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Abstract

In this work, we used the blast furnace slag for the nickel adsorption in aqueous
solution. The physico-chemical characterization showed that the BF slag consists
mainly of the silica, lime, and alumina. The specific surface area of the BF slag grains
is of the order of 275.8 m2/g. The optimum elimination parameters are the agitation
speed 200 rpm, pH 4.5, the adsorption temperature 20 °C, and particle size between
200 and 500 μm. The adsorption capacity and the efficiency of nickel removal by the
BF slag after 90 min of agitation are respectively 53.58 mg/g and 92.7%.
The experimental adsorption data showed that the pseudo-second-order model was
the most appropriate in nickel adsorption kinetics; the adsorption isotherm could be
described well by the Langmuir model indicating that the process was monolayer,
and intra-particle diffusion is not the sole mechanism involved in this process.
Thermodynamic study showed that the Ni(II) elimination by BF slag process is
spontaneous, exothermic, and less entropic.
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Introduction
Water is an essential resource for man and his environment; for this reason, its con-

tamination has become one of the challenges that the world must meet for its well-

being [1–3]. Indeed, the presence of strong industrialization, the multiplication of

urbanization, and non-compliance with regulations regarding discharges has had an

alarming impact on water quality [4]. Heavy metals, dyes, organic matter, and biocides

are among the pollutants of major concern [5]. Heavy metal ions are among the most

released contaminants, and for this reason, they are particularly worrisome [6]. Heavy

metals are not biodegradable; therefore, they tend to bioaccumulate, which is their

overtime increase of concentration in living organisms [1, 2, 7].

Hence, it is unavoidable to remove the metal ions from water environment by effi-

cient and rigorous methods such as chemical precipitation [8], coagulation/flotation

[9], membrane technologies [10], ion exchange [11], electrochemical technologies [12],

and adsorption phenomenon [13–16]. Among these techniques, adsorption is still
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considered as one of the better technique used to eliminate metal ions from aqueous

medium because of its simple operation, high efficiency, and low cost [17, 18]. In this

work, we discuss the possibility of eliminating the nickel contained in water by adsorp-

tion phenomenon using the slag from the blast furnace (BF) of the El-Hadjar Annaba/

Algeria complex as an adsorbent. BF slag is a solid waste material which is by product

of steel making industry; this co-product is formed during the development of cast iron

from iron ores. In the world, the annual BF slag production produced is in the tens of

million tons, which represents a real environmental problem [19, 20]. From to the lit-

erature, many researchers have demonstrated the effectiveness of blast furnace slag in

the area of adsorption in solution [21, 22]. Nickel is considered among the most toxic

elements of the heavy metals, as it is not biodegradable and thus considered as a risk

factor for human health [20, 21]. The main sources of nickel are the industrial dis-

charges from diffuse agricultural, metallurgy, oil refining, exploitation of mineral de-

posits, electroplating, paint formulation, and the battery manufacturer. In this work, the

analyses by X-ray fluorescence, the analyses by X-ray diffraction, and the measurement

of the specific surface area by BET method of slag were realized. Furthermore, the con-

tact time, stirring speed, pH, temperature, particle size, and initial concentration were

done to evaluate the removal efficiency of the nickel by BF slag as an adsorbent. Ad-

sorption isotherms were presented by Langmuir and Freundlich models. Adsorption

kinetic was utilized to describe the kinetics and mechanisms of adsorption process. The

thermodynamic parameters were investigated to study the energy exchanges. The pur-

pose of this work is to present a reliable adsorbent at reasonable prices to contribute at

the birth of a venerable and sustainable environment.

Methods/experiment
Treatment of BF slag

The samples of the BF slag were collected at the El-Hadjar steel complex Annaba/

Algeria, in the form of rocks and dark color. The washing performed at the crude slag

is represented as follows:

� The considered BF slag samples were washed with distilled water and air dried for

48 h

� From an automatic grinder, the washed samples were grinded according to our

request: 200, 300, 400, and 500 μm

� The crushed samples were sieved with different the particle sizes (200, 300, 400,

and 500 μm)

� Samples with different grain sizes were separated, washed with distilled water,

steamed at 105 °C, and stored in plastic boxes

Analytic methods

The nickel concentration was measured by atomic absorption spectroscopy method

(PerkinElmer 3110) equipment. The pH of solution was adjusted with a digital pH

meter (Hanna Instruments). The characterization was carried out by X-ray fluorescence

(Siemens SRS 3000) and X-ray diffraction (Rigaku Ultim IV). The grinding of the slag

was carried out by a planetary crusher (Fritsch pulverisette 7 premium line).
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The specific surface areas of the BF slag particles were obtained by using the nitrogen

gas adsorption-desorption method. The isotherm data for nitrogen gas desorption at

77K were analyzed with the Brunauer, Emmett et Teller model (model BET).

Adsorption protocol

A series of batch experiments were conducted to study the kinetics, mechanism, iso-

therms, and thermodynamic parameters in the nickel adsorption in solution by BF slag.

The study of adsorption kinetics was carried out by adding 1 g of BF slag in aqueous

solutions prepared with low nickel nitrate (Ni(NO3)2, 6H2O) in 1 l capacity beakers.

The continuous mixing of the solution was ensured during all the tests by mechanical

stirrer at different speeds. The temperature was controlled with a water bath equipped

with a thermostat. The pH solution was fixed in desired value adding a few drops of

concentrated ammonia. The adsorption kinetics were followed by a 5-ml sample using

a graduated pipette fitted with a paper filter every 10 min. The samples taken were

stocked in flasks, and the concentration of Ni (II) ions was measured using atomic ab-

sorption spectrometry (AAS). The experimental protocol was carried out on 04 identi-

cal workstations. Two samples were taken from each station to maintain the same

concentration. The 04 workstations started at the same time in order to ensure con-

tinuity and respect the agitation time. After each two samples, the solution containing

nickel and slag is replaced with another identical one. It is obvious that the agitation

time is respected and goes in the continuity.

The amounts of adsorbed Ni (II) ions at equilibrium (qe) and at time t (qt) were cal-

culated from the mass balance expression given by:

qe ¼
C0−Ce

m
� V ð1Þ

qt ¼
C0−Ct

m
� V ð2Þ

where C0 is Initial solute concentration (mg/L), Ce is the residual solute concentra-

tion at equilibrium (mg/L), Ct is the residual solute concentration at time t (mg/L),V is

the volume of the solution (L), and m is the mass of adsorbent (g).

Results and discussion
Characterization of BF slag

The chemical composition of BF slag is reported in Table 1, where we find a domin-

ance of the SiO2 (41.1%), CaO (37.2%), and Al2O3 (8.2%). The remaining oxides repre-

sent relatively low levels (Fe2O3, NiO, MgO, K2O, Na2O).

Figure 1 represents the diffractogram of blast furnace slag sample from the El-Hadjar

complex. The investigations carried out showed that the slag principally lime contains

silica and at lesser degree of alumina. This observation justified the results obtained by

X-ray fluorescence. The result of the investigations has shown that the specific surface

is 275.8 m2.g−1.
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Adsorption study

Determination of adsorption equilibrium time

To determine the pseudo-equilibrium of the nickel adsorption of the blast furnace slag,

we varied the time interval from 0 to 300 min. Figure 2 showed the impact of the con-

tact time on the adsorption capacity of nickel in solution beneath our experimental

conditions: C0 30 mg/L, Vag. 200 rpm, pH 5.3, T 20 °C, qeexp 400 μm, and Msolid 1 g.

According to kinetic study of the Ni(II) adsorption, we have noticed that the shape of

the curve is subdivided into three phases: fast phase, slow phase, and permanent phase

(Fig. 2).

For the first phase which varies from 0 to 50min, the nickel elimination efficacy is

very elevated; this is due to the numbers of adsorption vacant sites and probably to the

specific surface of the blast furnace slag which could be negatively charged (adsorption

under the effect of electrostatic attraction) [23–26]. On the other hand, for the second

phase (50 to 90 min) the adsorption efficiency gradually decreases since the vacant sites

are not as available.

Fig. 1 Diffractogram of BF slag sample from the El-Hadjar complex

Table 1 Chemical composition of BF slag

Element % Mass

CaO 37.2

Al2O3 8.2

SiO2 41.1

Fe2O3 2.51

MgO 3.12

NiO 2.64

K2O 0.3

Na2O 0.7

P.A.F 4.23
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During the last phase, the adsorption capacity has become constant. This means that

the adsorbent has reached the saturation phase. For this purpose, we consider 90 min

as the equilibrium contact time [27, 28].

Effect of initial pH

The pH of the solution is an important parameter in the adsorption phenomenon be-

cause it affects the form of metal in solution, as well as the surface properties of the ad-

sorbent [29, 30]. In this work, three different media were used: pH 2, pH 4.5, and pH

5.3; C0 30 mg/L; Vag. 200 rpm; T 20 °C; qeexp 400 μm; and Msolid 1 g. (Fig. 3).

The kinetic study showed at pH 2 the adsorption is unfavorable (Figs. 3 and 4). At

low initial pH value, competition is observed between H+ ions and Ni++ ions in the so-

lution a given that the ionic radius of hydrogen ions is much smaller than the ionic ra-

dius of nickel ions. Therefore, it is for this reason that hydrogen ions are the most

adsorbed [31, 32].

As the initial pH increased from pH 2 to pH 4.5, the adsorption capacity increased

from 12.91 to 23.48 mg/g, and the yield increased from 43.03 to 78.26% (Figs. 3 and 4).

Indeed, the efficiency of adsorption can be explained by the effect that the pH of the

solution has favorably influenced the surface charges of adsorbent [33]. Moreover,

when the initial pH equals 5.3, the nickel ions precipitated owing to augmentation in

Fig. 2. Residual concentration of Ni (II) as function of time

Fig. 3 Effect of initial pH
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hydroxide ions in aqueous solution which decrease the adsorption yield [34]. Accord-

ingly, pH = 4.5 value was selected as optimum pH for Ni(II) adsorption by BF slag in

aqueous medium.

Effect of temperature

In adsorption processes, the temperature of the medium is a very influential parameter

because it contributes to the fixation of metal ions on the surface of the adsorbent [35,

36]. The optimum temperature was set by realizing out adsorption tests at different

temperatures (20.40 and 50 °C) under the following experimental conditions (C0. 30

mg/L; Vag 200 rpm; pH 4.5; qeexp 400 μm; Msolid 1 g), initial pH 4.9, agitation speed 200

rpm, adsorbent mass 1 g, initial concentration 30mg/L, solid particle size 400 μm, and

contact time 90min (Fig. 5). The study of the temperature influence on the nickel ad-

sorption has shown an inverse relationship between temperature and quantity of

adsorbed ion, and it revealed that the adsorption is best at 20 °C (Figs. 5 and 6). Indeed,

the nickel removal yield by BF slag between 20 and 40 °C, 20–50 °C, and 40–50 °C de-

creased respectively 16.8%, 21.96%, and 5.16% (Fig. 6).

From this study part, we deduced that the adsorption of nickel in aqueous solution

by BF slag is exothermic [37]. The rise of the temperature of the medium has increased

the resistance to mass transfer, and consequently, it slowed the diffusion of metal ions

towards the surface of the adsorbent. This resistance could be due to the exothermic

nature of adsorption processes of the nickel by BF slag [38].

Fig. 4 Nickel removal efficiency as a function of pH

Fig. 5 Effect of temperature
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Effect of particle size

The adsorbent granulometry has an important role in the rate of transfer of metal ions

from the solution to the adsorbent [39, 40]. In this work, we have varied the particle

size of BF slag from 200 to 500 μm by following the same experimental protocol (C0.

30 mg/L; Vag 200 rpm; pH 4.5; T = 20 °C; M 1 g) (Fig. 7).

According to the experimental results conducted, it was noticed that when granulo-

metry of the solid decreased from 500 to 300 μm, the amount adsorbed and yield re-

spectively increased from 19.72 to 27.68 mg/g and 65.73 to 92.26% (Figs. 7 and 8). This

means that the adsorption loses its effectiveness with the increase of the granulometry.

This phenomenon is probably due to the narrowing of the specific surface of the ad-

sorbent [41, 42]. It is important to clarify that with granulometry equal to 200 μm, we

observed the decrease in the adsorption capacity and removal efficiency of 12.15 mg/g

and 40.5% (Figs. 7 and 8). This result could probably be clarified by the emergence of

the phenomenon of coalescence, that is to say the gathering of the particles of the ad-

sorbent and the return to the upper diameters [42] (Figs. 7 and 8).

Effect of initial concentration

The nickel adsorption by BF slag in optimum conditions for different synthetic solu-

tions has been studied. In this step, we noticed the evolution in the adsorbed quantity

from 9.26 to 53.58 mg/g by varying the initial concentration from 10 to 100 mg/L (Fig.

Fig. 6 Nickel removal efficiency as a function of temperature

Fig. 7 Effect of particle size
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9). Indeed, as the initial concentration increases, the probability of contact between the

adsorbent and the adsorbate per unit volume increased; therefore, the adsorbed amount

increased [43, 44]. Nevertheless, the number of surface adsorption sites of the adsorb-

ent material is limited; so, the adsorption capacity becomes constant [45–47]. Indeed,

the plateau values showed that higher concentrations (> 80mg/L) had no effect on the

adsorption capacity and thus in the adsorption process.

The value of the adsorbed quantity at tier level is 53.58 mg/g. This result allows us to

conclude that this quantity represents the maximum adsorption capacity, which can be

fixed by 1 g of BF slag under our experimental conditions. It is important to indicate

that at lower concentrations, the adsorption efficiency is higher due to the availability

of vacant sites (Fig. 10).

Adsorption isotherm

The adsorption isotherm indicates the interaction between adsorbate and adsorbent,

and it is brief to find the best fit in the adsorption process. In this study, the nickel ad-

sorption by BF slag from the solution was fitted to both the Langmuir and Freundlich

isotherm.

The Freundlich model is well adapted to describe the equilibrium in aqueous phase

and describe that the multilayer adsorption is processed on a heterogeneous surface

[48]. Its empirical formula is:

Fig. 8 Nickel removal efficiency as a function of particle size

Fig. 9 Effect of initial concentration on nickel adsorption
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qe ¼
x
m

¼ k:C1=n
e ð3Þ

where qe is the amount of adsorbate fixed at equilibrium by the adsorbent (mg g−1),

Ce is the residual concentration at equilibrium (mg L−1), and KF and 1/n are the Freun-

dlich constants related to adsorption and affinity. The linearized Freundlich relation is

written as follows:

ln qe ¼ logk þ 1
n

ln Ce ð4Þ

The model of Langmuir [49] is most frequently employed to present the data on ad-

sorption from solution. It is represented by the following equation:

qe ¼
b:qm:Ce

1þ b:Ce
ð5Þ

where qe is the amount of adsorbent fixed at equilibrium by the adsorbent (mg g−1),

Ce is the residual concentration at equilibrium (mg L−1), qmax is the maximum capacity

(mg g−1), and b is the thermodynamic constant of the adsorption equilibrium (L.mg−1).

The linear form of the Langmuir equation is shown as follows (Eq. 6):

Ce

qe
¼ 1

qmax
Ce þ 1

qmaxb
ð6Þ

The theoretical parameters of adsorption isotherms along with regression coefficients

are listed in Table 2. Figures 11, 12, and 13 show the Langmuir model, Freundlich

model, and adsorption isotherm of the nickel.

According to Fig. 13, the adsorption isotherms presented a classic appearance of a

type I isotherm. The adsorption takes place gradually until it reaches a saturation level.

According to the Table 2, the correlation coefficient value (R2) of the Langmuir model

was higher than that of the Freundlich model (R2
Langmuir = 0.99, R2

Freundlich = 0.87),

and the value of nickel adsorption capacity obtained from the Langmuir model was

Fig. 10 Nickel removal efficiency as a function of initial concentration

Table 2 Isotherm parameters nickel adsorption by BF slag

Freundlich model Langmuir model

KF (mg.g−1)(ml.mg−1)1/n n R2 qmax (mg/g) b (L.mg−1) R2

16.05 2.77 0.87 54.18 0.341 0.99
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close to the experimental value. This implicate that the Langmuir equation was more

appropriate to represent the process of nickel adsorption by BF slag in aqueous solution

[23, 50].

According to Table 3, we also noticed that the value of the heterogeneity factor

is between 1 and 10 (n = 2.77) which showed that the nickel absorption is

favorable [51, 52].

The dimensionless RL parameter is a feature of the Langmuir isotherm model that

can illustrate the type of adsorption process [53, 54]. This parameter RL is determined

by the following equation:

RL ¼ 1
1þ C0b

ð7Þ

where b is the Langmuir isotherm constant, and C0 is the initial concentration of

solution.

The RL values indicate the nature of the adsorption according to the following as-

sumptions: favorable (0 < RL < 1), unfavorable (RL > 1), linear (RL = 1), and irreversible

(RL = 0) [55, 56]. According to Fig. 14, we noticed that the values of the parameter RL

are between 0.237 and 0.03, which implies that the nickel adsorption process is favor-

able and follows a monolayer adsorption [56, 57]. According to Fig. 14, we noticed that

Fig. 11 Presentation of Freundlich model

Fig. 12 Presentation of Langmuir model
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the values of the parameter RL are between 0.237 and 0.03, which implies that the

nickel adsorption process is favorable and follows a monolayer adsorption [56, 57].

Adsorption kinetics

The adsorption kinetics of nickel by the BF slag was investigated using pseudo-first-

order and pseudo-second-order kinetics at different temperatures under optimal ex-

perimental conditions (Figs. 15 and 16). The pseudo-first-order model is represented

by Lagergren equation [58]:

log qe−qð Þ ¼ −kLagt þ logqe ð8Þ

where qe is the adsorbed quantity at equilibrium (mg/g), q is adsorbed quantity at

time t (mg/g), and t is the time of adsorption process; in this study, it is from 0 to 90

min; kLag is the constant pseudo-first-order sorption speed (s−1). The pseudo-second-

order is represented by the Blanchard equation [59]:

t
q
¼ 1

kbq2e
þ 1
qe

ð9Þ

where qe is the adsorbed quantity at equilibrium (mg/g), q is the adsorbed quantity at

time t (mg/g), and t is the time of adsorption process; in this study, it is from 0 to 90

min; kb is the constant of pseudo-second-order sorption speed (min−1).

The curves obtained by fitting the pseudo-first-order and pseudo-second-order kinet-

ics are presented in Fig. 15 and Fig. 16, respectively, and the relevant parameters are

represented in Table 3.

Fig. 13 Adsorption isotherm presentation

Table 3 Kinetics data the nickel adsorption of by BF slag

Pseudo-first order Pseudo-second order

T (°C) qeexp (mg/g) KLag min−1 qetheo (mg/g) R2 Kb (mg/g.min) qetheo (mg/g) R2

20 27.68 0.040 28.58 0.96 0.00113 28.24 0.99

40 22.68 0.035 19.57 0.96 0.00139 23.09 0.99

50 18.27 0.052 26.86 0.95 0.00151 19.8 0.98
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According to Table 3, the values of the correlation coefficients R2 for the temperature

studied were very high (R2 ≥ 0.98) for the Blanchard model; on the other hand, the

values of the correlation coefficients of Lagergren model were less important R2 ≥ 0.96.

Also, the maximum values of the calculated adsorption capacity determined using the

kinetic models were compared with experimental values. The results indicated the

maximum adsorption capacity determined using the Blanchard model was closer to the

experimental values. These results showed that the adsorption of nickel follows the kin-

etics of the pseudo-second-order model.

Adsorption mechanism

Weber and Morris [60] reported that if intra-particular scattering is involved in the

sorption process, by increasing the adsorbed amount as a function of the square root of

time, we need to obtain a line. This step is limiting if the line passes through the origin

[61]. In the case where these lines do not pass through the origin, this indicates that

the diffusion in the pores is not the only limiting mechanism of the sorption kinetics. It

appears that other mechanisms are involved [62, 63]. The relation of Weber and Morris

is presented as follows:

q ¼ kw
ffiffi

t
p þ C ð10Þ

Fig. 14 Evolution of RL ration as a function of initial concentration

Fig. 15 Pseudo-first-order kinetic

Chouchane et al. Journal of Engineering and Applied Science           (2021) 68:34 Page 12 of 18



where q is the quantity adsorbed at time t, t is the time measured in minute, kw is the

diffusion rate constant in the pores (mg/m. min ½), and C is the intercept .

Kw and C are obtained from the slope of the straight line of q versus t1/2 (Fig. 17).

The internal transport parameters values are represented from Table 4.

Optimization of kinetic data with the use of Weber and marries model confirmed

that internal diffusion is not the main factor determining the process of nickel adsorp-

tion on BF slag (Fig. 17). Indeed, we noticed that the value of intercept is nonzero (C ≠

0). It is important to note that the larger the C value, the greater the influence of the

boundary layer on adsorption, and the greater the dependence of the adsorption [64,

65]. This result allowed us to conclude that the adsorption process is controlled as the

first step by the external transport, which is an instantaneous process followed by

intra-particle diffusion [66, 67].

Thermodynamic study

The variations in standard free energy (ΔG), standard enthalpy (ΔH), and standard en-

tropy (ΔS) were used to speculate on the adsorption mechanism. These thermodynamic

parameters are calculated by utilizing the Equations 11, 12, and 13 [68–70]:

ΔG0 ¼ −RTlnkd ð11Þ

Fig. 16 Pseudo-second-order kinetic

Fig. 17 Intra-particle diffusion kinetic
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ln kd ¼ ΔH0

R
� 1
T
þ ΔS0

R
ð12Þ

The distribution coefficient is calculated from Equation 11 [71, 72].

kd ¼ Ci−Ce

Ce
� V
M

¼ qe
Ce

ð13Þ

Figure 18 shows the ln kd versus 1/T plot for the adsorption of the nickel at different

temperatures. The values of the thermodynamic parameters are grouped in Table 5.

The negative value of Gibbs energy (ΔG) showed that the adsorption process is spon-

taneous and realizable [73, 74]. The negative value of the enthalpy variation (ΔH) indi-

cates that the adsorption is exothermic and is physical in nature involving weak forces

of attraction at solid/liquid interface [37, 75]. The value negative of entropy (ΔS) indi-

cates a decrease in randomness at solid/liquid interface at the time of the nickel ad-

sorption by BF slag surface [76, 77].

Conclusions
In this work, the nickel adsorption by BF slag from aqueous solution was investigated

as a function of contact time, stirring speed, initial pH, temperature, particle size, and

initial concentration in batch adsorption technique. The physico-chemical

characterization showed that the adsorbent consists mainly of the silica, lime, and alu-

mina. The specific surface area of the BF slag grains is of the order of 275.8 m2/g. The

optimization of the influencing parameters showed that the nickel removal efficiency

and its maximum adsorption capacity, respectively, were 92.26% and 53.58 mg/g after

90 min of agitation. The kinetic studies showed that the mechanism of nickel

Table 4 Values of transport parameters

Temperature (°C) The intercept R2 kw (mg/g.min)

20 2.72 0.91 2.84

40 1.7 0.93 2.28

50 0.62 0.97 2.04

Fig. 18 Van’t Hoff plot for nickel adsorption by BF slag
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adsorption process is well fitted by the pseudo-second order, the modeling results of

kinetics indicated that the Langmuir model is more appropriate, and intra-particle dif-

fusion is not the sole mechanism involved in this process. Thermodynamic study

showed that the Ni(II) elimination by BF slag process is spontaneous, exothermic, and

less entropic.

In conclusion, the results indicate that the BF slag represents a good adsorbent which

can be used in the field of wastewater pollution control. Indeed, BF slag is better than

the pyrophyllite, modified montmorillonite, raw red mud from aluminum industry, di-

atomite waste modified by EDTA, red mud, sea shells of Mehdia, and carbon aerogels

[72, 78–83].
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