

equal to its internal resistance [33].
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This article provides a study of the thermal and electrical performance of a TEG sys-

tem augmented with an evacuated tube solar water heater using a radiator heat exchan-

ger by means of an Engineering Equation Solver (EES). Additionally, the effects of

thermal and electrical contacts as well as free and forced convective heat transfer were

considered. To characterize the TEG module’s overall performance, outcomes are pre-

sented in figures for numerous essential variables, consisting of temperature, power

generated, and TEG efficiencies. The variation of the heat dissipated from the heat ex-

changer with hot water temperatures is shown with and without installing TEGs.

Method
With the evacuated tube solar heating system, 50 TEG modules were installed around

the heat exchanger, the main heat supply for space heating. As shown in Fig. 1, the hot

side of the TEG is contacted perfectly on the outer surface of the heat exchanger while

the cold one is in direct contact with the surrounding space air to be heated.

When the hot water from the solar collector flows through the heat exchanger,

conduction heat transfers to the hot side of the TEGs, and the heat will be

rejected from the cold side into the room space air as a supply heating source. As

shown in Fig. 2, heat is convected from the water to the inside surface of the heat

exchanger, then conducted through its wall and within the TEGs before being

rejected out to the space air to be warmed. The hot and cold sides of the hybrid

system are presented in Fig. 3.

Fig. 1 TEG module-heat exchanger connection
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It is well known that TEG is composed of p-type (positive charge) and n-type (nega-

tive charge) composites connected by a conductor. Since there is a temperature differ-

ence between the two sides of the TEG surfaces, electrical energy will be generated

depending on the value of the temperature difference as shown in Fig. 4. The main var-

iables that the amount of energy generated by the TEG will be affected by are the hot

water temperature and circulation ratio, the space room temperature surrounding the

TEG, and the space air speed when force convection occurs using fans. For the TEG to

operate properly, there should be some differences in the physical properties (electrical

resistance, thermal conductivity, Seebeck effect) of the two semiconducting pellets. The

main specifications of the heat exchanger and the input parameters of the TEG mod-

ules are summarized in Tables 1 and 2, respectively.

Fig. 2 Solar heat exchanger for space heating hybridized with TEG modules

Fig. 3 Hot and cold sides of the hybrid system
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Mathematical model and energy balance

The mathematical model of the hybrid system under investigation was made based on

several assumptions which can be summarized as follows:

� Steady-state, one-dimensional heat transfer.

� The outer surface area of the heat exchanger is a uniform temperature.

� Thermal and contact resistance are negligible.

� Neglecting the effect of temperature on TEG properties,

� Thermal and electrical contact resistances are negligible.

� TEG connections are considered in series thermally and in parallel electrically.

The energy balance for the heat exchanger with TEG module shown in Fig. 5 is given

by Eq. (1). Note that the energy generated is negligible.

Ė1;in−Ė1;out ¼ 0 ð1Þ

where Ė1;in , Ė1;out are the rate of energy in and out of the between hot water and

TEG module, respectively.

The rate of energy in Ė1;in is the rate of heat transfer from the hot water (Qh) into the

TEG while the hot side heat absorption is the rate of energy out (Qh,TEG). Solar heated

water convective thermal resistance, Rconv., w, is given by Eq. (2):

Fig. 4 Thermoelectric P/N module

Table 1 Heat exchanger specifications

Parameter Value

Height 1 (m)

Width 1 (m)

Wall thickness 5 (mm)

Number of TEGs used on surface area 300

Material Aluminum

Working fluid Water

Water temperature (heated using evacuated tube solar collector) 50–60–70–80 (°C)

Water flow rate 0.005–0.007–0.01–0.0159 (m3/s)
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Rconc;w ¼ 1
.
hw

∙ATEG ð2Þ

where hw is coefficient of convective heat transfer of water (W m−2 K−1) which can

be given by ref. [34] as:

hw ¼ Nuw∙
Kw

DH
ð3Þ

where Kw is the hot water thermal conductivity (W m−1 K−1) and DH represent the

hydraulic diameter of the heat exchanger which can be defined in terms of cross-

sectional area, Ac, and wetted perimeter of the heat exchanger as:

Dh ¼ 4
Ac

Pw
ð4Þ

where Ac is the multiplication of the width by height of the heat exchanger (Ac =

Wex × hex). Nuwis the Nusselt number of the water which can be given in terms of

Reynold’s number (Rew) and Prandtl number (Prw) of the water as [35]

Nuw ¼ 0:023� Rew
4
5ð Þ� Prw

0:3 ð5Þ

In terms of water velocity, Vw (m/s); density, ρw (kg m−3); and dynamic viscosity, μw
(N m−2 s−1), Reynold’s number of the water could be given by:

Table 2 TEG module input parameters at standard conditions [1]

Parameter Value

Module dimensions (40 × 40) (mm)

Leg cross sectional area (0.001 × 0.001) (m)

Leg’s length 0.0015 (m)

Seebeck coefficient p-type 223.2 (μVK−1)

n-type −187.7 (μVK−1)

Electrical resistivity p-type 0.183 (μV.m)

n-type 0.153 (μV.m)

Thermal conductivity p-type 1.68 (W/m K)

n-type 1.64 (W/m K)

Fig. 5 Heat exchanger with TEG module
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Rew ¼ ρw�Vw�Dh

μw
ð6Þ

Also, Prandtl number of the water could be given by:

Prw ¼ μw∙Cpw
Kw

ð7Þ

The conduction resistance between heat exchanger surface wall and the internal sur-

face of TEG [R cond (K/W)] may be given in terms of heat exchanger thickness, t (m),

heat exchanger thermal conductivity, K (W m−1 K−1), and TEG area, ATEG (m2) by [34].

Rcond ¼ t
K�ATEG

ð8Þ

Following Eqs. (1) to (8), the rate of heat flux to the TEG from the hot water could

be evaluated in terms of hot water temperature, Tw, and TEG hot side temperature, Th,

as

Qh ¼
Tw−Thð Þ

Rconv;w þ Rcond;w
ð9Þ

Similarly, the energy balance equation is applied between the TEG module and the

surrounding air with neglecting energy generation (see Fig. 5):

Ė2;in−Ė2;out ¼ 0 ð10Þ

Ė2;in , Ė2;out are, respectively, the rate of energy in and out between TEG module and

surrounding air to be heated.

Heat transferred to the surrounding air (Qc) occurs in combined convection and radi-

ation modes (see Fig. 2). Thus, convective (natural and forced) and radiative heat trans-

fer coefficients [hc, a, hr, a (W/m K)] between the TEG module and the surrounding air

are the most effective. According to Ref. [34], the air convective heat transfer coefficient

(hc, a) could be expressed in terms of Nusselt number (Nua) as:

hc;a ¼ Nua∙
Ka

Lr
ð11Þ

The Nusselt number is related to the Rayleigh number of air (Ra) as Nua = Ra1/3 and

Rayleigh number of air is well known in heat transfer and given in terms of volumetric

thermal expansion coefficient of air βa (K
−1) and thermal diffusivity of air αa (m

2/s) by:

Ra ¼ g�βa�ρa� Tc−Tað Þ�lr3
αa�μa

ð12Þ

The volumetric thermal expansion coefficient of air is a function of the average value

of water and the surrounding air temperatures Tf (K) while the value of thermal diffu-

sivity of air αa depends on the thermal conductivity of air Ka (W/m K), air density ρa
(Kg/m3), and the specific heat of air Cpa (kJ/kg .K)

αa ¼ Ka

ρa�Cpa
ð13Þ

The heat dissipated from the TEG to the surroundings by radiation with a normal-

ized coefficient hr,a (W/m K) which can be written in terms of TEG emissivity εTEG,
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Stephan Boltzmann constant σ (W m−2 K−4), and surrounding air temperature Tsurr.

(K) as:

hr;a ¼ εTEG�σ� Tc þ Tsurrð Þ� Tc
2 þ Tsurr

2
� � ð14Þ

Now, the rate of heat transfer from the cold side of the TEG (Qc) to the ambient air

can be given as:

Qc ¼ ha�ATEG� Tc−Tað Þ ð15Þ

Respectively, the electric and thermal resistances [Re (Ohm), Rth (K/W)] and thermal

conductivity (K) of each TEG module are given in terms of positive and negative elec-

tric conductivity (σp = 1/ρp, σn = 1/ρn) as:

R ¼ n∙ σp∙
Ap

Lp

� �−1

þ σN ∙
AN

LN

� �−1
" #

ð16Þ

K ¼ n∙ λp∙
Ap

Lp

� �
þ λN ∙

AN

LN

� �� �
ð17Þ

The rate of heat absorbed by the TEG’s hot side from solar heated water (Qh) and

the rate of heat rejected to the surrounding air by the TEG’s cold side (Qc) are given

by:

Qh ¼ n∙αTc∙I þ K ∙ Th−Tcð Þ− 1
2
I2R ð18Þ

Qc ¼ n∙αTc∙I þ K ∙ Th−Tcð Þ− 1
2
I2R ð19Þ

The power produced by TEG:

P ¼ I2Rl ð20Þ

The power generated by the TEG is considered as the difference between the hot and

cold heat transfer rates and is given by:

P ¼ Qh−Qc ð21Þ

Manipulating Eqs. (9) through (21) provides two non-linear equations with Th and Tc

as unknowns. EES was used to solve these equations and the results are presented.

Finally, the overall efficiency of the thermo-electric module (TEM) can be given as:

η ¼ P
Qh

�100% ð22Þ

Heat exchanger specifications and TEG module input parameters used in this study

are presented in Tables 1 and 2, respectively.

Results and discussion
Figure 6 shows the effect of the surrounding temperature on the TEG generated power

for different temperatures of hot water flowing in the heat exchanger from the solar

field. The heat transfer to the surrounding air by natural convection and the

temperature inversely affect the generated power. The explanation for this behavior is
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that any increase in the surrounding temperature will cause a decrease in the

temperature difference and hence decrease the heat flux across the TEG.

Increasing the velocity of the hot water shows an increase in the power generated by

the TEG since any increase in the velocity will enhance the heat absorption by the hot

side of the TEGs due to the increase in convective heat transfer coefficient of water

with velocity, and this is clearly shown in Fig. 7. The figure also shows a slight effect of

hot water velocity on power generated as compared to the surrounding temperature ef-

fect because the flow velocity values were low, hence the low Reynolds number and a

slight increase in the hot water heat transfer coefficient.

It is clearly obvious that the amount of electrical power generated is small in value

due to the low TEG efficiencies. Despite the low TEG efficiencies, it may be possible to

generate reasonable amounts of power by increasing the heat exchanger surface area

and the number of TEG modules used, especially when large amounts of waste or re-

newable energy are available. At least, these amounts of energy can operate wireless

sensing and control devices in power plants, buildings, and so on.

Figure 8 shows the effect of hot water temperature on the power generated by the

TEG for different velocities of hot water flowing in the heat exchanger from the solar

field. The results presented show that the TEGs generate more power as the hot water

Fig. 6 Variation of power produced from TEGs with surrounding air temperature for different hot water
temperatures and fixed hot water flow rate of 3 kg/s

Fig. 7 Variation of power produced from TEGs with surrounding air temperature for different hot water
flow velocities under the condition of natural convection at hot water temperature of 85 °C
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temperature increases due to the increase in heat flux from the hot water side and the

TEG hot side, resulting in a larger temperature difference across the TEGs.

It is well known that enhancing the heat transfer will improve the electric power gen-

erated from the TEGs. Figure 9 shows that natural convection produces less power

than that in the case of forced convection, and this is due to the lower heat transfer co-

efficient in the case of natural convection as compared to forced convection. Also, in

the case of forced convection, the velocity of space air surrounding the cold side of the

TEGs directly affects the rate of heat transfer and enhances the power generated. The

coefficient of convective heat transfer increases with the speed of air, which causes the

heat transfer exchanged through the heat exchanger. According to ISO7933, the rec-

ommended value of the moving air heat transfer coefficient was taken as 6 (W/m °C) at

0.5 m/s air speed [36]. With natural convection, the heat transfer rate will be lower.

When investigating the effect of hot water temperature on TEG efficiency for differ-

ent surrounding conditions, it was found that the efficiency was found to increase with

increasing hot water temperature and decreasing surrounding temperatures due to the

Fig. 8 Effect of hot water temperature on the TEGs’ generated power for different hot water flow velocities
under the condition of natural convection at a surrounding temperature of 20 °C

Fig. 9 Effect of surrounding temperature on the power produced from TEGs’ forced convection (V = 0.65
m/s) and natural convection at a hot water temperature of 85 °C
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increase in temperature differences across the TEGs as mentioned earlier. The effect of

combined hot water and surrounding temperatures is presented in Fig. 10.

The effect of combined surrounding temperature and hot water flow velocity on TEG

efficiency is shown in Fig. 11. The results indicate that the efficiency decreases as the

surrounding temperature increases due to the decrease in heat dissipated to the TEGs’

cold side and, hence, decreases the temperature difference across the TEGs, which

lowers the electric power generated.

Figure 12 compares the heat dissipated to the surroundings when the heat exchanger

is operated with or without TEGs installed on the heat transfer surface area. The results

show a negligible difference between the two cases.

Model validation

To validate the results obtained in the present investigation, a published study by Al-

Widyan et al. [1] was selected. Al-Widyan et al. investigate a heating radiator with

TEGs installed on both sides (cold and hot). The published study’s input data was ap-

plied to the current investigation model. Figures 13, 14, and 15 show the model valid-

ation by comparing the effect of the surrounding temperature on the power produced

from TEGs for hot water temperatures of 345 K with a fixed water mass flow rate of 3

kg/s for both models, the variation of the power produced by one TEG’s module with

Fig. 10 Variation of TEG efficiency with hot water temperature for different surrounding temperatures

Fig. 11 Effect of the surrounding temperature on TEG efficiency for different hot water temperatures
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the temperature difference across the heat exchanger, and the variation of the TEG’s ef-

ficiency with the temperature difference across the heat exchanger. The present model

shows high agreement with the published (true) model, with an error of less than 6%.

Conclusion
The present investigation proposes the installation of TEGs at the outer surface of the

heat exchanger in which hot water is heated by an evacuated tube solar collector and

flows through it to heat the surrounding space. This study may not be the first one that

addresses solar space heating systems, but it is one of the first that professes the con-

cept of augmenting TEGs for space heating systems. The results of the present work

clearly indicate that such kinds of TEG applications hold a promising potential for solar

and other renewable sources of energy as well as recovering waste energy.

In this study, the effect of various parameters on TEG efficiency and power

generation was examined. The surrounding air temperature and the hot water

temperature coming from the evacuated solar collector represent the most signifi-

cant parameters affecting the performance of the TEGs. Besides heating the

space, the heat exchanger with TEGs installed on the outer surface produces a

Fig. 12 Variation of the heat dissipated from the heat exchanger with hot water temperatures with and
without TEGs

Fig. 13 Variation of power produced from TEGs with surrounding temperature for hot water temperatures
of 345 K with fixed water flow rate of 3 kg/s (model validation)
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Fig. 14 Comparing the effect of the temperature difference across the heat exchanger on the power
produced by one TEG’s module with ref. [1]

Fig. 15 Variation of the TEG’s efficiency with temperature difference across the heat exchanger and
comparison of the results with ref. [1]
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maximum electric power of 1.03W at a temperature difference across the TEG of

60 °C. The optimum air velocity that gives the optimum power generated was

found to be 0.5 m/s. Furthermore, a decrease in the surrounding temperature by

5 °C increases the power produced by about 17.47%, while it increases by about

11% as the hot water temperature increases by 5 °C.
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