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Abstract 

Structured illumination microscopy (SIM) is one of the powerful super-resolution modalities in bioscience with the 
advantages of full-field imaging and high photon efficiency. However, artifact-free super-resolution image recon-
struction requires precise knowledge about the illumination parameters. The sample- and environment-dependent 
on-the-fly experimental parameters need to be retrieved a posteriori from the acquired data, posing a major chal-
lenge for real-time, long-term live-cell imaging, where low photobleaching, phototoxicity, and light dose are a must. 
In this work, we present an efficient and robust SIM algorithm based on principal component analysis (PCA-SIM). 
PCA-SIM is based on the observation that the ideal phasor matrix of a SIM pattern is of rank one, leading to the low 
complexity, precise identification of noninteger pixel wave vector and pattern phase while rejecting components 
that are unrelated to the parameter estimation. We demonstrate that PCA-SIM achieves non-iteratively fast, accurate 
(below 0.01-pixel wave vector and 0.1% of 2 π relative phase under typical noise level), and robust parameter estima-
tion at low SNRs, which allows real-time super-resolution imaging of live cells in complicated experimental scenarios 
where other state-of-the-art methods inevitably fail. In particular, we provide the open-source MATLAB toolbox of our 
PCA-SIM algorithm and associated datasets. The combination of iteration-free reconstruction, robustness to noise, and 
limited computational complexity makes PCA-SIM a promising method for high-speed, long-term, artifact-free super-
resolution imaging of live cells.
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1  Introduction
Fluorescence microscope is an essential tool in biological 
sciences thanks to its ability to visualize biomolecules of 
interest with great specificity and high contrast through 
fluorescent labeling [1–3]. In its classical form, how-
ever, the spatial resolution of fluorescence microscope is 

fundamentally limited to about 200 nm by the Abbe dif-
fraction limit [4]. The past decades have witnessed the 
development of super-resolution techniques, which man-
age to circumvent the diffraction barrier and thus enable 
humans to observe the nano-scale subcellular features 
[5–10]. Among various super-resolution techniques, 
structured illumination microscopy (SIM) doubles the 
lateral resolution of fluorescence microscope by using 
spatially structured illumination to modulate high-fre-
quency information into the passband of the microscope 
[8]. Notwithstanding the compromised lateral resolution 
with respect to other fluorescence super-resolution tech-
niques, SIM is best suited for long-term super-resolution 
imaging of live cells due to its unique advantages of full-
field imaging, fast imaging speed, low excitation inten-
sity, high photon efficiency, and conventional fluorescent 
labels compatibility [11–13].
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Despite all the advantages, SIM still suffers from several 
technical challenges that hinder its practical application 
and widespread adoption in the biomedical commu-
nity for real-time long-term live-cell imaging. Generally, 
high-quality and robust SIM reconstructions rely heavily 
on post-processing algorithms, particularly the accurate 
estimation of illumination pattern parameters, such as 
wave vector, initial phase, and modulation depth [14, 15]. 
Even minor parameter errors may have a strong effect 
on the sensitive reconstruction results, resulting in sub-
stantial reconstruction artifacts [16–19]. Moreover, these 
parameters are sample- and environment-dependent, so 
they cannot be compensated by one-time calibration, 
necessitating posterior restoration from the acquired 
experimental data unless the experimental environment 
is harshly maintained stable [20, 21]. Many algorithms 
have been proposed to estimate illumination parameters, 
such as phase-of-peak (POP) [20], auto-correlation [22], 
non-iterative auto-correlation reconstruction (ACR) [21], 
and image recombination transform (IRT) [23]. These 
methods allow the retrieval of pattern parameters from 
the acquired data, thereby facilitating the artifact-free 
reconstruction of super-resolved images. However, their 
accuracy is generally limited to integer pixels, and the 
robustness can only be secured at a relatively low noise 
level. Among others, the cross-correlation approach 
(here we describe as COR) is probably the most popular 
and effective technique in regard to its robust determi-
nation of wave vectors with sub-pixel accuracy [2]. With 
the correlation-based optimization scheme, the wave 
vectors and the pattern phases can be determined with 
very high precision. However, its performance may still 
be compromised under noisy, low signal-to-noise ratio 
(SNR) conditions, posing a major challenge for its use 
for long-term live-cell imaging, where low photobleach-
ing, phototoxicity, and light dose are a must. Moreover, 
the sub-pixel iterative interpolation operation is compu-
tationally lengthy and time-consuming, precluding its 
applications for real-time imaging of dynamic samples. 
Although video-rate high-speed SIM imaging has been 
recently demonstrated, the time-consuming parameter 
estimation step is not involved in the real-time workflow 
[24, 25]. A common practice is to calibrate the illumina-
tion parameters in advance, e.g., by using the COR algo-
rithm, and then to use the estimated parameters for the 
subsequent time-lapse super-resolution reconstruction. 
Nevertheless, calibration at start-up requires that the 
imaging conditions remain invariant while continuous 
acquisitions are performed, which cannot follow the drift 
in the illumination parameters over time. Consequently, 
such a pre-calibration strategy may be compromised or 
even fails in complicated or harsh operating environ-
ments where the object or optical system cannot be 

maintained in a steady state. As a result, accurate, robust, 
efficient estimation of illumination pattern parameters in 
SIM is still an open quest for real-time, long-term live-
cell imaging.

To this end, we present an efficient and robust SIM 
algorithm based on principal component analysis (PCA-
SIM). Based on the observation that the ideal phasor 
matrix of a SIM pattern is of rank one, PCA is introduced 
as a “dimensionality reduction” tool for precise identifi-
cation of noninteger pixel wave vector and pattern phase 
while rejecting components that are uncorrelated to the 
desired, parameter-dominating “principal component”. 
Experiments demonstrate that PCA-SIM achieves more 
accurate (0.01 pixel wave vector and 0.1% of 2 π relative 
phase) parameter estimation and superior noise immu-
nity with more efficient non-iterative efficiency than 
conventional cross-correlation-based methods. The 
advantages of high efficiency and robustness enable flex-
ible real-time SIM imaging of live cells based on PCA-
SIM under complex experimental conditions. We also 
developed a MATLAB toolbox with associated data-
sets of our PCA-SIM algorithm, offering a ready-to-use, 
easy-to-operate, open-source solution for potential fast, 
long-term, artifact-free super-resolution live cell imaging 
applications.

2 � Results
2.1 � PCA‑SIM principle
To break the optical diffraction limit, SIM modu-
lates the high-frequency information of the sample, 
which is originally beyond the cutoff frequency of 
the optical transfer function (OTF), into the micro-
scope passband by structured illumination, usually in 
the form of three-step phase-shifting fringe patterns. 
As illustrated in Fig.1a, SIM reconstruction is essen-
tially the reorganization of diffraction-limited spec-
tral components in the Fourier domain, consisting of 
0-order spectrum [ C0 = O(k)S̃0(k) ] representing the 
wide-field spectral information and ±1-order spectra 
[ C±1 = mO(k)S̃±1(k∓kex)e

−jϕ0 ] for the super-resolved 
spectral information modulated into OTF’s support, 
where k represents the spatial frequency coordinates, 
S is the desired sample function, ∼ denotes the Fourier 
transform of the corresponding variable, O represents 
the system OTF, and kex , ϕ0 and m are the wave vector, 
initial phase, and modulation depth of the sinusoidal 
pattern, respectively (detailed in Additional file  1: Note 
S1). In order to demodulate the high-frequency spectral 
information precisely, it is essential to reliably retrieve 
the illumination parameters kex , ϕ0 , and m, as even slight 
wave vector errors (within 1 pixel) and phase errors (of 
the order of 6 % of 2 π ) may lead to serious reconstruction 
artifacts [18]. We decompose kex into an integer-pixel 
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part kint and a sub-pixel part ksub , where kint can be con-
veniently determined by locating the peak of the 1-order 
spectrum map. After a spectral shift of kint , C±1 can be 
rewritten as mO(k+kint)S̃1(k − ksub)e

jϕ0  (see Fig.  1b). 
After inverse Fourier transform performed on C±1 , the 
high-frequency sample information can be expressed as:

where r represents the spatial coordinates. It can be seen 
that the sub-pixel wave vector ksub is exactly reflected in 
the 2D phase slope of the resultant phasor. Nevertheless, 
noise, optical aberrations, OTF-induced signal attenua-
tion, dysregulated modulation depth, and other experi-
mental imperfections all result in a noisy phase signal 
(see Fig.  1c), which prohibits reliable determination of 
the sub-pixel wave vector by using traditional methods, 
including COR (detailed in Additional file  1: Note S2). 
Therefore, eliminating these irrelevant disturbances is 

(1)F
−1[S̃1(k − ksub)e

jϕ0 ] = S1(r)e
j(ksubr+ϕ0),

the key to the success of robust parameter estimation for 
SIM under low SNR conditions.

To devise a solution to such a challenging problem, we 
first consider an ideal case that is free from all above-
mentioned interferences, and the phasor of an ideal 
sinusoidal pattern (free from sample modulation) can be 
denoted as ej(ksubr+ϕ0) . A close inspection of the ideal pat-
tern phasor function reveals that it is essentially a rank-
one matrix, which can be represented as the product of 
two vectors:

where sx = exp[j(kx,subrx + ϕx,0)] , sy = exp[−j(ky,sub 
ry + ϕy,0)] , the subscripts x and y indicate the compo-
nents along the horizontal and vertical directions, and 
{·}H represents the complex-conjugate transpose. Such a 
decomposition inspires us that the ideal pattern phasor 

(2)exp[j(ksubr + ϕ0)] = sxs
H
y ,

Fig. 1  Flow chart of structured illumination microscopy based on principal component analysis. a The raw 3-step phase-shifting SIM images 
and the separated spectral components. b The 1-order spectrum after being shifted kint . c Phases of the inverse Fourier transform of b (c1), 
magnified phase map from the boxed regions in c1 (c2), the ideal phases of c2 (c3) and the unwrapped version of c3 (normalized to −π to π ) 
(c4). The sub-pixel wave vector ksub is reflected in the 2D phase slope of the ideal phases, but in practice, various disturbances produce serious 
noises. d The phases of the phasor matrix after different operations: the original phases (top first), phases after applying the masking operator (top 
second), phases after applying PCA (top third), and phases after least-squares fitting (top forth); and the phase distributions along the light blue 
line (bottom). After using the masking operator and PCA, the irrelevant components in the original phasor matrix are effectively “cleared up”. The 
cleaned version is close to its ideal form. e Obtained wave vector with sub-pixel accuracy (bottom), merged spectrums in one direction (middle), 
and merged spectrums of three directions rotating 120 degrees from each other (top). The whole process of PCA-SIM is summarized as: Step 
1: obtain the Fourier spectrums of the raw SIM images; Step 2: separate the 0- and ±1-order spectrums and shift the ±1-order spectrums with 
integer-pixel displacement; Step 3: use a masking operator to extract the center signals for inverse Fourier transform and obtain the exponential 
term; Step 4: SVD and extract the principal component; Step 5: fit two principal vectors with the least square method after removing starting error 
points; Step 6: obtain accurate sub-pixel wave vector; Step 7: obtain the initial phase and modulation depth; Step 8: merge separated spectrums 
and perform super-resolution reconstruction
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matrix exp[j(ksubr + ϕ0)] should have only one principal 
component, which describes the single best subspace of 
the data in the least-squares sense. However, under real 
conditions, experimental imperfections and other dis-
turbances will inevitably produce noisy measurements, 
resulting in high dimensionality of the pattern phasor 
matrix. Then the extraction of ksub and ϕx,0 from the 
noisy measurements is recast as finding the first princi-
pal component of the high-dimensional pattern phasor 
matrix, which is precisely the task accomplished by prin-
cipal component analysis (PCA) [26]. PCA is the process 
of reducing data dimensionality by geometrically project-
ing them onto lower subspace called principal compo-
nents, with the goal of finding the best summary of the 
data using a limited number of principal components 
(here only the first principal component is kept and the 
rest is ignored). In PCA, the principal components are 
eigenvectors of the data’s covariance matrix. Thus, the 
principal components are often computed by singular 
value decomposition (SVD) of the data matrix. The 2D 
slope, i.e., the sub-pixel wave vector ( kx,sub , ky,sub ) in sx 
and sy , can then be independently determined from 1D 
unwrapped phase distribution of the left and right domi-
nant singular vectors based on linear regression. With-
out reference to prior knowledge, the unwanted noise 
and other disturbances in the raw pattern phasor matrix 
are effectively “cleaned up” by PCA after dimensionality 
reduction, as illustrated in Fig. 1d. More details about the 
principle and implementation of the PCA-SIM algorithm 
are summarized as Algorithm 1 in Additional file 1: Note 
S3.

Though PCA-SIM improves the accuracy and robust-
ness of parameter estimation without using interpola-
tion, PCA itself can be a time-consuming operation for 
relatively large matrix dimensions. In addition, real-time, 
long-term live-cell imaging applications require low pho-
tobleaching, phototoxicity, and therefore very limited 
light dose. Under such low SNR conditions, it remains 
a major challenge to accurately extract the eigenvectors 
and eigenvalue of the first principal component from 
highly noised data. To further accelerate PCA-SIM and 
enhance its noise robustness, we introduce an addi-
tional frequency-domain masking operator on the noisy 
1-order spectrum before applying PCA. The masking 
operator can be further divided into the inner signal win-
dow (for retaining the main signal) and the external pad-
ding region (for denoising). In Additional file 1: Note S4, 
we derive that the Fourier spectrum of an ideal pattern 
phasor matrix exp[j(ksubr + ϕ0)] with a sub-pixel wave 
vector is a downsampled 2D Dirichlet function with most 
of its energy is concentrated in limited support around 
the integer part of the wave vector (see Additional file 1: 
Fig. S1). Therefore, a frequency domain mask is applied 

to the noisy 1-order spectrum to retain the high-energy 
spectral peak region while zeroing out the low SNR data 
region outside this window, as illustrated in Additional 
file  1: Fig. S2. Because the limited mask almost encom-
passes the dominant energy of the downsampled 2D 
Dirichlet function (concentrated within small support) 
while the noise energy (that spread evenly over the entire 
1-order spectrum) is significantly suppressed, significant 
improvement in accuracy and robustness of parameter 
estimation can be expected, especially under low SNR 
conditions (see Additional file  1: Fig. S3–S5 for more 
details). In addition, the masking operator significantly 
reduces the amount of data involved in the PCA compu-
tation, and thus the computational efficiency of the whole 
algorithm can be greatly improved. More details about 
the implementation of the PCA-SIM algorithm with the 
application of frequency domain masking operator are 
summarized as Algorithm 2 in Additional file 1: Note S5.

After ksub is determined, the initial phase ϕ0 can be 
obtained from the phase angle of exp[j(ksubr + ϕ0)] at 
r = 0 . The modulation depth m is then calculated by 
complex linear regression of C0 against the sub-pixel 
shifted version of C±1 . Then, the 0- and ±1-order spec-
trums can be accurately separated and merged in the 
frequency domain, as illustrated in Fig.  1e. To achieve 
isotropic super-resolution, a similar operation is per-
formed on two other sets of SIM images with fringe ori-
entations rotating by ± 120 degrees (see Fig. 1e). Finally, 
an image deconvolution algorithm (e.g., Wiener recon-
struction [8], total variance (TV) [27], or High-Fidelity 
(HiFi) SIM [15]) is further applied on the synthetic spec-
trum to compensate the effects of the OTF and spectral 
overlapping regions, resulting in a super-resolved image 
of the sample. The complete flow diagram of the PCA-
SIM algorithm is summarized in Fig. 1.

2.2 � Simulations to demonstrate the superior 
comprehensive performance of PCA‑SIM in terms 
of accuracy, efficiency, and noise immunity

A set of comparative simulations were carried out to 
verify the effectiveness of PCA-SIM. We used a high-res-
olution ( 1024 × 1024 pixel) image of bovine pulmonary 
artery endothelial (BPAE) cells with rich details, sharp 
edges, and smooth background as the ground truth. The 
high-resolution image was multiplied by ideal struc-
tured illumination patterns with frequencies matching 
the incoherent diffraction limit of a 40× 0.6 NA objec-
tive lens. Then, its Fourier spectrum was attenuated with 
a corresponding OTF to simulate the ideal SIM images 
acquired by a 40× 0.6 NA microscope (note that the main 
results obtained via these simulations do not significantly 
depend on the choice of imaging parameters). Finally, 
Gaussian noises with different powers were artificially 
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added to generate the raw SIM images under differ-
ent SNR conditions. Figure  2a shows the performances 
of PCA-SIM and COR for estimating wave vectors at 
different noise levels. It can be seen that PCA-SIM can 
obtain a more precise wave vector with an accuracy bet-
ter than 0.01 pixel at low noise levels. When the noise 
level increases to 40 dBW, COR yields serious errors 
larger than 1 pixel, while the errors of PCA-SIM can still 
be controlled within 0.2 pixels. The initial phase errors of 
different methods at different noise levels are illustrated 
in Fig.  2b, from which we can see that the accuracy of 
PCA-SIM can stably achieve 0.1% of 2 π under typical 
noise conditions, thanks to its reliable wave vector esti-
mation. In contrast, the POP, ACR, and IRT methods 
cannot provide high-accuracy phase estimation, because 
their wave vector estimation is limited to integer pixels 

only. Figure 2c shows the wide-field images of the sample 
under different noise conditions and the super-resolution 
reconstruction obtained by PCA-SIM. Figures 2d, f illus-
trate the super-resolution reconstruction comparisons of 
different methods at three low-to-high noise levels (25 
dBW, 35 dBW, and 45 dBW). When the noise is less than 
40 dBW, both PCA-SIM and COR yield good results, 
while the results of other methods suffer certain degrees 
of distortions. When the noise is greater than 40 dBW, 
the results obtained by COR deteriorate while PCA-
SIM remains visually close to the ground truth. Note 
that the SIM reconstruction results shown in Figs. 2d-2f 
are obtained by using parameters estimated from differ-
ent noise data but noise-free raw SIM images for better 
visual comparison. It should be also noted that the time 
cost of PCA-SIM for parameter estimation is only 0.8119 
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± 0.0011 s, processed with MATLAB R2016a using the 
open source code in a Dell XPS 8930 computer (Intel(R) 
Core(TM) i7-9700 CPU, NVIDIA GeForce GTX 1660 Ti), 
while that of COR is 16.2810 ± 0.0355 s. In addition, we 
also provide the simulation comparisons of the standard 
simple structure, which can more intuitively demonstrate 
the advancement of PCA-SIM (Additional file 1: Fig. S6). 
These results demonstrate that parameter estimation has 
a considerable impact on the fidelity of SIM reconstruc-
tion, and PCA-SIM has the best performance in terms of 
accuracy, efficiency, and noise immunity, which in turn 
provides the highest quality image reconstructions than 
the state-of-the-art technologies.

2.3 � Comparative experiments to demonstrate the superior 
super‑resolution reconstruction capability of PCA‑SIM

We constructed a tri-color laser-interference SIM sys-
tem (Additional file 1: Fig. S7) based on an off-the-shelf 

inverted fluorescence microscope (IX73, Olympus, 
Japan) to compare the performance of PCA-SIM with 
COR, POP, ACR, and IRT through practical experiments. 
A CV-1 in Origin Simian-7 (COS-7) cell sample (with 
DAPI-labeled nucleus, Alexa FluorTM 568-labeled actin 
and MitoTrackerTM Green FM-labeled mitochondria) 
was fixed, and the raw SIM images were acquired by our 
SIM system. As shown in Fig. 3, though the image resolu-
tion is greatly improved in the results of POP, ACR, and 
IRT, the fine details of the mitochondria and actin fila-
ment are still blurred. In contrast, these fine structures 
are resolved with higher contrast and fidelity by COR and 
PCA-SIM, benefiting from more accurate estimates of 
illumination parameters. Note that when the difference 
of wave vector estimate is within 0.1 pixel, the differ-
ence in the resultant reconstruction can hardly be dis-
tinguished visually. Further analysis of the fluorescence 
intensity profile distributions in the super-resolution 
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results reconstructed by different methods reveals a 
slight resolution improvement of PCA-SIM over COR 
(Fig.  3d). The other comparative results of COS-7 cells 
using different objective configurations also demonstrate 
that PCA-SIM yields super-resolution images with better 
quality (Additional file 1: Fig. S8). In addition, we applied 
PCA-SIM to different samples collected by different SIM 
microscopes, e.g., BPAE cells collected by our experimen-
tal setup (Additional file  1: Fig. S9), the autofluorescent 
ascaris sample collected by a commercial SIM system 
(N-SIM, Nikon, Japan) (Additional file 1: Fig. S10), micro-
tubules in COS-7 cells collected by another commercial 
SIM system (GE DeltaVision OMX, GE, USA, data avail-
able in the literature [15] (Additional file 1: Fig. S11), and 
f-actin in COS-7 cells acquired by a 1.7 NA total internal 
reflection fluorescence (TIRF) objective (data available in 
the literature [11], Additional file 1: Fig. S12). In all these 
experimental datasets, PCA-SIM outperforms other 
approaches and achieves high-quality super-resolution 
reconstruction with higher efficiency.

2.4 � Experiments to demonstrate the noise robustness 
of PCA‑SIM

The potential of SIM for live-cell imaging is often difficult 
to be fulfilled owing to photobleaching and phototoxic-
ity that can substantially perturb the desired physiology. 
Reducing the excitation power can effectively mitigate 
the photodamage, but the resulting low SNR poses a sig-
nificant challenge to the post-processing algorithm. Here, 
we further verify that PCA-SIM is robust to low SNRs 
through experiments on fixed HeLa cells with DAPI-
labeled nucleus and FITC-labeled α-SMA (smooth mus-
cle actins). Considering that photobleaching would make 
it difficult to image the sample repeatedly hundreds of 
times under dense SNR conditions, we artificially added 
simulated Gaussian noises to the practically captured raw 
SIM images to produce different SNR situations. As SNR 
decreases, the structural distortion and contrast imbal-
ance in the super-resolution images reconstructed with 
COR increase significantly (Fig. 4a–e). In contrast, these 
artifacts are effectively suppressed by PCA-SIM, yielding 
high-quality results almost visually identical to those at 
high SNR. Note that here we also used the noise-added 
low-SNR images for parameter estimation and the raw 
captured images for image reconstruction to better visu-
alize the impact of the parameter estimation. To further 
quantify the quality of super-resolution images obtained 
by COR and PCA-SIM, we calculated the SSIM value of 
the reconstruction results at different SNRs with respect 
to those at high SNR (without artificial noise). In con-
structing SIM images with added noise from 60 dBW 
to 80 dBW, the super-resolution images reconstructed 
with COR suffer a 92% reduction in SSIM value (medians 

decreased from 0.99 to 0.07), while PCA-SIM only has 
a mild reduction (0.97 to 0.6) (Fig.  4f ). In addition to 
Gaussian noise, PCA-SIM also demonstrates strong noise 
resistance under Poisson noise conditions, and the gen-
eral trend of the SSIM distributions does not differ sig-
nificantly from the cases of Gaussian noise (Additional 
file 1: Fig. S13). In Additional file 1: Fig. S14, we gener-
ate the noisy dataset on a BPAE sample under different 
SNR conditions by alternatively reducing the excitation 
powers. The corresponding experimental results coincide 
with those of simulations with artificially added noise, 
indicating that PCA-SIM provides more robust recon-
struction quality at low SNR. All these experimental 
results demonstrate the potential of PCA-SIM for appli-
cation to long-term live-cell imaging in low-excitation 
conditions.

2.5 � Real‑time live‑cell SIM super‑resolution imaging 
with illumination parameters correction

The high accuracy, robustness, and efficiency of PCA-
SIM open the possibility of on-the-fly super-resolution 
reconstruction with illumination parameters compen-
sation. Such an instant parameter updating strategy has 
the potential to significantly improve the live-cell imag-
ing performance of SIM under imperfect imaging con-
ditions with external disturbances. To validate this, 
we achieved real-time PCA-SIM acquisition, recon-
struction, and display based on graphics processing 
unit (GPU) acceleration, and used it to measure the 
dynamics of mitochondria of live COS-7 cells labeled 
by MitoTrackerTM Green FM. Recent studies have indi-
cated that mitochondrial dynamic tubulation (MDT) 
drives the formation of mitochondrial networks, which 
are essential for maintaining mitochondrial function 
(mitochondrial DNA integrity, apoptosis, etc.) [28, 29]. 
However, MDT tubules are approximately 100 nm in 
diameter and are highly dynamic, posing a challenge to 
the spatial and temporal resolution of the imaging. In our 
results, the dynamic events of mitochondrial tubules are 
well reconstructed by PCA-SIM (Fig.  5). We observed 
that the MDT tubule, different from the regular thicker 
and more static mitochondria, extended rapidly from 
the mitochondria (Fig. 5a, b). When fusing with another 
mitochondrion and forming a membrane bridge between 
them, the MDT tubule thickened and became the mito-
chondrial network, during which the transfer of material 
occurred (white dashed circle in Fig. 5b). More complex 
dynamic tubule events are recorded in Fig. 5c, where an 
MDT tubule grew a new one after fusing with the left 
mitochondrion (4.32 s), and the new tubule then fused 
with another mitochondrion (9.09 s). Figures  5d–f also 
illustrate interesting mitochondrial dynamics, where one 
mitochondrion was significantly deformed due to being 
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dragged by an MDT tubule (Fig.  5e), and an extended 
tubule turned nearly 90 degrees in search of a mitochon-
drion with which to fuse (Fig. 5f ). Additional file 1: Movie 
S1 provides the complete dynamic SIM super-resolution 
reconstruction results as well as the raw SIM images for 
comparison. We realized a reconstruction frame rate of 
about 11.1 frames per second with 30 ms exposure time 
based on the constructed SIM system. Despite frequent 
switching of the region of interest and adjustment of the 
focus, with some consequent environmental perturba-
tions, PCA-SIM always maintained high imaging qual-
ity thanks to its ability to extract accurate experimental 
parameters from the raw SIM images with low SNRs per 
reconstruction. In addition, dynamic imaging scenes and 
results of a fixed BPAE cell sample with ambient light 
interference and artificial perturbations also demonstrate 

that PCA-SIM can provide immediate, high-quality 
super-resolution reconstruction in a complicated envi-
ronment (Additional file 1: Fig. S15, and Additional file 3: 
Movie S2). Compared to the COR-based parameter cali-
bration in advance, which caused subsequent reconstruc-
tion failures when the experimental environment varies, 
such as operators interacting with the experiment based 
on the results, PCA-SIM achieved adaptive parameter 
estimation, thus always obtaining stable and high-quality 
super-resolution images (Additional file 1: Fig. S16).

3 � Discussion and conclusion
In summary, we have developed an efficient and robust 
SIM parameter estimation and image reconstruction 
approach based on PCA (PCA-SIM). By extracting the 
first principal component of the pattern phasor matrix, 
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the noise and other interference components can be 
effectively removed, leading to precise retrieval of nonin-
teger pixel wave vector and pattern phase in a simple and 
efficient manner. Compared with state-of-the-art SIM 
algorithms, including the established COR, PCA-SIM has 
demonstrated superior performance in terms of estima-
tion accuracy, image quality, efficiency and noise robust-
ness. Based on PCA-SIM, we implemented real-time SIM 
reconstruction in complex experimental scenarios, which 
allowed the operator to give feedback on the experiment 
instantly based on the displayed image, facilitating the 
utilization of the SIM microscope. In addition, we pro-
vide an associated open-source and easy-to-use MAT-
LAB toolbox to help users process, analyze, and visualize 
SIM data based on PCA-SIM (Additional file  4). Simu-
lations and experimental results suggest that PCA-SIM 
is a promising method for real-time, long-term, high-
quality live-cell imaging under low-SNR, weak-excitation 
conditions.

It should be emphasized that the current work is mainly 
focused on parameter estimation algorithm in SIM. By 
further increasing the hardware speed, it is expected to 
achieve more rapid SIM imaging. Under extremely low 
SNR conditions, PCA-SIM can be combined with regu-
larization techniques, e.g., Hessian-SIM [18], to gain 
additional capabilities of image denoising by multi-frame 
averaging under a priori of spatio-temporal continu-
ity. Finally, while only 2D SIM parameter estimation is 
addressed here, PCA-SIM can be easily generalized to 3D 
SIM by extending PCA and associated operations from 
2D to 3D. Since the data volume of 3D SIM (intensity 
stack) is much larger than that of 2D SIM, we believe that 
the improvement in accuracy and speed of parameter 
estimation over the traditional COR method [2] brought 
by the dimensionality reduction feature of PCA should 
be more significant. We leave this generalization of 2D 
PCA-SIM to 3D as future work.
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4 � Methods
4.1 � SIM setup
Our tri-color SIM setup is constructed based on an off-
the-shelf inverted fluorescence microscope (IX73, Olym-
pus, Japan), as shown in Additional file 1: Fig. S7. Three 
laser beams (Laser 1: OBIS LX405, Coherent, USA; Laser 
2: OBIS LX561, Coherent, USA; and Laser 3: Sapphire 
488LP-200, Coherent, USA) are coupled by a plane mir-
ror (M1) and two dichromatic mirrors (DM1: ZT561d-
crb, Chroma, USA; and DM2: ZT488dcrb, Chroma, 
USA), and then filtered, expanded and collimated by a 
spatial filter and a collimating lens (L1: LSB08-A 150 
mm, Thorlabs, USA). After being modulated by a half-
wave plate (H1: GCL-0604, Daheng Optics, China) into 
p(parallel)-polarized light in order to reduce the subse-
quent light intensity loss, the laser beam passes through 
a polarization beam splitter (PBS: PBS251, Thorlabs, 
USA) and is projected onto a ferroelectric liquid crys-
tal spatial light modulator (SLM: QXGA-3DM, Fourth 
Dimension Displays, UK) displaying dense gratings. The 
spatial light modulator is used to generate diffraction of 
light, which is then modulated to s(senkrecht)-polarized 
light by another half-wave plate (H2: GCL-0604, Daheng 
Optics, China) and reflected again through the polariza-
tion beam splitter. An achromatic lens (L2: LSB08-A 250 
mm, Thorlabs, USA) converges diffracted beams to its 
focal plane, or spectral plane, with a mask designed in 
advance for blocking the 0-order beam and permitting 
the passage of the ±1-order diffracted light only. A polar-
ization rotator (PR) is usually introduced to maximize the 
modulation contrast of the illumination pattern. The ±1

-order diffracted light then passes through a lens pair (L3: 
LSB08-A 200 mm, Thorlabs, USA; L4: LSB08-A 175 mm, 
Thorlabs, USA), focuses on the back focal plane of the 
objective lens (OBS: UPlanSApo 100×/1.40 Oil, Olympus, 
Japan; UPlanXApo 60×/1.42 Oil, Olympus, Japan), and 
interferes in the sample plane. The emission fluorescence 
is collected by the same objective, propagated through 
the fluorescent interference filter block (FM: U-FVN, 
Olympus, Japan; U-FBW, Olympus, Japan; U-FYW, 
Olympus, Japan) and a tube lens (TL), and finally cap-
tured by an sCMOS camera (PCO Edge 5.5, PCO, Ger-
many) with 60% quantum efficiency to obtain fluorescent 
images, whose exposure is triggered by the spatial light 
modulator.

4.2 � Image processing
The raw SIM images were first slightly edge-attenuated 
as a precaution against edge-related artifacts [2]. Before 
parameter estimation, the Richardson-Lucy deconvolu-
tion was applied to remove partial Poisson noise and out-
of-focus background [30, 31]. For parameter estimation, 
PCA-SIM removed the interference signals unrelated 

to the illumination parameters from the phasor matrix 
( exp[j(ksubr + ϕ0)] ) by SVD and using a masking opera-
tor, thus achieving efficient and accurate experimental 
parameter extraction. More details about the principle of 
PCA-SIM are summarized in Additional file 1: Notes S3–
S5. For other comparison methods, COR followed the 
procedure in fairSIM [19], and POP, ACR and IRT were 
performed with reference to the literature [20, 21, 23]. 
For image reconstruction, we used the reconstruction 
algorithm of the literature [15], which is an improved 
Wiener reconstruction algorithm by point-spread-func-
tion engineering. All image processing of static results 
was implemented using customized codes in MATLAB 
R2016a (except for the image labeled ‘N-SIM’ in Addi-
tional file 1: Fig. S10, which was reconstructed with NIS-
Elements). All image processing of dynamic results was 
implemented using developed SIM software in Visual 
Studio 2017.

4.3 � GPU‑accelerated SIM reconstruction
Since the SIM reconstruction algorithm contains numer-
ous pixel-wise matrix operations and (inverse) Fourier 
transforms, it is well-suited and easily accelerated by 
GPU. We take advantage of GPU to implement the recon-
struction through customized kernel functions based on 
CUDA, which is a parallel computing architecture devel-
oped by NVIDIA. For the convenience of the hardware 
control, we redevelop them in our own software, where 
exposure adjustment and image acquisition are real-
ized through the Software Development Kit (SDK) of 
the sCMOS camera, and the communication between 
the lasers, SLM and the computer is established through 
the serial interface and the corresponding commands. 
All software programs are integrated into Qt framework 
(a cross-platform software for creating graphical user 
interfaces) based on C++ language. The software con-
tains one main thread and several sub-threads that run 
in parallel with each other. The main thread is used for 
the creation and visualization of the graphical user inter-
face (GUI), the parameter setting of the hardware and 
the communication between the threads. In the cam-
era thread, the raw SIM images captured by the sCMOS 
camera are grabbed into a ring buffer, and simultaneously 
the corresponding image sequence numbers are added. 
In the reconstruction thread, each 9 raw SIM images in 
the ring buffer required for super-resolution reconstruc-
tion, which can be determined by the image sequence, 
are copied from the host memory (CPU) to the device 
memory (GPU), and then processed by a series of custom 
kernel functions to obtain the super-resolution image. In 
order to improve the temporal smoothness of the display, 
the sliding window strategy is adopted. Except for the 
first reconstruction which requires 9 images in the image 
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buffer, subsequent reconstructions can be performed 
with only three images (raw images in a certain direction) 
updated. In the display thread, the reconstructed super-
resolution image is copied back to CPU and transferred 
to the main thread along with the first of 9 raw images for 
display on GUI.

4.4 � Sample preparation
The fixed COS-7 cell sample was obtained from Smart 
Computational Imaging Research Institute (SCIRI) of 
Nanjing University of Science and Technology, and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 
on 0.17 mm coverslips, mixed with 10% fetal bovine 
serum (FBS) and 1 % 100 mM sodium pyruvate solution 
at 37◦ C and 5 % CO2 . MitoTrackerTM Green FM (Thermo 
Fisher) was used to label mitochondria in DMEM 
(Gibco) at 37◦ C for 30 min. After fixation, permeabiliza-
tion and washing, F-actin is labeled by Alexa FluorTM 
568 (Thermo Fisher) at 37◦ C for 45 min and nucleus was 
labeled by DAPI (Thermo Fisher) at 37◦ C for 30 min. 
Then the sample is sealed with glycerol after washed by 
Phosphate Buffered Saline (PBS) and pure water.

The fixed BPAE cell sample was obtained from Cell 
Applications, Inc. and cultured in Bovine Endothelial Cell 
Growth Medium in a 37◦ C, 5 % CO2 humidified incuba-
tor. MitoTrackerTM Red CMXRos (Thermo Fisher) was 
used to stain mitochondria at 37◦ C for 30 min. After fixa-
tion, permeabilization and washing, F-actin was stained 
with Alexa FluorTM 488 (Thermo Fisher) phalloidin at 
37◦ C for 45 min, and the nucleus was counterstained 
with blue fluorescent DNA staining DAPI (Thermo 
Fisher) at 37◦ C for 30 min.

The HeLa cells were obtained from Smart Computa-
tional Imaging Research Institute (SCIRI) of Nanjing 
University of Science and Technology, and cultured in 
Minimum Essential Medium (MEM), mixed with 10% 
FBS and 1 % Penicillin/Streptomycin (P/S) at 37◦ C and 
5 % CO2. The slice was dropped into anti-alpha smooth 
muscle Actin antibody (primary antibody, Abcam) added 
with PBS and incubated overnight in a wet box at 4 ◦ C, 
then dropped into the Goat Anti-Mouse IgG H &L (sec-
ondary antibody, Abcam) and incubated in a dark green-
house for 50 minutes. After being placed in PBS (pH 7.4), 
shaking and washing on the decolorization shaking table 
for 3 times, the nucleus was labeled by DAPI in a dark 
greenhouse for 10 min.

The live COS-7 cells were incubated in H-DMEM con-
taining 10% FBS and 1 % penicillin-streptomycin under a 
humidified environment of 5 % CO2 at 37◦ C. COS-7 cells 
were seeded at a density of 5 × 108 cells in the confocal 
dishes with three parallel samples, which were cultured 
overnight. MitoTrackerTM Green FM (Beyotime, China) 
were diluted to 200 nM in H-DMEM, which should be 

pre-warmed at 37◦ C. They were washed by 0.5 mL PBS 
for 3 min. The prepared solution was incubated for 10 
min at a dose of 0.5 mL/well under dark conditions. To 
remove interference from free dyes, all samples were 
washed by PBS for 3 times.

4.5 � Statistical analysis
Except for Fig. 4, Additional file 1: Figs. S14–S16, all the 
figures showed the representative data from 10-30 rep-
resentative experiments. The experimental parameter 
errors and the structural similarity index of the recon-
struction results in Figs.  2, 4, Additional file 1: Figs. S3, 
S4, S6 and S13 were presented as box plots (center line, 
average; limits, 75% and 25% ; whiskers, maximum and 
minimum) in graphs. The intensity profiles in Figs.  2, 
3, and Additional file  1: Fig. S6 are interpolated by lin-
ear interpolation in MATLAB. The running time of 
parameter estimation of COR and PCA-SIM was calcu-
lated by the stopwatch timer function in MATLAB, and 
was expressed as mean ± SEM (standard error of the 
mean). Note that these times were evaluated in the case 
of processing data through MATLAB R2016a in a Dell 
XPS 8930 computer (Intel(R) Core(TM) i7-9700 CPU, 
NVIDIA GeForce GTX 1660 Ti) using open source code.
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