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Abstract 

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved 
in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular pat-
terns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory 
response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function 
mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoim-
mune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been 
achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms 
of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we 
provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, 
NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular 
activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregula-
tion involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we 
summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, 
and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.

Keywords NLRP inflammasome, Health and disease, Therapeutic inhibitor, Auto-inflammatory, Autoimmune, 
Neurological disorders

†Zhihao Xu and Arnaud John Kombe Kombe contributed equally to this work.

*Correspondence:
Jianbin Ruan
ruan@uchc.edu
Ying Zhou
caddiezy@ustc.edu.cn
Tengchuan Jin
jint@ustc.edu.cn
1 Center of Disease Immunity and Intervention, College of Medicine, 
Lishui University, Lishui 323000, China
2 Laboratory of Structural Immunology, the CAS Key Laboratory of Innate 
Immunity and Chronic Disease, School of Basic Medical Sciences, Division 
of Life Sciences and Medicine, University of Science and Technology 
of China, Hefei 230027, China
3 Department of Immunology, University of Connecticut Health Center, 
Farmington 06030, USA
4 Department of Obstetrics and Gynecology, Core Facility Center, Division 
of Life Sciences and Medicine, The First Affiliated Hospital of USTC, 
University of Science and Technology of China, Hefei 230001, Anhui, 
China
5 Institute of Health and Medicine, Hefei Comprehensive National Science 
Center, Hefei, Anhui, China
6 Biomedical Sciences and Health Laboratory of Anhui Province, 
University of Science & Technology of China, Hefei 230027, China

7 Clinical Research Hospital of Chinese Academy of Sciences (Hefei), 
University of Science and Technology of China, Hefei 230001, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43556-024-00179-x&domain=pdf
http://orcid.org/0000-0002-1395-188X


Page 2 of 43Xu et al. Molecular Biomedicine            (2024) 5:14 

Introduction
The host’s innate immune system contributes to recog-
nizing and responding to cellular stress and danger sig-
nals [1, 2]. Pattern recognition receptors (PRRs) of the 
innate immune system mediate recognition of conserved 
molecular signatures of pathogen-associated molecu-
lar patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs) [2, 3]. PRRs are usually classified into 
five main classes by different receptor proteins, includ-
ing Toll-like receptors (TLRs), C-type lectin receptors 
(CLRs), RIG-I-like receptors (RLRs), absent in melanoma 
2 (AIM2)-like receptors (ALRs) and nucleotide-binding 
domain and leucine-rich repeat receptors (NLRs) [2, 
4]. TLRs and CLRs are transmembrane proteins that 
recognize extracellular PAMPs and DAMPs or within 
endosomes. The other cited protein receptors, including 
RLRs, ALRs and NLRs, are thought to detect cytosolic or 
intracellular PAMPs and DAMPs. Among these recep-
tors, certain NLRs and ALRs can assemble into high-
weight oligomeric complexes known as inflammasomes. 
The term inflammasome was first used by Tschopp and 
colleagues two decades ago [2, 5].

Inflammasomes are a set of cytoplasmic receptor 
proteins usually triggered in response to cellular stress 
associated with infectious agents and physiological aber-
ration. Inflammasomes typically comprise a cytosolic 
NLR or ALR sensor, an adaptor ASC (apoptosis-associ-
ated speck-like protein containing a caspase activation 
and recruitment domain, CARD), and a cysteine pro-
tease caspase-1 [6–8]. Based on the different protein 
components and activation pathways, inflammasomes 
were traditionally categorized into two main groups: 
canonical and non-canonical inflammasomes [2, 9, 10]. 
Canonical inflammasomes were found earlier to form a 
sensor-ASC-caspase-1 platform for inflammatory cas-
pase-1 activation. Their multiprotein complex formation 
depends on different cytosolic sensors, mostly from NLR 
members, ALR members, including AIM2, or the tripar-
tite motif (TRIM) family member, like pyrin [2, 11, 12]. 
The non-canonical inflammasomes that assemble with-
out dedicated PRRs have similar functions as canonical 
inflammasomes response to lipopolysaccharide (LPS) 
and cell endogenous oxidized lipids (oxPAC) by the acti-
vation of caspase-11 in mice and caspase-4 and -5 in 
human [9, 10, 13, 14]. In addition, inflammasomes are 
widely characterized as protein complexes of activation 
of inflammatory caspase-1 and a regulated form of cell 
death called pyroptosis accompanied by DNA fragmenta-
tion and rapid plasma membrane permeability [2, 15–18]

As reviewed by Schroder and Tschopp [3], the core 
structure of the NLR family consists of a central nucle-
otide-binding and oligomerization (NACHT) domain, 
bounded by C-terminal leucine-rich repeats (LRRs) and 

N-terminal caspase recruitment (CARD) or pyrin (PYD) 
domains. Based on phylogenetic analyses of NACHT 
domains from NLR family, it was revealed that the NLR 
family could be classified into 3 distinct NLR subfamilies: 
the NODs (NOD1-2, NOD3/ NLRC3, NOD4/NLRC5, 
NOD5/NLRX1, CIITA), the IPAF, consisting of IPAF 
(NLRC4) and NAIP, and the NLRP subfamily. The NLRP 
subfamily is composed of 14 proteins, named NLRP1-
14, from which the NLRP-associated inflammasomes 
have been named, respectively (Fig.  1). In principle, the 
activation of NLRP inflammasomes initiates the oli-
gomerization of sensor proteins, facilitating the assembly 
of the inflammasome through homotypic interactions 
between PYD-PYD or CARD-CARD domains, which in 
turn recruits and activates pro-inflammatory caspase-1 
protease. The activated caspase-1 then triggers pyropto-
sis by cleaving GSDMD, leading to the release of IL-1β 
and IL-18. However, because of the complexity of the 
activation pathway, the activation mechanism for NLRP 
inflammasome by different activators remains to be 
addressed [2, 13].

In this review, we have gathered recent knowledge on 
the role of NLRP inflammasomes in health and diseases, 
their structural organization, and their mechanism of 
activation and regulation. Moreover, by describing the 
etiology of aberrant inflammasome activation that leads 
to diseases, we highlighted current therapeutic inhibitors 
and opened future possible strategies that can better help 
in mitigating the activation of pathogenic inflammations.

Overview of NLRP inflammasomes: from health 
to disease
NLRP inflammasomes in health
In general, NLRP inflammasomes are intracellular het-
ero-oligomeric proteins that play an essential role in 
innate immunity, providing a rapid and efficient response 
against DAMPs released from infected, stressed, dead, 
and dying cells and PAMPs from bacterial and viral infec-
tions. By recognizing these signals of infection or tissue 
damage (PAMPs and DAMPs), activated inflammasomes 
induce the production of pro-inflammatory cytokines, 
which recruit immune cells to the site of infection and 
injury, trigger inflammation, and promote tissue and 
organ repair. NLRP inflammasomes consist of 3 multipor-
tion protein complexes (a stimuli sensor protein [NLRP], 
an adaptor protein [ASC], and an effector protein [pro-
caspase-1]) that recognize a plethora of danger signals 
(PAMPs and DAMPs) by NODs (such as NLR that con-
tains a C-terminal caspase-recruiting domain [CARD]), 
and modulate caspase-1 activation, which consequently 
induces pyroptosis for the host health preservation, in 
theory [19, 20] (Fig.  1). In other words, inflammasome-
induced pyroptosis destroys and eliminate infected and 
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damaged cells in order to prevent infection spread and 
restore or maintain tissue homeostasis.

Mechanistically, upon assembly-based activation, 
NLRP inflammasomes trigger cleavage of pro-IL‐1β 
and pro-IL‐18 by activating caspase proteins into IL‐1β 
and IL‐18, their respective mature forms. Mature IL‐1β 
binds to its receptor and the interaction triggers leuko-
cyte infiltrations, lymphocyte activation, and acute phase 
protein induction, and favors a chemotactic environment 
(secretion of inflammatory factors and chemokines at 
the inflammatory site), which in turn, promotes inflam-
matory response against the specific stimuli that have 
induced inflammasome assembly [2, 21, 22]. Simultane-
ously, mature and activated IL-18 induces the production 
of cell stress-associated components, including nitric 
oxide and reactive oxygen species, which increases chem-
otactic environment and recruits immune cells. Besides, 
activated caspase-1 from the NLRP inflammasome com-
plex induces cleavage of gasdermin D (GSDMD) into its 
activated form, which incorporates into the cell mem-
brane and creates pores via its free N-terminal end, and 
consequently causes infected cell swelling and inflamma-
tory-related death known as pyroptosis [23].

Constitutively, GSDMD consists of a central short 
linker region bounded by an N-terminal domain of 

GSDMD (GSDMD-Nterm) and a C-terminal auto-inhi-
bition domain. Notably, the GSDMD-Nterm is the active 
cell death domain. Cleavage of GSDMD by activated 
caspase-1 at GSDMD C-terminal removes the auto-inhi-
bition domain and releases an activated GSDMD with 
an available N-terminal, which binds to the inner leaf-
let cell membrane phosphatidylinositol phosphates and 
phosphatidylserine. This binding results in GSDMD oli-
gomerization and its insertion within the cell membrane, 
forming 10 [14] nm pores that cause pyroptosis [24]. 
Note that GSDMD-caused pyroptosis also favors release 
of mature IL‐1β and IL-18 via nonconventional secretion, 
favoring health-associated NLRP inflammasome inflam-
matory response. The cell debris comprising degraded 
antigenic peptides is cleared through blood circulation 
to restore tissue or organ homeostasis and host health. 
Summarily, through pyroptosis signaling, NLRP inflam-
masomes contribute to the clearance of pathogens and 
the maintenance of tissue homeostasis.

To date, there are about a dozen species within the 
NLRP family, precisely fourteen [25]. NLRP1 (along 
with its derivative CARD8) sensors possess exclusively 
a FIIND domain and a CARD domain at the C-terminal, 
whereas the NLRP10 sensor alone consists only of PYD 
and NACHT domains. The remaining members share 

Fig. 1 Overview of Structural organization of NLRP family and NLRP inflammasome assembly. NLRP family genes consist of an N-terminal pyrin 
domain (PYD), a central nucleotide binding and oligomerization (NACHT) domain, bounded by C-terminal leucine-rich repeats (LRRs) and caspase 
recruitment (CARD) or pyrin (PYD) domains. In NLRP family, NLRP1 (and its derived CARD8) sensors alone contain a FIIND domain and a CARD 
domain a C-terminal, NLRP10 sensor alone only consists of a PYD and a NACHT domains, while the remaining are similar, but activated by different 
stimuli. Numerous NLRP stimuli can trigger NLRP activation to an assembled inflammasome, and these stimuli include microbe-derived signals 
(commensal bacteria and commensal fungi), pathogen-derived signals (foreign bacteria, fungi, parasites, and viruses), and host-derived signals 
(ion flux, mitochondrial dysfunction and damages, ROS, and metabolic factors). A bona fide assembled NLRP inflammasome consists of a cytosolic 
a NLRP gene (the sensor), an apoptosis-associated speck-like (ASC) protein containing a caspase activation and recruitment domain, CARD (the 
adaptor), and a cysteine protease caspase-1 (CASP1) (the effector)
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similar structural domains, including an N-terminal PYD, 
a middle NACHT domain, and a C-terminal LRR region 
(Fig. 1). A variety of stimuli can trigger NLRP activation 
and lead to the formation of an assembled inflamma-
some. NLRP1 and NLRP3 inflammasomes are the main 
extensively studied and well-described so far, whereas 
other NLRPs including NLRP2, NLRP6, NLRP7, NLRP9, 
NLRP10, and NLRP12 have also been identified to form 
inflammasomes, and because of their important roles in 
health and diseases as well, they are in the middle of sci-
entific investigations.

NLRP inflammasomes in disease
Despite the benefic role played by NLRP inflammasomes 
to clear pathogens (or foreign bodies) and restore cell 
and organ health and homeostasis, NLRP inflammas-
omes are the main leaders of chronic diseases and health 
state degradation by chronic inflammation. So, the limit 
between beneficial and pathogenic inflammations is very 
thin (Fig.  2). Indeed, aberrant activation and dysfunc-
tion of NLRP inflammasomes are health-threatening and 
responsible for chronic inflammation. Chronic inflam-
mation is characterized by a steadily high or an increas-
ing production of pro-inflammatory cytokines (yielding 
cytokine storm), persisting for a long time beyond the 
infection clearance (or in absence of infections) and 

where the immune response continues to pump out 
white cells and release chemical messengers. The chronic 
inflammatory response is generally and clinically charac-
terized by death of cells at the infection site. It is note-
worthy that chronic inflammation, caused by NLRP 
inflammasomes, is involved in organ damage, persistence 
of pre-acquired diseases, and the disease development 
process of several conditions, which include but are not 
limited to Alzheimer’s disease, asthma, cancers, heart 
diseases, rheumatoid arthritis, ankylosing spondylitis, 
and diabetes, and known as chronic diseases [26]. Most 
NLRP inflammasome dysfunctions are caused by muta-
tions within one gene regulating the formation of NLRP 
inflammasome and cause rare disease conditions known 
as cryopyrin-associated periodic syndromes (CAPS) [27]. 
Commonly known as gain-of-function mutations, these 
gene modifications usually occur in the NLRP proteins, 
and induce a dysfunction or dysregulation of the NLRP 
inflammasomes.

Note that mutations in other NLRP inflammasome 
components have not been observed so far, which sug-
gest that aberrant inflammasome activation nonde-
pendent to NLRP mutations, may be caused by health 
condition-related inflammasome dysregulation. For 
instance, a recent study demonstrated that severe 
COVID-19 patients are characterized by an immune 

Fig. 2 Roles of NLRP in health and diseases in different organs and tissues. Schematic representation of the different functions of NLRP in (a) oral 
cavity, (b) lungs, (c) digestive system, (d) pregnancy and fetus, (e) liver, (f) skin, (g) joints, (h) peripheral and central nervous system, (i) brain. 
Functions shown in green represent the NLRP inflammasome-dependent protective response (or NLRP beneficial roles in health) and functions 
shown in black represent the NLRP inflammasomes-associated diseases (or NLRP detrimental roles in diseases). Numbers in brackets indicate 
the different NLRPs associated. “?” indicates unknown roles of NLRP inflammasomes
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response heterogeneity, also known as a reduced immune 
system fitness [28]. This condition is attributed to the 
inability of the immune system (challenged by the virus) 
to properly downregulate the NLRP3 inflammasome 
activation. Thus, unhealthy people with reduced immune 
response fitness display a dysregulated NLRP3 inflamma-
some activity, characterized by a steady and persistent 
inflammatory response, worsening the infection [28]. 
Moreover, another study showed that type 2 diabetics 
with chronic glycemic dysregulation demonstrate a dys-
regulated NLRP inflammasome, characterized by a pro-
longed upregulated inflammasome activation, causing 
diabetic retinopathy [29].

At the molecular level, in already activated inflam-
masome state (by either aforementioned etiology), per-
sistence inflammatory response is usually caused by 
accumulation of a variety of NLRP inflammasome dan-
ger signals in threatened organs and tissues and leads to 
systemic chronic inflammation and chronic diseases [26]. 
Even though molecular causes exacerbating danger signal 
persistence are not well described, it is thought, as afore-
mentioned that many biological, social, and environ-
mental factors are involved in inflammation persistence 
or resurgence of acute inflammation [28, 29] that dis-
rupts organ or tissue normal physiology and breakdown 
immune tolerance, which leads to chronic inflammatory 
diseases. Therefore, being linked to NLRP inflammasome 
activation, it is of crucial need to deeply understand the 
mechanisms of activation for each NLRP inflammasome, 
as they would disclose regulation check points or target 
molecules for therapeutics development.

NLRP1 inflammasome
NLRP1 inflammasomes and its role in health and innate 
immunity
NLRP1 was the first member of the NLRP family to be 
identified and shown to form an inflammasome complex 
and induce activation of caspase-1. NLRP1 inflamma-
some was first described in human microglia and neu-
ronal cells (where NLRP1 expresses the most) before they 
were characterized in mice [5, 30], in which three, but 
four paralogs of NLRP1 (NLRP1a-d) are found so far [25, 
31–34]. These mouse NLRP1 paralogs display different 
functionalities: in some mouse strains, such as the 129S 
mouse strains, only NLRP1b is functional, while the abil-
ity of the rest to stimulate the inflammasome pathway is 
unknown, therefore those are pseudogenes [35]. Interest-
ingly, it was found that human and mouse NLRP1s are 
quite divergent in their protein domain structure, which 
has rendered difficult and hampered the functional stud-
ies and analyses of NLPR1s [36]. Specific studies were 
conducted in both mice and human cells to explore 
the specific and typical functions of NLRP1s in each 

organism. The results from mouse studies revealed that 
mouse and human NLRP1 display distinct and overlap-
ping functions, which could only partially contribute to 
disclosing the role of human NLRP1. Researchers keep 
studying NLRP1s to understand their specific functional-
ities in human cells and their roles in health and diseases.

While the NLRP1 inflammasome and its direct effect 
on health were poorly understood until recently com-
pared to that of the NLRP3 inflammasome, many stud-
ies have started to deeply investigate and disclose its role 
in the innate immune response in mice and humans. A 
recent study [37] investigating the activation mechanism 
of inflammasomes in intestinal epithelial cells (IECs) 
infected with transmissible gastroenteritis virus (TGEV) 
showed increased levels of pro-inflammatory cytokines 
(IL-1β, and IL-18) in both IECs and TGEV-infected tis-
sues, with increased transcription and expression of 
Nlrp1 gene and NLRP1 protein, respectively, and an 
upgraded activation of caspase-1. Additionally, the TGEV 
infection-associated high activation of NLRP1 also acts 
as an interferon-stimulated gene to counteract enterovi-
rus TGEV infection [37]. In other viral infections, such as 
in Picornaviridae family-related infections and double-
stranded RNA Semliki Forest virus infections, NLRP1 
has been identified as a sensor that triggers and regulates 
the protective innate immune response [38, 39].

The role of NLRP1 inflammasome in health and dis-
eases has been investigated. NLRP1 inflammasome 
has been associated with numerous disease releases. 
Specifically, certain NLRP1 variants including NLRP1 
rs12150220 polymorphism, found in skin inflammatory 
diseases, such as vitiligo-associated autoimmune dis-
eases, like Addison’s disease, type 1 diabetes, and sys-
temic lupus erythematous, have been associated with a 
decreased occurrence risk of these diseases [40]. There 
are many other studies that have reported the involve-
ment of NLRP1 inflammasome in diverse infection-
associated immune responses (Fig.  2). How the NLRP1 
inflammasome is activated still remains a subject of 
debating hypotheses. Nevertheless, as we describe bel-
low, recent reports have raised crucial and concluding 
facts about the mechanism of NLRP1 inflammasome 
activation.

Structure of NLRP1 inflammasome
As a member of the NLR family, NLRP1 in humans is the 
largest member. The structural architecture of human 
NLRP1 is unique. It comprises a pyrin domain (PYD), fol-
lowed by a nucleotide-binding domain (NBD), five tan-
dem LRR domains, a ‘function to find’ (FIIND) domain, 
and a carboxy-terminal caspase activation and recruit-
ment domain (CARD) [41] (Figs. 1 and 3). The PYD and 
CARD domains in human NLRP1 belong to the death 
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domain (DD) superfamily for interactions among sen-
sors, adaptors, and caspase-1 [42]. Although human 
NLRP1 simultaneously contains both PYD and CARD 
domains, the C-terminal CARD, but not the auto-inhib-
itory PYD, is a protein–protein interaction domain for 
inflammatory signal transduction [43]. The interaction 
between the CARD domain of NLRP1 and adaptor pro-
tein ASC is necessary to facilitate NLRP1 inflammasome 
assembly and activation [44]. Additionally, the FIIND 
domain is encoded by only 3 proteins, including NLRP1 
[45], the CARD-containing protein 8 (CARD8) [46], a 
p53-induced protein with a death domain [47], and not 
found in any other NLR in the human proteome. The 
spontaneous proteolytic cleavage of FIIND between 

ZU5 (found in ZO-1 and UNC5) and UPA (conserved 
in UNC5, PIDD, and ankyrins) subdomain generates a 
large N-terminal fragment and a smaller C-terminal frag-
ment, which remain associated by non-covalent interac-
tions [48]. The self-cleavage between phenylalanine 1212 
and serine 1213 within the FIIND domain is required to 
activate human NLRP1 [45, 49]. Furthermore, studies 
have shown that the large linker region between PYD and 
NOD is critical for proteolytic cleavage or post-transla-
tional modification of NLRP1 [50–52].

The human genome contains seven different isoforms 
of NLRP1 produced by alternative splicing, each with 
protein sequence alterations that are located in the C-ter-
minal region. Several mammalian species (e.g., rodents 

Fig. 3 Structural features of human NLRP1. a Domain organization of NLRP1, DPP9 and CARD8. Human NLRP1 and CARD8 autoproteolysis sites are 
shown between the ZU5 and UPA subdomains of the FIIND. The dotted black circle shows the N-terminus of NLRP1CT-UPA folded into the DPP9 
active-site tunnel. b Cryo-EM structure of the  hNLRP1FL-DPP9-hNLRP1CT ternary complex. NLRP1 directly bonds to the DPP9 active site and strong 
DPP9 inhibitors (e.g., VbP) are required to displace the inserted peptide of  hNLRP1CT in the DPP9 catalytic pocket and destabilize the ternary 
complex. c Cryo-EM structure of the  hCARD8FL-DPP9-hCARD8CT ternary complex. Unlike human NLRP1, the precisely mechanism of the ternary 
complex destabilized by DPP9 inhibitors (e.g., VbP, VP) remains unknown because CARD8 does not directly bond to the DPP9 active site
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and primates) express extensively diversified NLRP1 
protein among different species. Unlike human NLRP1, 
the domain organization of three murine orthologues 
NLRP1a, NLRP1b, and NLRP1c, all lack an N-terminal 
PYD. Although bioinformatics analyses revealed that 
NLRP1C is a pseudogene [33], mouse NLRP1A and 
NLRP1B can directly recruit the effector inflamma-
tory molecule proCaspase-1 independent of ASC [53]. 
Polymorphisms of mouse NLRP1B have been identified, 
with five different Nlrpb alleles present in inbred mouse 
strains [31]. In addition to the Nlrpb allele, the Nlprld-
f alleles were recently described with little knowledge 
of their functionality [34]. To our knowledge, the differ-
ences in NLRP1 alleles result in a genetic diversification 
of NLRP1.

Molecular mechanism of NLRP1 inflammasome activation
NLRP1 inflammasome was the first described intra-
cellular canonical inflammasome that could activate 
inflammatory caspase-1 [5], yet its activation pathway 
remained poorly understood for a long time. Recently, 
NLRP1 inflammasome has increasingly become the focus 
of innate immune recognition pathways, and our under-
standing of the modulators and regulators of NLRP1 
inflammasome assembly and function has advanced 
remarkably [54]. Recent emerging studies have started to 
shed light on the natural physiological stimuli and bio-
logical purpose of NLRP1 inflammasome, for a better 
understanding of the activation pathway and its role in 
health and disease. Many researches have highlighted the 
importance of NLRP1 inflammasome in the pathogenesis 

of various inflammatory pathologies. Moreover, numer-
ous auto-inflammatory diseases connect with increases 
in NLRP1 inflammasome activity due to dysregulation of 
NLRP1, including vitiligo, systemic sclerosis, melanoma 
and Addison’s disease [45, 55] (Fig. 2). Novel insights on 
the mechanisms between NLRP1 inflammasomes and 
auto-inflammatory diseases at the molecular level are 
discussed hereinafter (Fig. 4).

NLRP1 undergoes post-translational auto-processing 
within the FIIND domain to generate two non-covalently 
associated polypeptides sequestered by dipeptidyl pepti-
dase DPP8 and DPP9 (DPP8/9). Under the stimulation of 
activation signaling of NLRP1, such as the disruption of 
NLRP1 auto-inhibitory state by Val-boroPro (VbP), the 
NLRP1 exposes a destabilized N-terminus of NLRP1 that 
can be recognized by the UBR2/UBE2O-mediated deg-
radation machinery. Subsequent proteasome-mediated 
degradation of the N-terminal protein fragment removes 
the self-inhibition function of NLRP1 and liberates the 
C-terminal UPA-CARD, which is important to recruit 
adapter protein ASC. The UPA-CARD co-assembles 
with ASC via homotypic CARD-CARD interaction to 
form higher-order signalosomes for pro-inflammatory 
caspase-1 protease recruitment and activation [44]. 
Dimerized or activated caspase-1 subsequently induces 
pyroptotic cell death through proteolytic activation of 
GSDMD and releases inflammatory cytokines, such as 
IL-1β and IL-18 [56].

NLRP1 inflammasome is a death-fold containing 
inflammasome, and its PYD and CARD domains are 
members of the death domain superfamily. The death 

Fig. 4 The mechanisms of human NLRP1 inflammasome activation by PAMPs and DAMPs. The proteasome-mediated degradation 
of N-terminus of NLRP1 liberates the C-terminal UPA-CARD from autoinhibition. The acceleration of degradation of NLRP1 by several PAMPs (for 
example, pathogen proteases) overwhelms the DPP9 ternary complex checkpoint to oligomerize into an inflammasome. On the other hand, 
the destabilization of the DPP9 ternary complex by several DAMPs (for example, peptide accumulation) releases the C-terminal functional domain 
of NLRP1 to assemble into an inflammasome. There are two distinct signals-sufficient degradation and repressive complex destabilization-create 
an unstable state to active NLRP1 inflammasome
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domains frequently mediate the oligomerization to form 
a filamentous platform triggering activation of inflamma-
tory caspase-1 in inflammasome. The filamentous struc-
tures of the PYD domain of ASC, the CARD domain of 
ASC and caspase-1 reveal insights into the DD-mediated 
assembly mechanism [56–59]. The three asymmetric 
interaction types of the DD superfamily (Type I, II and 
III), which have distinct interaction interfaces in each 
DD superfamily member, are required to assemble com-
plex macromolecular structures. Significantly, we dem-
onstrated that  NLRP1CARD co-folds with  ASCCARD by 
these three conserved interfaces and proposed a “Mosaic 
model” to explain the danger signal transduction amplifi-
cation in NLRP1 inflammasome [44]. Recent studies also 
reported the polymerization and assembly mechanism 
of the C-terminal functional domain of NLRP1 and its 
analogous CARD8 [60, 61]. In the UPA-CARD filament 
structure of NLRP1, the CARD domain is located in the 
core of the filament, and the UPA subdomain, located 
outside the core filament, is disordered because of a long 
flexible linker between UPA and CARD. The UPA subdo-
main enhances the polymerization of the CARD domain, 
facilitating the filamentous complex formation. Another 
NLRP1 CARD filament structure comprises CARD 
dimers outside the core CARD filament that differs from 
other CARD filaments [60, 61]. These higher-order fila-
mentous complexes have deep biological implications 
in inflammasome activation and signal transduction 
amplification.

Physiological activation of NLRP1 inflammasome by PAMPs
Lately, murine-based studies provided more decisive 
insight into the activation mechanism of NLRP1 (Fig. 4). 
The Lethal Factor (LF) from Bacillus anthracis of PAMPs 
is the best-characterized NLRP1 activator that activates 
a subset of murine NLRP1B (mNLRP1B) and rat NLRP1 
(rNLRP1B) proteins [62, 63]. Studies on the mNLRP1B 
inflammasome along with the identification of the natural 
physiological stimuli LF of Bacillus anthracis represent 
a major breakthrough in our understanding of NLRP1 
inflammasome activation mechanism [31]. The specific 
activator anthrax lethal toxin consists of a protective 
antigen and a lethal factor that could trigger NLRP1B 
inflammasome assembly to activate caspase-1 and secret 
IL-1β, but not human NLRP1 inflammasome. In this 
regard, the FIIND domain of mNLRP1B first auto-prote-
olysis to produce two non-covalently associated N-termi-
nal and C-terminal fragments. LF mediates the cleavage 
of the mNLRP1B amino-terminal domain to expose a 
destabilizing neo-N terminus [64, 65]. Subsequent N-end 
rule E3 ligase UBR2 recognizes and ubiquitinates the 
destabilizing N-degron, which is rapidly degraded by 
proteasome-mediated degradation machinery [66]. The 

active C-terminal fragment is not degraded because of 
the break within the FIIND domain but rather is liber-
ated to recruit the pro-inflammatory caspase-1 protease. 
Activated caspase-1 subsequently induces pyroptotic cell 
death and inflammatory cytokine releases, such as IL-1β 
and IL-18 [67]. The unifying mechanism of proteasome-
dependent NLRP1 inflammasome activation has been 
named “functional degradation” [50, 67]. Recently, Sand-
strom and co-workers found that IpaH7.8 of Shigella 
flexneri leads to NLRP1B-dependent IL-1β production 
in the reconstituted NLRP1B inflammasome system [67]. 
In mice, Shigella infection induces cytokine production 
and causes macrophage pyroptosis by IpaH7.8-mediated 
NLRP1B activation. These data are consistent with the 
“functional degradation” model of NLRP1 inflammasome 
activation and suggest that the N-terminal fragment of 
NLRP1 might act as a kind of tripwire in the detection of 
pathogens. Specifically, the N-terminus of NLRP1 might 
serve as a decoy and is sensed by pathogenic protease 
activity that could destroy mammalian NLR receptors to 
evade detection by the innate immune system. But the 
degradation of the N-terminus activates NLRP1 inflam-
masome and causes an effector-triggered immunity to 
achieve the function of efficient detection and clearance 
for foreign pathogens.

The activation trigger and activation mechanisms of 
human NLRP1 and mouse NLRP1 are highly divergent. 
The molecular activation mechanism of human NLRP1 
remains enigmatic because no physiological activators of 
human NLRP1 have been found for a long time. Recent 
studies have started to describe its danger activation sig-
nals and illuminate its functional relevance. First, it has 
been shown that an enteroviral 3C protease of human 
rhinovirus (HRV) was identified as a physiological acti-
vator of human NLRP1 [38, 68]. The authors discovered 
that 3C protease directly cleaves the human NLRP1 
between Q130 and G131 in the N-terminal fragment. 3C 
protease cleavage of NLRP1 leads to the degradation of 
N-terminal fragment and liberation of C-terminal UPA-
CARD. As mentioned above, the C-terminal functional 
domain will result in the assembly of active inflamma-
some and subsequent cytokine release, which is in line 
with the “functional degradation” model. The 3C protease 
was identified as the first pathogen-associated activator 
of human NLRP1 in human primary airway epithelial 
cells. Second, a recent manuscript reported that SARS-
CoV-2 3CL protease NSP5 could trigger an NLRP1-medi-
ated inflammasome response to decrease the production 
of infectious viral particles [69]. Mechanistically, human 
NLRP1 is cleaved at the Q333 site by SARS-CoV-2 3CL 
protease and activated by the “functional degradation” 
model, similar to what has been found for enteroviral 
3C protease. Notably, SARS-CoV-2 3CL protease NSP5 
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acts as a virulence factor against GSDMD-dependent 
pyroptosis, but it promotes cell death by caspase-3/
GSDME-mediated pyroptosis pathway upon SARS-
CoV-2 infection. Third, the other extraordinarily differ-
ent activator, long double-stranded RNA (dsRNA), is 
discovered to activate NLRP1 inflammasome in keratino-
cytes [39]. Semliki Forrest virus (SFV), a positive-sense 
single-stranded RNA virus, was found by testing dif-
ferent types of viruses. The autoproteolytic and pro-
teasome activity were necessary for dsRNA-induced 
human NLRP1 activation, suggesting the N-terminal 
“functional” proteasomal degradation is involved in this 
process. Using recombinant proteins, human NLRP1, 
but not murine NLRP1B could directly interact with 
dsRNA by its NACHT-LRR domains with high affin-
ity. DsRNA binding to NLRP1 enhanced ATPase activ-
ity to achieve a conformational switch that releases an 
active carboxy-terminal fragment. Fourth, Yang and co-
workers described a proteasome-independent activation 
mechanism of NLRP1 inflammasome in 2022 [70]. The 
tegument protein ORF45 of Kaposi sarcoma-associated 
herpesvirus (KSHV) induced NLRP1-mediated inflam-
masome activation in human epithelial and macrophage-
like cells. Mechanistically, there are two different NLRP1 
auto-inhibitory complexes, the N-terminus of NLRP1 
 (hNLRP1NT)- C-terminus of NLRP1  (hNLRP1CT) and 
 hNLRP1FL-DPP9-hNLRP1CT, respectively. The interac-
tion between the Linker1 region (amino acids 93–327 
in human NLRP1) and the UPA subdomain in NLRP1 
is critical for the two auto-inhibitory complexes in cells. 
KSHV ORF45 unlocked the two auto-inhibitory com-
plexes by disrupting the Linker1-UPA interaction, which 
promoted the  hNLRP1CT inflammasome assembly. The 
NLRP1 activation process was conserved in primates but 
not in rodents. In addition, mouse NLRP1B also responds 
to Toxoplasma gondii to activate NLRP1B inflamma-
some, which protects against parasite infection in mice 
[71–73]. In recent studies, it was revealed that bone 
marrow macrophages undergo lytic cell death and IL-1β 
secretion during T. gondii infections. The mechanism of 
NLRP1B activation by T. gondii infections may not corre-
late with responses to lethal anthrax toxin and needs fur-
ther studies with the development of new technology. In 
conclusion, these results further highlight the emerging 
functions of NLRP1 inflammasome in host defense.

Physiological activation of NLRP1 inflammasome by DAMPs
Because NLRP1 recognizes various modalities through 
the different ligand-binding domains and the different 
molecular modes of action, the activation mechanisms of 
NLRP1 inflammasome are extremely complex. In addi-
tion to sensing PAMPs, NLRP1 inflammasome has been 
reported to recognize DAPMs in recent years (Fig.  4). 

Specifically, mouse NLRP1B is known to lead to excessive 
IL-1β secretion and pyroptosis of cells by cellular pertur-
bations, such as ATP depletion [74]. The NBD domain 
of NLRP1B with a nucleoside triphosphatase activity 
allows ATP binding to detect cellular ATP deprivation, 
and mutations in the Walker A site of NLRP1B cause the 
spontaneous NLRP1B inflammasome activity. It should 
be noted that the activation of NLRP1B inflammasome 
by glycolysis and oxidative phosphorylation inhibitors 
is consistent with the “functional degradation” model 
because IL-1β production could be blocked by protea-
some inhibition. Nevertheless, the detailed ATP-depend-
ent NLRP1B activation mechanism remains unknown.

In addition, Elizabeth and colleagues identified that 
the specific cellular danger signal, cytosolic peptide 
accumulation, could be detected by NLRP1 and CARD8 
inflammasome [75]. They found that several different and 
well-characterized agents interfere with protein folding 
and accelerate the N-terminal fragment of NLRP1 deg-
radation. The production of peptides with N-terminal 
XP sequences (X stands for any amino acid) destabilizes 
the NLRP1-DPP9 ternary complexes to trigger inflam-
masome activation, like what has been found by VbP. 
Notably, these proteotoxic drugs, such as MeBs (Bestatin 
methyl ester), BFA (brefeldin A) and GA (geldanamy-
cin), only stimulate the degradation of the N-terminus of 
NLRP1, but they could not activate the NLRP1 inflam-
masome due to the inhibition by NLRP1-DPP9 ternary 
complexes.

On the other hand, these agents synergize with VbP 
to trigger inflammasome activation both upstream and 
downstream of the proteasome. Interestingly, recent 
research showed that the ATPase activity of the NLRP1 
NACHT domain and the interaction between the 
NACHT-LRR domain of NLRP1 and oxidized thiore-
doxin-1 (TRX-1) are required to restrain the NLRP1 
inflammasome activation [76]. Negative regulation of 
NLRP1 inflammasome by oxidized form of TRX1, but 
not reduced TRX1, suggests that reductive stress might 
act as a danger signal to trigger NLRP1 inflamma-
some activation. These same investigators later identi-
fied a panel of related radical-trapping antioxidants that 
could accelerate the proteasome-dependent degrada-
tion of auto-inhibition domains of NLRP1 and CARD8 
by inducing reductive stress, similar to what has been 
found for peptide accumulation [77]. Reasonably, reduc-
tive stress and peptide accumulation could increase the 
activation level of NLRP1-mediated inflammasome more 
than either signal alone.

Furthermore, these radical-trapping antioxidants syner-
gize with VbP, thus initiating more inflammatory cytokine 
secretion and pyroptotic cell death. Because these radical-
trapping antioxidants also prevent an iron-dependent 
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form of cell death named ferroptosis, a subsequent study 
reported that ferroptosis is linked with NLRP1 inflam-
masome in a model of oxidative stress [78]. The results of 
cytological experiments showed that the extent of NLRP1 
inflammasome is reduced or increased with changes in 
ferroptosis activity, and the interactive relationship of 
NLRP1 inflammasome and ferroptosis is demonstrated 
under oxidative stress. Consistent with this mechanism 
above,  O3, one of the most toxic pollutants, could be 
sensed by NLRP1 inflammasome in human keratino-
cytes [79]. Oxidative stress event caused by  O3 exposure 
induces UBR2-mediated ubiquitination and proteasomal 
degradation of NLRP1, resulting in NLRP1 inflamma-
some assemble and inflammatory cytokines release.

Finally, the constitutive expression of NLRP1 in 
keratinocytes perhaps indicates that NLRP1 is engaged in 
response to ultraviolet B (UVB) exposure [80, 81]. UVB 
and toxin-induced ribotoxic stress response (RSR) were 
recently discovered to induce human NLRP1 inflammas-
ome activation by direct phosphorylation [82, 83]. Mech-
anistically, low-irradiance UVB results in the activation 
of RSR kinase ZAKα and its downstream effector p38 
to directly phosphorylate the disordered linker region 
between PYD and NACHT domains in human NLRP1. 
Hyperphosphorylation of disordered region by ZAKα 
and p38 induce inflammasome assembly and NLRP1-
driven pyroptosis. Importantly, they found that stimu-
lation of ZAKα and p38 is sufficient to induce NLRP1 
activation in a DPP8/9-independent manner. They also 
found that NLRP1 is a versatile receptor that could inte-
grate diverse stress signals by its different regions. Never-
theless, these findings suggest that NLRP1 is a complex 
receptor that responds to pathogens infection but also 
engages in maintaining host homeostasis.

DPP8/9 inhibitors: the common activator for human 
and mouse NLRP1 inflammasome
VbP is a small molecule inhibitor of fibroblast activating 
protein (FAP) and dipeptidyl peptidase family, including 
DPP4, DPP7, DPP8 and DPP9. VbP is originally used to 
induce cytokine production and stimulate anti-cancer 
immune responses in mice [84, 85]. In 2018, VbP was 
found to induce NLRP1B-mediated pyroptotic cell death 
in mouse macrophages [86]. Consistent with the con-
served nature of DPP8/9, Zhong et  al. discovered that 
human NLRP1 mediates VbP-induced inflammasome 
activation in keratinocytes [87]. Since this report, VbP 
has been shown to activate functional rodent alleles and 
human NLRP1, thus becoming the first known universal 
NLRP1 activator.

Subsequent studies investigated the VbP-induced 
activation mechanism of NLRP1 inflammasome. DPP9 
was demonstrated to bind to NLRP1 under steady-state 

conditions using immunoprecipitation assays, in which 
the interaction was abolished in VbP-treated cells [87]. 
The interaction of DPP9 with hNLRP1 and mNLRP1 is 
common, as the DPP9-binding domains in NLRP1 are 
the most homologous FIIND domains. For the inhibitory 
effect on NLRP1 inflammasome, the binding of DPP9 
and its catalytic activity are a prerequisite. Recently, 
two back-to-back articles report cryo-EM structures of 
NLRP1-DPP9 complex, respectively [88, 89]. Interest-
ingly, the NLRP1-DPP9 complex is a ternary complex 
that consists of DPP9, full-length NLRP1 and the UPA-
CARD of NLRP1. In the tripartite complex, the FIIND 
and UPA subdomain of NLRP1 are visible in the cryo-
EM map density, while other domains are not discernible 
because of the flexible linker. For the first FIIND domain 
of full-length NLRP1, this structure revealed that the first 
β-strand of the UPA subdomain inserts into the ZU5 fold, 
like the autoinhibited FIIND domain. Surprisingly, DPP9 
formed a homodimer that captures the second UPA-
CARD of NLRP1 to suppress UPA-CARD from self-oli-
gomerization during homeostatic protein turnover. For 
the second NLRP1 molecule, only the UPA subdomain 
was discernible, and the disordered N-terminal region 
(S1212-N1224) folds into the DPP9’s active-site tunnel, 
similar to the substrate-bound DPP9 structure (Fig. 3b). 
However, the N-terminus was not cleaved by recombi-
nant DPP9 due to the difference in the binding pose with 
how substrates bind. Therefore, the results suggest that 
NLRP1 could be sequestered by DPP9 rather than act as 
a bona-fide substrate.

Next, the structure of NLRP1-DPP9 in the presence of 
VbP was solved to reveal that VbP forms a covalent bond 
with catalytic S730 residue of DPP9 and displaces the 
interaction between DPP9 and UPA of NLRP1 from the 
substrate tunnel, which is consistent with the reports that 
VbP diminishes the interaction of NLRP1 and DPP9 [87]. 
Another notable aspect of this complex is that the UPA-
UPA interaction of two NLRP1 molecules is important 
in both NLRP1 repression and NLRP1 activation. Muta-
tions on the interface led to the autoactivation of NLRP1 
and abolished the UPA-mediated oligomerization, which 
aligns with UPA-mediated CARD filament formation [60, 
61]. Altogether, these data provide important insights 
into how DPP8/9 negatively regulates NLRP1 inflamma-
some activation.

NLRP1 inflammasome regulation and dysfunction
Regulation of NLRP1 inflammasome activation
As previously described, activation of NLRP1 inflam-
masome is associated with host immune response 
against infections. In contrary, inappropriate and/
or excessive activation of NLRP1 inflammasome are 
associated with severe pathologies. Thus, NLRP1 
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inflammasome activation should be regulated to pre-
vent such pathologies.

The first downregulation of NLRP1-inflamma-
some activation occurs at the NLRP1 CARD and 
FIIND domains. In fact, as previously described, to 
activate NLRP1-inflammasome, human NLRP1 or 
murine NLRP1b undergo an auto-proteolysis within 
the FIIND domain, releasing N- and C-terminal frag-
ments, remaining in an auto-inhibited state, where 
they are ready to recruit NLRP1 cognate to process the 
activation of NLRP1 inflammasome, IL-1β release, and 
macrophage pyroptosis. Abolishing FIIND autolytic 
proteolysis processing activity blocks and downregu-
lates NLRP1 inflammasome activation [45, 90].

Furthermore, in resting macrophages, as well as after 
infection clearance, NLRP1 inflammasome should be 
shut down, and its activation, downregulated. Bcl-2 
and Bcl-XL proteins, initially known to regulate apop-
tosis, were found to interact with NLRP1 protein (but 
not with other NLRP proteins) and prevent activa-
tion of NLRP1 inflammasome [48]. Specifically, Bcl-2 
and Bcl-XL proteins would form a complex (Bcl-2/
XL) that recognizes and binds to NLRP1, which sup-
presses the NLRP1-mediated activation of caspase-1 
and subsequently prevents production of IL-1β [91]. 
The negative regulation of Bcl-2 and Bcl-XL was also 
demonstrated in immune escape mechanisms by cer-
tain viruses (including Vaccina virus) that produce 
viral proteins (such as F1L protein) structurally similar 
to BcL-2 and BcL-XL, which interact with NLRP1 and 
downregulate NLRP1 inflammasome activation, which 
is however favorable for viral replication and spread 
[48, 92]. Specifically, like BcL2/XL protein complex, 
F1L protein of Vaccina virus binds to the ATP-binding 
site on NLRP1, impeding ATP recruitment by NLRP1 
and blocking activation of NRLP1 inflammasome. 
In  vitro assay with Vaccinia virus mutants that lack 
F1L demonstrates a significant production of IL-1β 
production in human THP-1 cells, which confirms 
the negative NLRP1 inflammasome regulation [92]. 
Besides that, the intracellular ORF63 protein was also 
found to downregulate NLPR1 inflammasome activa-
tion and impede production of IL-1β, through binding 
with NLRP1 and NLRP3, in THP-1 macrophages that 
were sensed and stimulated by MDP (muramyl dipep-
tide). In presence of a cognate NLRP1 inflammasome 
stimulus, downregulation by Bcl-2/XL complex protein 
and ORF63 is by-passed to prevent their binding to 
NLRP1 and allow activation of NLRP1 inflammasome 
[48]. However, the mechanism of blocking the home-
ostatic effect of Bcl-2, Bcl-XL, and ORF63 remains 
unclear.

NLRP1 inflammasome dysregulation and associated diseases
Indeed, when the regulation of NLRP1 inflammasome 
activation is disrupted, it can lead to the occurrence of 
disease. Many studies have found that NLRP1 can pro-
duce pro-inflammatory cytokines after activation, medi-
ate inappropriate inflammation and participate in a 
variety of physiological immune responses, suggesting 
that NLRP1 inflammasome contributes in many disease 
development processes (Fig. 2 and Table 1). Specifically, 
this aberrant activation of NLRP1 inflammasome have 
been associated with mutations found in NLRP1, which 
in turn have mainly been associated with occurrence of 
diseases, including severe chronic obstructive pulmonary 
disease (COPD) [93], systemic lupus erythematosus [94], 
type 1 diabetes [95], vitiligo-associated autoimmune dis-
eases [20, 55, 96, 97], inflammatory bowel disease [98], 
arthritis, dyskeratosis, psoriasis, multiple self-healing 
palmoplantar carcinomas (MSPCs) and familial keratosis 
lichenoides chronica (FKLC) [43, 99] (Table 1).

When the rare gain-of-function mutations on the PYD 
or LRR domain of NLRP1 were described in 2016, the 
NLRP1 stepped into the spotlight in skin-related inflam-
matory pathologies [43]. Notably, MSPC patients carry 
inherited mutations within the N-terminal PYD domain 
(A54T, A66V and M77T), and patients with FKLC 
display an in-frame deletion (F787-R843) in the LRR 
domain. As expected, these mutations were confirmed 
to perturb this auto-inhibitory activity because MSPC 
mutations disrupt PYD folding and FKLC deletion may 
weaken NLRP1 auto-inhibitory function. Thus, the PYD 
and LRR domains are thought to play an auto-inhibitory 
role in NLRP1.

Furthermore, L155H and M1184V are two polymor-
phisms of NLRP1 that will increase the risk for vitiligo 
disease. Mechanistically, M1184V causes a significantly 
increased processing of pro-IL-1β by caspase-1 in the 
reconstituted HEK293T system, suggesting a poten-
tial disease-associated molecular mechanism [45]. The 
T755N mutation of NLRP1, located within the linker 
between the NACHT and LRR domain, resulted in a 
syndromic named juvenile-onset recurrent respiratory 
papillomatosis (JRRP) [104]. Auto-inflammation with 
arthritis and dyskeratosis (AIADK) patients who dis-
played skin lesions, polyarthritis and periodic fever with 
increased caspase-1 and IL-18, carry R726W and P1214R 
mutations [113]. The P1214R mutation is close to the 
cleavage site of the NLRP1 FIIND domain and abolishes 
NLRP1-DPP9 interaction to result in the auto-activation 
of NLRP1 and subsequent inflammasome signaling [87]. 
Furthermore, gain-of-function mutations in lung NLRP1 
have been associated with occurrence of a rare upper 
airway inflammatory disease caused by the human pap-
illoma virus [104]. However, the molecular mechanisms 
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that most mutations of NLRP1 lead to these auto-inflam-
matory diseases are required to investigate the detailed 
role of NLRP1 further.

CARD8 inflammasome: an nlrp1 analogous 
inflammasome
CARD8 inflammasomes and its role in health and innate 
immunity
Recent breakthroughs and in-depth studies have dem-
onstrated the existence of an NLRP1 inflammasome-like 
hetero-multimeric complex protein forming an inflam-
masome, also known as NLRP1 analogous inflamma-
some or CARD8 inflammasome. The discovery of the 
CARD8 inflammasome occurred during characterization 
of the pyroptosis-inducing activity of the non-selective 
dipeptidyl-peptidase (DPP)-inhibitor Val-boroPro (VbP, 
Talabostat) and its associated compounds. Indeed, while 
it is noteworthy that VbP triggers caspase-1-associated 
pyroptosis [114, 115] via activation of human NLRP1 [86] 
or mouse NLRP1B [87], it has been also found that upon 
VbP treatment in human keratinocytes, CARD8 could 
trigger pyroptosis. Specifically, after inhibition of DPPs 
using VbP in human myeloid leukemia cells, NLRP1 was 
found intact and inactive while a  CD4+ and  CD8+ T-cell 
death process, characterized as pyroptosis, occurred. 
Finally, it was demonstrated that this pyroptosis depends 
on the CARD8-caspase-1-GSDMD-associated pathway 
and only occurred in resting but not in active T-cells 
[116]. Of interest, unlike NLRP1 inflammasome, which is 
present in both human and murine systems (to a lesser 
extent), CARD8 inflammasome has only been identified 
in humans and not in murine systems [117, 118]. CARD8 
inflammasome uses the FIIND domain and its CARD 
domain as sensors to directly interact with and activate 
caspase-1 [61, 116], and has been mainly evidenced from 
HIV-1 infection-associated inflammatory response [119].

Recent breakthroughs in CARD8 inflammasome
CARD8 is the only other human inflammasome media-
tor highly similar to NLRP1, with highly similar domain 
organization that includes the FIIND domain with the 
self-cleavage site and carboxyterminal CARD domain 
(Figs.  1 and 3). The structured N-terminal PYD, NOD 
and LRR domains of NLRP1 are replaced by a disordered 
N-terminal region in CARD8. The auto-proteolytic activ-
ity of FIIND domain of CARD8 results in a non-covalent 
association between N- and C-termini of CARD8, simi-
lar to what has been found in NLRP1 inflammasome. The 
N-terminal fragment of CARD8 can be degraded by a 
functional degradation model, and the bioactive C-termi-
nal UPA-CARD of CARD8 is used to form an inflammas-
ome, directly interacting with the CARD of proCaspase-1 
for inflammasome activation. For CARD8 and NLRP1, 

the FIIND domain associates with DPP8/9 to seques-
ter the bioactive component in a ternary complex for 
restricting the spontaneous inflammasome activation 
[88, 89, 120] (Fig. 3c). Furthermore, the CARD8 T60 vari-
ant is found that it directly interacts with NLRP1 to act as 
a negative regulator to control the NLRP1 inflammasome 
activation level [121].

CARD8 and NLRP1 are the tripwire sensors that are 
activated by pathogen-encoded activities. The human 
immunodeficiency virus 1 (HIV-1) protease could trig-
ger CARD8 inflammasome assembly to activate cas-
pase-1 and secret IL-1β that resembles NLRP1 [119]. In 
this regard, HIV protease cleaves N-terminal fragment 
between phenylalanine (F) 59 and F60 to expose a desta-
bilizing N-degron that can be ubiquitylated for degra-
dation machinery. Subsequent proteasome-mediated 
degradation of the N-terminal protein fragment removes 
the self-inhibition function of CARD8 and liberates the 
C-terminal UPA-CARD to assemble the CARD8 inflam-
masome. Several studies have reported that the usage of 
non-nucleoside reverse transcriptase inhibitors (NNR-
TIs) could lead to protease activity of HIV to kill infected 
cells, which is due to the activation of CARD8 inflamma-
some [122].

Furthermore, under DPP9 inhibitors treatment condi-
tions, CARD8 inflammasome will reduce the activation 
threshold to effectively clear the HIV-infected cells [123]. 
Additionally, CARD8 could act as an important immune 
sensor of infection by positive-sense RNA viruses, 
including Coronaviridae, Picornaviridae and Retroviri-
dae [124]. For the detailed mechanism, the 3CL protease 
encoded by these RNA viruses could cleave the unstruc-
tured N-terminal region of CARD8, leading to the release 
of C-terminal CARD-containing fragment that is suf-
ficient for inflammasome assembly. DPP8/9 inhibitors, 
VbP, accelerate the degradation of CARD8 to destabilize 
the repressive ternary complex for CARD8 inflamma-
some activation [120]. Structural and biochemical studies 
of the ternary complex revealed that CARD8 and NLRP1 
directly interact with DPP8/9, but only the neo-N termi-
nus of NLRP1 binds to the DPP8/9 active site. VbP could 
disrupt this interaction between NLRP1 and DPP8/9, 
but not CARD8 and DPP8/9, to activate human NLRP1 
and CARD8 inflammasome [88, 89, 120, 125]. CARD8 
inflammasome was found to be required for VbP-
induced pyroptosis in human macrophages and resting 
lymphocytes expressing more CARD8 than NLRP1, and 
NLRP1 inflammasome is indispensable for VbP-induced 
cell death in skin and airway epithelial cells with high 
expression of NLRP1 [116–118].

The danger-related signals detected by CARD8 
inflammasome have not yet been fully established. A 
recent study reported that the protein fold disruption 



Page 15 of 43Xu et al. Molecular Biomedicine            (2024) 5:14  

could induce proteasome-mediated degradation and 
cause cytosolic peptide accumulation, destabilizing 
the CARD8-DPP8/9 ternary complexes to activate the 
CARD8 inflammasome [75]. On the other hand, the 
M24B aminopeptidases have been identified to regulate 
the CARD8 inflammasome activation recently [126]. The 
M24B aminopeptidases prolidase (PEPD) and X-prolyl 
aminopeptidase 1 (XPNPEP1) could catabolize peptides 
named Xaa-Pros that contain a P2 proline (Xaa is any 
amino acid). When PEPD/XPNPEP1 is inhibited, the 
accumulation of Xaa-Pros will weakly inhibit DPP8/9 
activity, selectively activating the CARD8 inflammasome 
but not the related NLRP1 inflammasome. The other 
danger signal that could activate CARD8 inflammasome 
is reductive stress. A recent study characterized that a 
radical-trapping antioxidant, JSH-23, induces reduc-
tive stress and accelerates the N-terminal degradation 
of CARD8 [77]. The radical-trapping antioxidant works 
synergistically with VbP to induce more pyroptotic cell 
death and inflammatory cytokine secretion. In recent 
years, many advances in the CARD8 field propelled our 
understanding of its function, but future studies are 
needed to determine the more detailed molecular mode 
of action of CARD8.

NLRP3 inflammasome
NLRP3 inflammasome and its role in health and innate 
immunity
Primary localized in the microglia, NLRP3 is another 
member from the NLRP family, discovered to be associ-
ated with and form inflammasome after NLRP1 inflam-
masome, but is the first to be extensively described and 
well-characterized amongst the canonical NLRP inflam-
masomes. Described for the first time in human brain, 
NLRP3 inflammasome consists of NLRP3, ASC, and 
pro-caspase-1; its detailed structure is described herein. 
Unlike NLRP1 inflammasome, NLRP3 inflammasome 
senses a wider variety of activator/stimuli (including TLR 
agonists [LPS, nigericin, monosodium urate crystals, 
and ATP], pathogens [fungi, bacteria, and viruses], pro-
inflammatory cytokines [tumor necrosis factor, TNF], 
intracellular components [reactive oxygen species, ion 
flux, lysosomal disruption-, mitochondrial dysfunction-, 
metabolic changes and trans-Golgi catabolism-associ-
ated components]) [3, 23, 127, 128]. In microglia, NLRP3 
inflammasome is activated by proteins such as misfolded 
or aggregated amyloid-β, α-synuclein and prion protein 
or superoxide dismutase [129], and members of the com-
plement pathway, and induces production of IL-1β and 
IL-18 [130]. The NLRP3 inflammasome has been found 
to be involved in almost all aspects of health and dis-
eases (Fig. 2 and Table 1). For instance, in the majority of 
health threats, including auto-inflammatory, metabolic, 

neurodegenerative, and some infectious diseases [128], 
expression of NLRP3 has been found to be increased 
alongside with high levels of IL-1β, and IL-18 production, 
which has attracted an impressive interest for research. 
Thus, this has been the main reason that justifies its deep 
and well characterization.

Structural and functional organization of NLRP3 
inflammasome
The NLRP3 inflammasome is a multiprotein complex 
mediating the secretion of proinflammatory cytokines 
IL-1β and IL-18 and inducing inflammatory cell death 
(pyroptosis). Also known as NALP3, cryopyrin, PYPAF1, 
CIAS1, and CLR1.1, the NLRP3 inflammasome has been 
so far the first extensively and best-characterized canoni-
cal inflammasome of the NLRP inflammasomes. NLRP3 
inflammasome has been named after its main protein 
(the NLRP3), which acts like the sensor of the inflamma-
some, and complexed with two other proteins, including 
the apoptosis-associated speck-like protein containing a 
caspase-recruitment domain (ASC) serving as the adap-
tor, and the enzyme pro-caspase-1 serving as the effector. 
Specifically, each component of the NLRP3 inflamma-
some contains active domains playing crucial roles in the 
activation and functions of NLRP3 inflammasome. The 
structure of NLRP3 protein contains 3 active domains, 
including a central nucleotide-binding and oligomeriza-
tion (NACHT, aka NOD) domain, flanked by an N-ter-
minal pyrin domain (PYD) domain and a C-terminal 
leucine-rich repeat (LRR) domain. The central NACHT 
domain mediates nucleic acid ligation and promotes 
protein oligomerization; the N-terminal PYD domain 
is involved in the association of NLRP3 and caspase-1 
through interaction with ACS protein; the C-terminal 
LRR domain is involved in recognition and binding of 
the inflammasome to putative ligands, including PAMPs 
and DAMPs, respectively, thus facilitates activation of 
the NLRP3 inflammasome. The adaptor ASC protein 
of the NLRP3 inflammasome consists of two domains, 
including an N-terminal PYD and a C-terminal caspase 
recruitment (CARD) domain, from which the name 
PYCARD was attributed. It promotes the binding of 
NLRP3 (through homotypic PYD-PYD interaction) and 
pro-caspase-1 (through homotypic CARD-CARD inter-
action). The enzyme pro-caspase-1 is also a two-domain 
protein, which consists of a CARD and a caspase domain, 
containing two sub-units p20 and p10 that act as a cata-
lytic domain. The p20 is the central large catalytic subunit 
while p10 is the C-terminal small catalytic subunit [106, 
128, 131, 132] (Fig. 1).

Upon stimulation, a cascade of protein–protein inter-
actions occurs and ends up in the formation of the active 
NLRP3 inflammasome complex (Fig. 5). Specifically, the 
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upstream signals activating the NLRP3 inflammasome 
induce oligomerization, a typically thought conforma-
tional changes of NLRP3 protein. The oligomerized 

NLRP3 in turn uses its N-terminal PYD domain to 
recruit the adaptor ASC protein through a homotypic 
PYD-PYD interaction with the N-terminal PYD domain 

Fig. 5 The mechanisms of human NLRP3 inflammasome activation and regulation. The activation of NLRP3 inflammasome occurs either through a 
canonical two-step pathway or a non-canonical pathway, and a direct or alternative pathway. The canonical activation pathway involved 2 steps: 
a priming (signal 1, left panel) and an activation (signal 2, second panel from left) steps. Priming step is induced by NLRP3 signals, including LPS 
and TNF, IL-1b, IFNs, lipopolysaccharide (LPS), and sphingosine-1 phosphate (S1P), activate NF-κB that; in turn upregulates the transcription 
of Nlrp3 gene and other genes (ASC and pro-caspase1) involved in NLRP inflammasome, by interacting with and triggering their receptors. Once 
transcribed, NLRP3 is pre-activated by interacting with NEK7, forming a complex that will be activated into hetero-complex inflammasome. The 
canonical activation of NLRP3 inflammasome is induced by signal 2 including PAMPs (nigericin, viral RNA, and MDP) and DAMPs (extracellular ATP, 
mtDNA, and mtROS) and particulates. The molecular mechanisms behind the polymerization and the activation of NLRP3 inflammasome include 
activation of several signaling events, including induction of  K+ efflux,  Ca2+ flux,  Cl–efflux, lysosomal disruption, mtROS production, and release 
of oxidized mtDNA in the cytosolic compartment. Thus, formation of NLRP3 inflammasome includes oligomerization of NLRP3-NEK7, recruitment 
of ASC, and Casp1. auto-proteolysis of proteolytic cleavage of Casp1 releases p10/p20 active enzyme, which digest Pro-IL-1β and Pro-IL-18 
into IL-1β and IL-18 cytokines to promote proinflammatory responses. The subunit p10/p20 of Casp1 also digests GSDMD releasing GSDMD-N 
that form cell membrane pore to result in pyroptosis of the cell. Non-canonical activation of NLRP3 inflammasome (third panel from left) occurs 
without priming, as Casp4 is already present in the cytoplasm, and is induced by gram-negative bacteria that release LPS into the cell cytosol. 
Released LPS activates Casp11 in human (and Casp4/5 in mouse), which cleaves GSDMD complex releasing GSDMD-N that forms gasdermin 
pores and induces pyroptosis. The gasdermin pore formed constitutes a channel for  K+ efflux, which activates the NLRP3 inflammasome, 
and consequently activate Casp1 and IL-1β and IL-18. The alternative pathway (right panel) activation is induced by TLR4 agonists that activates 
the TLR4-TRIF-RIPK1-FADD-Casp8 signaling pathway. Consequently, Casp8 activates the NLRP3 inflammasome. Note that, there is no need 
of  K+ efflux, ASC speck formation, to activate inflammasome, and there is no pyroptosis
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of ASC and nucleates helical ASC filament formation. 
Subsequently, the adaptor ASC protein, in the form of 
a complex of fused multiple ASC filaments (aka ASC 
speck) [56, 128, 129], uses its C-terminal CARD domain 
to recruit the enzyme pro-caspase-1 through a homo-
typic CARD-CARD interaction with the N-terminal 
CARD domain of the effector. Interestingly, extensive 
studies on the structural organization and components of 
NLRP3 inflammasome have revealed that NIMA-related 
kinase 7 (NEK7), a serine-threonine kinase involved in 
mitosis, also interacts with NLRP3 and contributes to 
NLRP3 inflammasome activity, thus is an entire compo-
nent of the NLRP3 inflammasome [133–135]. Specifi-
cally, from the upstream activation steps, NEK7 binds to 
and oligomerizes together with NLRP3. This oligomer-
ized complex is essential in recruiting the adaptor ASC 
protein, but especially favoring ASC speck formation, 
inducing nucleates helical ASC filament formation, 
and caspase-1 activation [134, 135]. The NLRP3–ASC–
Pro-Capase-1 multiprotein oligomeric complex is the 
active form of NLRP3 inflammasome, which mediates 
the proximity-related self-cleavage of pro-caspase-1 to 
generate the active caspase-1. Then, the catalytic active 
subunit p20/10 is released from the self-cleavage in the 
form of heterotetramer, which accomplishes the enzy-
matic activity of caspase-1, including activation of spe-
cific pro-inflammatory cytokines, including pro-IL-18 
and pro-IL-1β into IL-18 and IL-1β, their biologically 
active mature form [136, 137] (Fig. 5 [132]). Upon IL-18 
and IL-1β cytokine released, the active subunit p20/10 is 
degraded, as it is instable in cell cytosolic environment 
[106, 128, 131, 132, 136].

Molecular mechanism of NLRP3 inflammasome activation
The NLRP3 inflammasome is highly expressed in 
human cells that contribute to the immune defense 
pathogenesis including macrophages, monocytes, neu-
trophils, dendritic cells, and lymphocytes, but also in 
non-immune cells, including endothelial cells, cardio-
myocytes, fibroblasts, osteoblasts, and epithelial cells 
[106, 128, 131, 132, 136, 138, 139].

Even though NLRP3 inflammasome is the best-char-
acterized canonical inflammasome, the intracellular 
upstream mechanisms and stimuli activating this inflam-
masome are not well-defined [140]. Nevertheless, many 
studies proposed several structurally and chemically 
different stimuli involved in the upstream activation 
steps of NLRP3 inflammasome. These stimuli include 
PAMPs, DAMPs, ionic (potassium  [K+], chloride  [Cl–], 
and calcium  [Ca2+]) flux, reactive oxygen species (ROS) 
produced after mitochondrial dysfunction (mtROS), 
lysosomal damages, metabolic changes, and trans-Golgi 
disassembly-associated particles [7, 128, 131]. Moreover, 

there are no concluding studies clearly demonstrating a 
direct interaction between at least one of the aforemen-
tioned stimuli and a component of the NLRP3 inflamma-
some. Saying that, the clear mechanism initiating NLRP3 
inflammasome activation still remains hypothetical, thus 
to be deeply investigated and confirmed. However, it is 
thought that NLRP3 senses common cascade cellular 
events induced by these proposed stimuli.

Early studies have proposed a two-signal model for 
NLRP3 inflammasome activation. Indeed, the first prim-
ing signal of NLRP3 inflammasome response is to induce 
the expression of NLRP3 inflammasome protein com-
ponents because of low expression levels in a variety of 
cell types [141–143]. The interaction between extracel-
lular PRRs and PAMPs/DAMPs induces the transcrip-
tional activity of intracellular inflammatory signaling 
molecules, such as nuclear factor (NF)-kB and activator 
protein-1 (AP-1) to upregulate the production level of 
NLRP3 inflammasome molecules [144]. The next trigger-
ing signal is initiated to assemble NLRP3 inflammasome 
complexes and result in the signal transduction cascades 
to ultimately active caspase-1. Enzymatically active cas-
pase-1 cleaves the pro-inflammatory cytokine (IL-1β and 
IL-18) to yield bioactive cytokine and naturally, autoin-
hibited gasdermin-D (GSDMD) to release the cellular 
content into the extracellular space by membrane pores 
formation [145–149]. Besides, recent studies proposed 
two other models of activation mechanism; the non-
canonical and the single-step NLRP3 inflammasome acti-
vation models (review in [128]).

The two‑step NLRP3 inflammasome activation model
The two-step (or two-signal) NLRP3 inflammasome 
activation model, also known as the canonical activa-
tion model, consists of a first step (hereafter subtitled 
“A-signal 1”) highly regulated and required to trig-
ger oligomerization of NLRP3. Specifically, NLRP3 is 
sensed by a first signal through recognition of PAMPs 
and DAMPs released by microbial components or 
endogenous cytokines. This first event is known as the 
“priming” of NLRP3 inflammasome activation (Fig.  5, 
left panel). The second step (hereafter subtitled “B-sig-
nal 2”), similar to an effector step, is required to termi-
nate the formation of the active NLRP3 inflammasome 
complex, hence the name “activation step” given to this 
signal. This second signal is a following cascade reac-
tion of the priming step activated by NLRP3 stimuli and 
can be triggered through exchange with the extra- or 
intracellular space components that include extracel-
lular ATP, pore-forming toxins,  K+ and  Cl– efflux,  Ca2+ 
influx, RNA viruses, and particulate matter, which acti-
vate the NLRP3 inflammasome [128, 131, 140, 150, 151] 
(Fig. 5, second panel from left).
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A‑ Signal 1: Priming the NLRP3 inflammasome
Inflammation is a protective immune response, specifi-
cally an inflammatory process triggered upon infection, 
thus, it needs to be regulated (induced in presence of 
antigens and repressed after infection clearance), to 
avoid and prevent dysfunction-associated diseases. The 
priming step of the NLRP3 Inflammasome lies on the 
up-regulation and induction of the transcriptional level 
of the pro-IL-1β (precursor of IL-1β) and NLRP3 pro-
teins, but not the ASC and pro-caspase-1 proteins. In 
fact, it is noteworthy that at the homeostasis, NLRP3 
and pro-IL-1β are generally present but low or not 
detected, respectively, in macrophages and most of the 
effector cells of innate immune system [141–143, 152], 
making them unable to initiate a protective inflamma-
tory response. The transcriptional up-regulation starts 
upon exposition of macrophages to priming stimuli 
(also known as priming signals). The priming stimuli 
include PAMPs/DAMPs or cytokines (tumor necrosis 
factors [TNFs] and pro-IL-1β), which bind to and acti-
vate their respective cell surface receptors, including 
TLRs (such as PRRs and NODs) or cytokine receptors 
(such as TNF-α receptors [TNFRs] and IL-1 receptors 
[IL-1R]). These extracellular host–pathogen interac-
tions subsequently activate the nuclear factor-kappaB 
(NF-κB) signaling pathway, which in turn, induces tran-
scriptional up-regulation and the expression of NLRP3, 
pro-IL-1β, and pro-IL-18. It is important to note that 
when the TLRs are excited by PAMPs/DAMPs, the 
NF-κB signaling pathway up-regulates the induction of 
NLRP3 and pro-IL-1β through both MyD88 (myeloid 
differentiation primary response 88) and TRIF (TIR-
domain-containing adapter-inducing interferon-β) that 
serve as signaling molecules of NF-κB signaling path-
way [141].

Furthermore, both apoptotic signaling molecules cas-
pase-8 and FADD (FAS-associated death domain) have 
been found to be required for NLRP3 transcription 
induction during the priming step (reviewed in [106, 
131]), as well as the cytoplasmic NOD1/2 [141]. Indeed, 
Caspase-8 interacts with the kinase inhibitor complex of 
NF-κB, then promotes its induction of NF-κB transcrip-
tion and translocation [153], while FADD, with its dual 
role in the NF-κB signaling pathway, can either induce 
activation of NF-κB signaling pathway during priming 
or, by promoting apoptosis, repress NF-κB activation 
[154]. Besides, TLR4 ligand lipopolysaccharides (LPSs) 
are also involved in priming the NLRP3 Inflammasome. 
The TLR4 ligand LPSs induce a metabolism shift in mac-
rophages from oxidative phosphorylation to glycolysis, 
indirectly stabilizing the hypoxia-inducible factor 1α 
(HIF1α) and up-regulating transcription of IL-1β gene 
[155].

B‑ Signal 2: Activating the NLRP3 Inflammasome
In general, the priming step prepares the main NLRP3 
inflammasome components for the formation of the 
active multiprotein oligomeric complex known as NLRP3 
inflammasome, as described previously. The “signal 2” 
which includes or englobes the entire different mechanis-
tic steps, is meant to promote or induce this structurally 
organized assembly, which, once activated, promotes the 
maturation and release of IL-1β and IL-18, thus trigger-
ing a downstream inflammatory response (pyroptosis) 
[156]. In the meantime, the activated caspase-1 cleaves 
the gasdermin D (GSDMD), a pro-pyroptosis protein 
that forms transmembrane pores and favors the release 
of mature IL-1β and IL-18 yielding a strong inflammation 
and cell death (pyroptosis) [157].

Generally and as aforementioned, in non-stimulated 
macrophages, the NLRP3 and pro-IL-1β proteins already 
exist in macrophages but in latent form at a low con-
centration [141–143, 152]. The priming signal increases 
the transcription and expression level of NLRP3 into 
its inactive but activation-competent state (same as for 
IL-1β), which is then activated by a wide range of dis-
tinct stimuli (signals). It has been widely considered that 
NLRP3 inflammasome activation pathway lies on three 
mechanisms, including intra- and extracellular ionic flux 
 (K+ and  Cl– efflux,  Ca2+ influx), reactive oxygen species 
(ROS) mainly but not only produced after mitochondrial 
dysfunction (mtROS), and lysosomal damages [128, 131, 
140, 150, 151] (Fig. 5).

Although there are many available studies that 
described and reviewed the upstream activation mech-
anisms of NLRP3 inflammasome, some data remain 
unclear, conflicting, or confusing. We briefly recalled the 
known mechanisms but emphasized conflicting or hid-
den mechanisms disclosing the latest findings.

Ionic flux:  K+ and  Cl– efflux,  Ca2+ influx
The “priming” stimuli not only up-regulates cytosolic 
transcriptional levels of pro-IL-1β and NLRP3, but its 
NLRP3 up-regulation triggering effect also induces 
upstream events responsible for NLRP3 inflammasome 
activation, including ionic flux events, in response to the 
cell threats. These ionic events include  K+ and  Cl− efflux, 
 Ca2+ distribution, and  Na+ influx.

Cytosolic potassium ion  (K+) efflux or depletion 
(decrease of intracellular  K+) has long been considered 
a common stimulating event for NLRP3 inflammasome 
activation. Specifically, the NLRP3 stimuli stimulate 
extracellular ATP, which induces intracellular  K+ efflux 
via the TWIK2 (two-pore domain weak inwardly rectify-
ing  K+ channel 2) [158], in coordination with P2X7 (the 
purinergic ion channel receptor type 2, family X, subu-
nit 7), to maturate IL-1β and activate NLRP3 assembly 
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[128, 159, 160]. It is important to note that, although 
P2X7 is involved in maturation of IL-1β and coordinates 
with TWIK2 [161], it is not an ionic channel for  K+ efflux 
[162], but TWIK2 is (Fig.  5). Furthermore, while how 
 K+ is activated was unknown, a recent study by Huang 
et al. [161] found a mechanism by which  K+ efflux is acti-
vated and demonstrated that Rab11a (a  Ca2+–sensitive 
GTP-binding protein) plays a central role in  K+ efflux-
based NLRP3 inflammasome activation. Specifically, 
the increase extracellular ATP also induces endosomal 
TWIK2 plasmalemma trafficking, which is regulated by 
Rab11a, such that Rab11a deletion prevents endosomal 
fusion with the plasmalemma and  K+ efflux, and there-
fore prevents activation of NLRP3 inflammasome in 
macrophages. Besides, With-No-Lysine (WNL or WNK) 
kinase signaling pathway has been found to be a mas-
ter regulator and controller of intracellular  K+ balance. 
Specifically, upon cell threat caused by stress or osmotic 
changes, WNL kinase activates SPAK (Ste20-related Pro-
line-Alanine rich Kinase) and OXSR1 (Oxidative Stress 
Response Kinase 1) kinases which block KCC channels 
(K-2Cl cotransporter, which pump  K+ out of cells), and 
promote NKCC channels  (Na+-K+-2Cl– cotransporter, 
which pump  K+ inside cells) [163].

However, how NLRP3 senses the  K+ intracellular 
decrease remains unclear. To attempt to understand the 
NRLP3 sensing mechanism, some recent studies sug-
gested that  K+ efflux might be followed by a downstream 
mechanism that directly interacts with and induces 
NLRP3 oligomerization [131]. Moreover, supporting 
studies corroborate this hypothesis, and found that the 
newly identified NLRP3-binding protein NEK7 would 
sense and act downstream  K+ efflux to regulate both its 
own and NLRP3 oligomerization and activate NLRP3 
inflammasome through a bridging NLRP3 protomer-
mediated direct NEK7-NLRP3 interaction [164, 165]. In 
absence of NEK7, activation of caspase-1 and release of 
IL-1β were abolished [134, 165], suggesting that NEK7 
might be a downstream  K+ efflux sensor that activates 
NLRP3 [164].

Besides  K+ efflux, sodium/chlorine redistribution, 
specifically  Na+ influx and  Cl− efflux are ionic events 
involved in NLRP3 inflammasome complex activation. 
Contrary to  K+ efflux which is enough and can induce 
activation of NLRP3 alone, it has been demonstrated that 
 Na+ influx is unable to activate NLRP3 inflammasome 
[151], but acts much more like a regulator in NLRP3 
inflammasome activation, possibly by regulating the  K+ 
efflux induced by NLRP3 stimuli [131]. Similarly, while 
 Cl– efflux has been found to induce ASC speck formation 
(nucleates helical ASC filament formation, and caspase-1 
activation [134, 135]), it cannot induce NLRP3 inflamma-
some activation without  K+ efflux [166]. As previously 

mentioned, WNL kinase signaling pathway regulates cel-
lular  Cl– balance by acting on chloride channels. Through 
phosphorylation, WNL kinase activates SPAK and 
OXSR1 kinases, which in turn activate chloride channels 
such as NKCC channels  (Na+-K+-2Cl– cotransporter) 
[163]. Chloride channels, including the volume-regulated 
anion channel (VRAC), chloride intracellular channels 
(CLICs) or NKCC, trigger  Cl– efflux, which modulate 
NLRP3 inflammasome activation [167–169]. Specifically, 
in response to mitochondrial dysfunction, CLIC trans-
location to plasma membrane triggers  Cl– efflux, which 
promotes NLRP3-NEK7 interaction [163, 167, 170] and 
consequently induces NLRP3 inflammasome activation. 
Taken together,  Na+ influx and  Cl− efflux cannot act on 
their own but must coordinate with  K+ efflux to activate 
NLRP3 inflammasome.

While involvement of  Na+,  K+ and  Cl– have been well 
described in NLRP3 oligomerization, the role of  Ca2+ in 
NLRP3 inflammasome activation is controversial.  Ca2+ 
has been proven to contribute in many bimolecular pro-
cesses including in NLRP3 inflammasome activation 
[171]. On the first hand, numerous studies support that 
 Ca2+ flux is an upstream event that triggers NLRP3 oli-
gomerization and IL-1β release, in response to cell threats 
and NLRP3 stimuli. Indeed, earlier studies showed that 
inhibition of  Ca2+ production prevented IL-1β secre-
tion [172, 173], suggesting that  Ca2+ plays a central role 
in NLRP3 inflammasome activation. In addition, studies 
supporting  Ca2+ crucial role have been well documented 
(reviewed in [128, 131]). On the other hand, strong evi-
dence demonstrated that  Ca2+ is not involved in NLRP3 
inflammasome activation, but is a consequence of the 
NLRP3 activation. In other words,  Ca2+ mobilization 
occurs downstream of both NLRP3 and caspase-1 acti-
vation [174]. Thus, there is a need to determine the role 
of upstream mobilization of  Ca2+ in NLRP3 inflamma-
some activation and how post-NLRP3 activation  Ca2+ flux 
affects the downstream events of NLRP3 inflammasome 
activation.

Mitochondrial dysfunction‑associated ROS (mtROS)
ROS – and other debris (including DNA and cardi-
olipin) – produced through mitochondrial dysfunction or 
dynamic are other upstream activating events proposed 
amongst the signal 2 to be involved in activating NRLP3 
inflammasome [175, 176]. As a reminder, for these pro-
posed events, the NLRP3 inflammasome activation is 
triggered by the increased level of mtROS and mtDNA, 
because in normal cell homeostasis, mitochondria con-
tinuously produce ROS as a product of the electron trans-
port chain but in small and cell tolerable titer. Whereas 
mitochondrial fission induces high production of mtROS 
and mtDNA, responsible for NLRP3 activation [177]. 
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Several studies demonstrated that, in response to mito-
chondrial damages and/or NLRP3 stimulating activa-
tors, released mtDNAs are oxidized by the overexpressed 
cytosolic mtROS, which in turn activate NLRP3 inflam-
masome during apoptosis thanks to a direct oxidized 
mtDNA-NLRP3 interaction [175, 178–180]. Specifically, 
it is thought that overexpressed mtROS-based NLRP3 
inflammasome activation is due to a two-signal model, 
including NF-κB signaling pathway and NLRP3 ligand 
mitochondria/thioredoxin-interacting protein (TXNIP) 
[181]. In the former pathway, activation of NF-κB signal-
ing pathway would induce transcriptional up-regulation 
and the expression of NLRP3, pro-IL-1β, and pro-IL-18 
like during the priming. The latter pathway is activated 
upon ROS accumulation, and promotes the binding of cir-
culating TXNIP and oxidized mtDNAs to NLRP3 protein, 
which yield activation of NRLP3 inflammasome [181].

Besides the generation of mtROS and mtDNA, mito-
chondria and NLRP3 inflammasome components are 
shown to be co-localized, such that upon mitochondria 
damage or dysfunction, mitochondria release debris mol-
ecules, including cardiolipin, mitochondrial antiviral-
signaling protein (MAVS), and mitofusin 2, which bind 
to NLRP3 inflammasome components in response to 
NLRP3 stimuli, facilitating the multi-protein complex 
assembly. Thus, mitochondria have been also considered 
as a bridging site for NLRP3 inflammasome assembly. 
For instance, upon virus RNA, extracellular ATP, and 
nigericin, but no other NLRP3 stimuli, the direct inter-
action of MAVS with NLRP3 was observed and demon-
strated to be required, suggesting that MAVS contributes 
to NRLP3 inflammasome assembly [182]. Specifically, 
Guan et al [183]. reported that MAVS promotes NLRP3 
inflammasome activation by targeting ASC for K63-
linked ubiquitination via the E3 ligase TRAF3. A recent 
report demonstrated that extracellular ATP-, nigericin-, 
or LPS-associated MAVS expression activates polyribo-
nucleotide nucleotidyltransferase 1 (Pnpt1), which medi-
ates NLRP3 inflammasome-dependent IL-1β release 
[184].

The roles of mitochondrial mitofusin 2 [185] and car-
diolipin [186] in interacting with and triggering NLRP3 
inflammasome component assembly were demonstrated. 
More specifically, upon TLR4 agonists, cardiolipin, a 
mitochondrial intermembrane space lipid, is found to 
be released in the cytosol and could directly bind to the 
LRR domain and caspase-1 domain of NLRP3 inflamma-
some, as a knockdown of cardiolipin expression inhib-
its NLRP3 activation [186, 187]. However, the clear role 
of mitochondria and their released debris should be 
deeply investigated and confirmed, since there are stud-
ies showing that different cell components, including 

ASC pyroptosome but not mitochondria are involved in 
assembly of NLRP3 inflammasome (review in [128, 131]).

Lysosomal damages
Particulate matters released in the cytosolic environment 
after lysosomal disruption, have been reported as one 
of the up-stream events that activate NLRP3 inflamma-
some, and consequently, trigger a protective inflamma-
tion [128, 131]. Indeed, after pathogen infection, non-self 
molecule, or particulate matter recognition, innate cells 
engage in phagocytosis as an elimination process. Spe-
cifically, particulate matters, including self-derived par-
ticulates such as uric acid, amyloid-β, calcium crystals, 
and cholesterol crystals, or foreign-derived particulates 
such as aluminium salts, silica crystals, and asbestos are 
engulfed into a phagosome and later form a phagolyso-
some [188]. Acidification of lysosome causes phagolyso-
somal swelling, which results in lysosomal disruption and 
release of lysosomal content within the cytosol. Note that 
lysosomal disruption is induced by the lysosomotropic 
dipeptide Leu-Leu-OMe [188], and lysosomal released 
content is found to be a critical step for NLRP3 inflam-
masome activation by particulate matter. Even though 
the mechanism describing how lysosomal disruption 
and released lysosomal contents induce NLRP3 inflam-
masome activation remains unclear, it has been demon-
strated that cathepsins present within the lysosomes are 
involved in NLRP3 activation in response to particulate 
matters. In fact, genetic deletion and experimental inhi-
bition or knockdown of cathepsins B, X, L, or S prevent 
activation of NRLP3 inflammasome [189]. Furthermore, 
it was reported that release of lysosomal cathepsin is 
required for IL-1β induction, which suggests that cath-
epsin X, L, S, but specifically cathepsin B in involved in 
NLRP3 inflammasome activation [189–192]. Besides, 
many studies reported that lysosomal disruption and lys-
osomal released particulate matters induced by the lys-
osomotropic dipeptide Leu-Leu-OMe, have a stimulant 
effect on ionic flux, including  K+ efflux,  Cl– efflux, and 
 Ca2+ influx, which suggests that ionic efflux, especially 
 K+ efflux might be the central hallmark in NLRP3 inflam-
masome activation pathways [151, 193, 194].

The non‑canonical NLRP3 inflammasome activation model
In addition to the canonical activation model that lies on 
priming and caspase-1 activation as previously described, 
there is also a non-canonical activation model of NLRP3 
inflammasome, which lies on the non-canonical cas-
pase-4 and caspase-5 direct activation by intracellular 
stimuli. In mice, the non-canonical NLRP3 inflamma-
some activation model is mediated by activation of cas-
pase-11 [195]. Priming is not necessary in this activation 
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pathway and the physiological defense system activates 
this pathway mainly when pathogens have bypassed cell 
surface TLR4 [196]. Of interest, in infections by and dur-
ing phagocytosis of only gram-negative but not gram-
positive bacteria, lipopolysaccharides (LPSs) released in 
the cytosol of phagocytes are sensed by, directly bind to, 
and stimulate human caspase-4 and caspase-5 or mice 
caspase-11 (independently of TLR4), resulting in the oli-
gomerization and auto-cleavage-based activation of the 
caspases, and induces the non-canonical activation of 
NLRP3 inflammasome. In turn, active human caspase-4 
and caspase-5 or murine caspase-11 induces cleavage of 
GSDMD (an N-terminal-associated membrane form-
ing pore pro-pyroptosis protein) and favors the efflux of 
potassium ions  (K+) (through ATP release), activation 
and oligomerization of NLRP3, formation of ASC specks, 
and release of mature IL-1β and IL-18, consequently 
yielding a strong inflammation and cell death (pyropto-
sis) [27, 157].

The one‑step NLRP3 inflammasome activation model
The one-step NLRP3 inflammasome activation model, 
aka the direct NLRP3 inflammasome activation model, 
has been described as an alternative activation of NLRP3 
inflammasome. Many studies revealed that in certain 
circumstances, phagocytes, stimulated by LPSs do not 
require a second activation, neither do they need activa-
tion of caspase-1 before they can release mature IL-1β 
and IL-18, which activate NLRP3 inflammasome [197–
199]. This NLRP3 inflammasome activation mechanism 
is quicker than the formers and occurs through the TLR4-
TRIF-RIPK1-FADD-CASP8 pathway. Specifically, unlike 
canonical and non-canonical NLRP3 inflammasome 
activation mechanisms described here before in which 
caspase-1 and caspase-4/5 are respectively required to 
promote the release of mature IL-1β and IL-18,  K+ efflux, 
and formation of ASC specks in human, the one-step 
activation pathway lies on caspase-8, which alternatively 
cleaves IL-1β and IL-18, either directly or through the 
NLRP3 oligomerization [27, 128]. This activation path-
way requires neither  K+ efflux, ASC speck formation, 
pyroptosome formation, nor pyroptosis induction [197, 
198] (Fig. 5).

Moreover, the priming to trigger the activated 
cytokines IL-18 and IL-1β is not always required to 
induce NLRP3 inflammasome activation. Indeed, 
because the pro-inflammatory cytokine pro-IL-18, as 
aforementioned, is already more constitutively expressed 
in innate cells [141–143, 152] and it was demonstrated 
that, besides caspases (1/4/5/11) that cleaves pro-IL-18 
in NLRP3 canonical activation pathway, other proteases, 
such as proteinase 3 or neutrophils elastase, can cleave 

pro-IL-1β into its mature form [200], inducing activa-
tion of NLRP3 inflammasome-associated inflammatory 
signals.

NLRP3 inflammasome regulation and dysfunction
Regulation of NLRP3 inflammasome activation
In normal circumstances, NLRP3 inflammasome acti-
vates upon microbial infections and contributes to host 
defense, helping to clear pathogens through a programed 
infected cell death mechanism known as pyroptosis. 
However, as with many other human defense mecha-
nisms, including T- and B-cell adaptive responses, mal-
function of NLRP3 inflammasome activation becomes 
detrimental to host homeostasis. Therefore, it is neces-
sary for the NLRP3 inflammasome to be highly and pre-
cisely regulated, to provide adequate immune protection 
and maintain host health without causing damage to the 
host tissues and organs.

Specifically, whatever the pathway as described above, 
activation of NLRP3 inflammasome induces release of 
mature IL-18 and IL-1β cytokines. Hence, the regulation 
system consists of preventing the uncontrolled release of 
IL-18 and IL-1β to maintain inflammatory homeostasis. 
The mechanisms that regulate NLRP3 inflammasome 
activation are well described. These mechanisms include 
post-translational modifications (PTMs) of NLRP3 and 
NLRP3-interacting molecules that turn on and off the 
activation of NLRP3 inflammasome.

Regulation by post‑transcriptional modifications
A plethora of studies report that the NLRP3 inflamma-
some can be activated independently of NLRP3 tran-
scription, suggesting that the priming process has other 
essential regulatory mechanisms. Deubiquitination and 
phosphorylation of NLRP3 are the two PTMs that are 
involved in the regulation of NLRP3 inflammasome acti-
vation and inhibition.

Upon priming or in presence of NLRP3 inflamma-
some stimuli such as LPSs, ubiquitination of the mac-
rophage NLRP3 proteins is inhibited to promote the 
NLRP3 oligomerization and inflammasome complex 
formation and NLRP3 proteins remain deubiquitinated 
during the inflammatory process, until the pathogen is 
cleared. Inhibition of NLRP3 ubiquitination is medi-
ated by SCFFBXL2 E3 ligase (FBXO3), which targets 
and senses FBXL2, an endogenous mediator of NALP3 
degradation NLRP3 via Trp-73 interaction. In fact, the 
knockdown of FBXO3, known to interact with ubiquitin, 
yields in low release of IL-18 and IL-1β [201], involved in 
inflammatory response. Once the inflammatory process 
has cleared the infection, to maintain immune homeo-
stasis and avoid detrimental effects, E3 ubiquitin ligase 
TRIM31 and dopamine directly bind to NLRP3 protein 
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and attenuate NLRP3 inflammasome activation by pro-
moting Lys-48-linked polyubiquitination and proteaso-
mal degradation of oligomerized NLRP3 proteins [202, 
203].

Similarly, it has been demonstrated that stimulation 
through TLR4 by ligand LPSs activates MAPK8 (JUN 
N-terminal kinase-1 [JNK1]), which directly interacts 
with human NLRP3 Ser-198 (Ser-194 residue in mice) 
and induces phosphorylation of NLRP3 protein [204]. 
Another study [205] demonstrated that, at the Golgi 
apparatus, protein kinase D (PKD) interacts with human 
NLRP3 Ser-295 (Ser291 in mouse NLRP3) and phos-
phorylates NLRP3, promoting NLRP3 oligomerization. 
Consequently, JNK1- and PKD-mediated NLRP3 phos-
phorylation induces NLRP3 deubiquitination, facilitates 
its oligomerization and self-association, and the subse-
quent inflammasome assembly. However, it has been 
demonstrated that NLRP3 phosphorylation can also 
suppress or repress activation of NLRP3 inflammasome. 
Indeed, PYD has been found to interact directly with 
human NLRP3 Ser-5 (Ser-3 in mouse NLRP3), which 
in consequence prevents NLRP3 inflammasome activa-
tion [206, 207]. We are tempted to believe that the phos-
phorylation of NLRP3 protein selectively depends on 
whether inflammatory needs to be induced or repressed, 
in presence of absence of NLRP3 stimuli. Therefore, both 
in resting cells and after inflammatory-associated infec-
tion clearance, PYD might selectively interact directly 
with human NLRP3 Ser-5 (Ser-3 in mouse NLRP3) and 
repress NLRP3 inflammasome activation. In the same 
manner, bile acids and prostaglandin E2 induce protein 
kinase A (PKA)-mediated phosphorylation and thus 
repress activation of NLRP3 inflammasome [128, 131].

Besides deubiquitination and phosphorylation of 
NLRP3 protein, another PTMs, including sumoylations 
have been identified to be involved in regulation of the 
NLRP3 inflammasome activity [208]. Indeed, upon prim-
ing by NLRP3 inflammasome stimuli, the sumoylation 
of macrophage NLRP3 is repressed by sentrin-specific 
protease 6 (SENP6) and SENP7, which induces NLRP3 
oligomerization and promotes NLRP3 inflammasome 
complex formation. However, prior to and after NLRP3 
activation, NLRP3 is sumoylated by the E3 SUMO pro-
tein ligase MUL1 (also known as MAPL), restraining or 
negatively regulating NLRP3 inflammasome activation.

Regulation by NLRP3‑interacting proteins
As described above, the main proteins that are involved 
in forming an activated NLRP3 inflammasome com-
plex to induce inflammatory responses include NLRP3, 
ASC, and the enzyme pro-caspase-1 (Fig.  5). However, 
it has been found that other intracellular proteins might 
interact with NLRP3 protein and modulate activity of 

NLRP3 inflammasome. Specifically, Pyrin-only pro-
teins (POPs, aka PYDC proteins), CARD-only proteins 
(COPs), chaperone heat shock protein 90 (Hsp90) and 
its co-chaperone SGT1, guanylate-binding protein 5 
(GBP5), RNA-dependent protein kinase (PKR), migra-
tion inhibitory factor (MIF), thioredoxin-interacting 
protein (TXNIP), microtubule-affinity regulating kinase 
4 (MARK4), and NEK7, have been reported to activate 
and/or inhibit activation of NLRP3 inflammasome, based 
on the need cell [128, 131, 209].

In resting macrophages, Hsp90 with its cofactor SGT1 
are found to interact with NLRP3 forming a complex 
that protects NLRP3 from degradation and keeps it in an 
inactive form but ready to be sensed by NLRP3 stimuli. 
In presence of intracellular ROS induced by NLRP3 stim-
uli, TXNIP and especially NEK7 interact with NLRP3 
and induce NLRP3 inflammasome activation. Similarly, 
in response to ATP, nigericin, and bacteria-associated 
stimuli, GBP5 and PKR have been reported to prime 
NLRP inflammasome activation, even though their roles 
in the activation of NLRP inflammasomes are controver-
sial [195, 196, 210–215].

Reversely, to down-regulate or to negatively regulate 
NLRP3 inflammatory response after pathogen clearance, 
it was demonstrated that POP1 and POP2 (among the 4 
POPs (POP 1–4)) bind to ASC and inhibit NLRP3-ASC 
interaction [128]. In this context, it is the last product of 
the activated NLRP3 inflammasome complex pathway 
(IL-1β) which has a feedback effect (similar to an allos-
teric effect) on POP1 and POP2 to downregulate NLRP3 
inflammasome activation or prevent its over activation 
(reviewed in [128, 209]).

NLRP3 inflammasome dysfunction and associated diseases
While activation of NLRP3 inflammasome should be 
associated with host defense against infections and infec-
tion relief, its aberrant or improper activation, inac-
tivation and dysfunction during infection, or lack of 
shutdown after infection release (hyper-activation) are 
detrimental to health and associated with several health 
disorders (Fig. 2 and Table 1).

Mutations within NRLP3 inflammasome compounds 
have been the main causes of dysregulation of NLRP3 
inflammasome activation and responsible for inflamma-
tory response-associated diseases. The gain-of-function 
mutation(s) within Nlrp3 gene have been the first cause 
of NLRP3 inflammasome dysregulation and associated 
with inflammatory disorders, one of which being CAPS, 
a rare condition covering familial cold autoinflammatory 
syndrome (FCAS, MIM 120100), also known as familial 
cold urticaria (FCU), Muckle–Wells syndrome (MWS), 
and neonatal onset multi-systemic inflammatory disease 
(NOMID) [216]. CAPS is thought to be symptomatically 
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characterized by chronic fever, rashes, inflamed eyes, 
arthritis, swelling, headaches, deafness and amyloidosis 
[217]. Indeed, mutations identified within Nlrp3 genes 
(including CIAS1 that encodes NACHT and LRR [216] 
and NLRP3-encoding residues adjacent to Ser295 [218]), 
were associated with aberrant activation of NLRP3 
inflammasome, which is the main cause of CAPS.

In Alzheimer’s disease, accumulation of fibrillar pep-
tide amyloid-β after phagocytosis releases cathepsin B 
that is sensed by NLRP3 (and at a lesser extent NLRP1) 
and induces activation of NLRP1 and 3 inflammasomes 
[219], which in turn have been found to worsen Alzhei-
mer’s disease patient conditions [220–223]. To prevent 
such activation in patients suffering from Alzheimer’s 
disease, inhibition of NLRP3 and NLRP1 has been found 
to be promising as it promotes non-phlogistic clear-
ance of amyloid-β and improves cognitive functions 
[224, 225]. Similarly, NLRP3 inflammasome-associated 
inflammatory response is not always benefic such as in 
patients suffering from Parkinson’s disease where NLRP3 
inflammasome activation has been associated with neu-
rodegeneration, and that knocking down NLRP3 improve 
health conditions [105]. A similar detrimental effect of 
NLRP3 inflammasome activation has been demonstrated 
in traumatic brain injury that causes neuroinflamma-
tion. Indeed, a few hours after traumatic brain injury, 
NRLP inflammatory mediators, including NLRP3 are 
upregulated, increasing the activation of inflammation 
and release of pro-inflammatory cytokines [226]. Studies 
have demonstrated that patients who have suffered from 
traumatic brain injury have an increased risk for chronic 
inflammatory activation in neurons and consequently 
neurodegenerative diseases [227–229]. These chronic 
neuro-inflammatory responses are thought to increase 
hyperphosphorylation of tau protein and amyloid-β, 
two precursors that worsen Alzheimer’s disease through 
NLRP3 inflammasome activation.

NLRP3 inflammasome activation and of IL-1β, IL-1 
and IL-18 are thought to play a detrimental role in 
multiple sclerosis (an autoimmune neurodegenerative 
disorder caused by infiltration of autoreactive T-cells 
inside the central nervous system through a weakened 
blood–brain barrier) by facilitating immune cell infiltra-
tion and promoting excessive inflammatory response, 
which in turn aggravates conditions in multiple sclero-
sis patients [20, 105].

Dysregulation of NLRP3 inflammasome activation, 
specifically chronic activation of NLRP3 inflamma-
some, has been involved in pathogenesis of rheumatoid 
arthritis, gouty arthritis, diabetes and worsening dis-
ease conditions. In fact, release of particles in rheuma-
toid arthritis (pentaxin 3 and its ligand C1q), gout (uric 
acid crystals), and diabetes significantly over-activates 

NLRP3 inflammasome [230, 231], which contributes 
in development of these peripheral inflammatory dis-
eases [232]. Finally, the activation of NLRP inflammas-
omes has a protective role in different types of cancer; 
however, its over-activation has been associated with a 
destructive and promoting role for cancer development 
[105].

NLRP6 inflammasomes
NLRP6 inflammasome and its role in health and innate 
immunity
The role of NLRP6 to form a cytosolic inflammasome 
complex and to be involved in innate immunity has long 
been a debate and non-conclusive. Recent reports have 
concluded that NLRP6 is a standalone protein form-
ing inflammasome, as they have shown that NLRP6 is 
able to form an inflammasome complex and cleaves 
precursor of and release IL-1β and IL-18 during micro-
bial infection [109, 233, 234]. Specifically, NLRP6 was 
initially shown to activate both caspase-1 and NF-κB. 
This double activity of NLRP6 inflammasome, unique 
in NLRP inflammasomes, has been associated with a 
broad range of physiological functions, including mod-
ulation of the host-microbial interface [110, 235, 236], 
host defense against pathogens [237, 238], and inhibi-
tion of carcinogenesis [109] and neuro-inflammation 
[239]. NLRP6 is one of the major NLRP inflammas-
omes found in the intestine and liver and was discov-
ered to protect from colitis and ensure homeostasis of 
intestinal and gut microbiota, and regulate intestinal 
antiviral innate immunity [235, 236]. Moreover, NLRP6 
inflammasome is also found in the kidney tissues and 
neuronal, lymphocyte, and bone marrow-derives cells 
[240, 241]. Studies on NLRP6 inflammasome have 
gained interest just recently because of the significant 
role NLRP6 inflammasome plays in regulating inflam-
mation and host defenses in specific tissues and organs. 
In bone marrow-derived macrophages, NLRP6 inflam-
masome suppresses inflammatory signaling [238]. In 
goblet cells, the intestinal mucosal epithelial cells that 
mainly synthesize mucus, NLRP6 inflammasome medi-
ates mucus secretion upon stimulation by TLR ligands 
or microbiota-associated metabolites, thereby regu-
lating the intestine bacterial population diversity and 
preventing their abnormal increase or intestine inva-
siveness by new bacteria [237, 242, 243]. In response 
to infection by viruses, such as RNA viruses, NLRP6 
inflammasome aims to regulate the expression of 
numerous IFN-stimulated genes through the mitochon-
drial adaptor protein MAVS [235] (Fig.  2). Relatively 
newly discovered amongst the NLRP inflammasomes, 
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NLRP6 inflammasome activation mechanism is not 
fully understood yet; researches are still on going.

Structural and functional organization of NLRP6 
inflammasome
NLRP6 protein, initially known as PYPAF5 protein, has 
been found to recruit and assemble with ACS protein, 
caspase-1, or caspase-11 to form an inflammasome 
complex, mediating proteolysis-based maturation and 
secretion of IL-8 and IL-1β [109, 234, 244]. NLRP6 
inflammasome consists of consists of the NLRP6 pro-
tein (the sensor), ASC (the adaptor) and, pro-caspase 
enzyme (the effector) (Fig. 1). NLRP6 protein is highly 
expressed in intestinal epithelial goblet cells, where the 
activated NLRP6 inflammasome complex is responsi-
ble for regulating the gut microbiome composition and 
involved in gastrointestinal inflammatory [235, 236]. 
NLRP6 protein is also expressed in lungs, liver, and 
tubular epithelium of kidneys [109, 233, 245, 246]. In 
buccal cavity cells, especially in gingiva and periodon-
tium cells, NLRP6 inflammasome plays a central role 
in homeostasis regulation [247, 248]. This distribution 
of NLRP6 through tissues and cells lies on the multi-
plicity of NLRP6 transcriptional promotors, which are 
tissue- or cells-selectively up-regulated. The Human 
Nlrp6 gene carries three alternative promotors. The 
first promotor is located in exon 1 (in the 5’ UTR) and 
modulates expression of NLRP6 in intestine. The sec-
ond promotor is located in exon 2 (within the PYD 
domain) and modulates expression of NLRP6 in kidney, 
liver, lung, neurons, and spleen. The third promotor is 
located in exon 3 (in the region between PYD and NBD 
or NACHT) [249]. However, in mice, the Nlrp6 gene 
carries two tissue-specific promotors; one is located 
in the exon 1 (in the 185 base-pair of 5’UTR) and pro-
motes expression of NLRP6 in intestinal tissues, and 
the other is a result of the alternative splicing of exon 
1, but located in 1749 base-pair 5’UTR, and promotes 
expression of NLRP6 in kidney and liver [249, 250].

Like other NLRPs, NLRP6 consists of three domains 
(Fig. 1): i) the PYD, which interacts with ACS, is essen-
tial to initiate NLRP6 complex formation [251], ii) the 
NBD (or the NACHT) in the center of the complex fol-
lowed by iii) the LRR domain that is involved in sens-
ing microbial PAMPs and/or DAMPs (review in [245]). 
Unlike NLRP3 PYD which cannot promote NLRP3 
 ACSPYD polymerization alone but only complexed with 
NBD (NACHT), NLRP6 PYD is a stronger nucleator 
and, in somewhat high concentration, is able to promote 
NLRP6  ACSPYD polymerization. Specifically, the NLRP6 
PYD alone is capable of auto-assembling into filamentous 
structures followed by large conformational changes and 

uses PYD-PYD interactions to recruit the ASC adaptor 
[251]. However, it was shown that the complex formed by 
PYD-NBD of NLRP6 is stronger in NLRP6 polymeriza-
tion than the PYD domain alone, which suggests that this 
assembling process is strengthened by the PYD fused to 
its NBD (NACHT) domain of NLRP6.

Molecular mechanism of NLRP6 inflammasome activation
Despite the crucial role played by NLRP6 inflamma-
some in host defense regulation especially in intesti-
nal microbiota and innate immune signaling in myeloid 
cells as detailed hereinbefore, its activation molecular 
mechanism is yet to be fully decrypted, as it has only 
been recently discovered. Nevertheless, currently avail-
able studies have made a non-negligible contribution to 
exploring and detailing the molecular mechanisms of 
NLRP6 inflammasome assembly and activation.

From current reports, the activation mechanism of 
NLRP6 inflammasome is similar to the canonical path-
way of NLRP3 activation, described as a two-step model, 
including a priming step and an activation step. Like with 
NLRP3 inflammasome activation mechanism, the NLRP6 
inflammasome-priming step is triggered by NLRP6 stim-
uli and lies on induction and transcriptional regulation 
of the Nlrp6 gene and the expression and oligomeriza-
tion of NLRP6 protein. The activation step is required 
to achieve NLRP6 inflammasome assembly, which is fol-
lowed by inflammatory response characterized by pyrop-
tosis (Fig. 6).

Signal 1: priming the NLRP6 inflammasome
The upstream NLRP6 inflammasome stimuli that mainly 
trigger the up-regulation of Nlrp6 expression include 
pro-inflammatory signals and metabolites such as TNF‐α 
or viral and bacterial PAMPs/DAMPs [235, 245, 245, 
250] (Fig. 6). Few molecular regulators have been found 
to prime and induce up-regulation of NLRP6. Upon 
immune cell exposition to microbial and metabolic 
NLRP6 stimuli, the peroxisome proliferator‐activated 
receptor-γ (PPAR‐γ), a transcription factor involved in 
metabolic regulation [252], and its agonist rosiglitazone 
[253], induce transcription of Nlrp6 and high expression 
of NLRP6 protein. More precisely, PPARγ directly binds 
to the PPAR‐γ-retinoid X receptor-α (PPAR‐γ-RXR-α) 
at the promoter region of Nlrp6 and induces transcrip-
tion and expression of NLRP6 [253]. Besides, Roux-en-
Y gastric bypass (RYGB) has also been shown to prime 
NLRP6, through up-regulation of NLRP6 expression 
upon exposition of intestine cells to microbiota-related 
metabolites, taurine, and histamine, resulting from intes-
tinal permeability due to obesity [254]. Moreover, as the 
first priming signal, in interesting study by Hara et  al. 
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[240] reported that Gram-positive bacteria, such as Lis-
teria monocytogenes, induce up-regulation transcription 
of Nlrp6, expression of both NLRP6 and caspase-11, and 
then activation of NLRP6 inflammasome. Specifically, the 
lipoteichoic acid from L. monocytogenes induces activa-
tion of PPARγ but more specifically up-regulates type 1 
interferon (IFN-1) signaling in macrophages, which in 
turn induces the expression of NLRP6 and caspase-11 
[237, 240] (Fig. 6).

Signal 2: activating the NLRP6 inflammasome
Once translated, NLRP6 activation requires specific trig-
gers to induce assembly into a typical inflammasome 
complex, which will activate pro-IL-1β and pro-IL-18 
from their respective precursors. These triggers are 
known as a second signal or signal 2. Amongst the sec-
ond signals activating NLRP6, lipoteichoic acid (LTA) has 
been found to serve as a ligand to interact with NLRP6 
and activate inflammasome via a signaling cascade of 

Fig. 6 The mechanisms of human NLRP6 inflammasome activation. The activation of NLRP6 inflammasome obey a two-steps mechanism: 
a priming and an activation. In the priming step, induction of the Nlrp6 gene transcription and other NLRP6 inflammasome components 
is triggered by TNF‐α, viral and bacterial PAMPs/DAMPs, and/or the peroxisome proliferator‐activated receptor-γ (PPAR‐γ). Once translated, NLRP6 
inflammasome is activated by dsARN from RNA virus and LPS, and occurs through NLRP6 recruitment of ASC and Casp1. The activated NLRP6 
inflammasome activates IL-1β, and IL-18 from their respective precursors (pro-IL-1β, and pro-IL-18, respectively) by catalytic cleavage. NLRP6 
inflammasome also catalyses digestion of GSDMD into GSDMD-C and GSDMD-N that forms gasdermin membrane pore, which yields to pyroptosis. 
IL-1β and IL-18 cytokines are release out of the cells to promote pro-inflammatory responses. Besides, the NLRP6 protein is also found in the cytosol 
in low level and is autoinhibited in quiescent cell condition. In this condition, LTA from Gram + bacteria induce an indirect non-canonical activation 
of the NLRP6 inflammasome. LTA activates caspase-11 (involved in the non-canonical inflammasome activation pathway) which trigger activation 
of NLRP3/6 inflammasomes, through production of ions flux (specifically  K+ efflux via GSDMD pores), which in turn activate caspase-1 and release 
IL-1β and IL-18
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protein recruitment. In fact, LTA binds to the expressed 
NLRP6 through its LRR domain, promoting ASC poly-
oligomerization. Particularly, LTA-based activation of 
NLRP6 induces the non-canonical NLRP6 inflamma-
some activation pathway. Indeed, functional NLRP6 
activation by LTA activates does not activate caspase-1 
directly, but rather does activate caspase-11 [240], which 
is involved in the non-canonical inflammasome activa-
tion pathway. The caspase-11-associated activation of 
non-canonical pathway triggers activation of NLRP3/6 
inflammasomes, through production of ions flux (specifi-
cally  K+ efflux via GSDMD pores), which in turn activate 
caspase-1 and release IL-1β and IL-18 [250].

Recent reports have highlighted a novel NLRP6 inflam-
masome activation model, where LTA but specifically 
viral dsRNA can promote NLRP6 to form a liquid–liquid 
phase separation (LLPS) which is associated with NLRP6 
activation [250]. NLRP6 would form LLPS thanks to its 
polybasic domain located within the NACHT domain 
(350–354) and after phase separation, ASC will solidify 
NLRP6 aggregates and will yield NLRP6 inflammasome 
activation [250, 255].

NLRP6 inflammasome can also be auto-activated in 
presence of inflammasome stimuli. As described in a 
review by Ghimire et al. [256] it has been demonstrated 
that PYD and CARD filaments display prion-like proper-
ties that facilitate polymerizations of ASC into filamen-
tous structures leading to activation of ASC-dependent 
NLRP6 inflammasome [56, 129]. In more detail, ASC-
dependent NLRP6 inflammasome activation involves a 
two nucleation-induced polymerization steps, including 
i) a first  ASCPYD filament nucleation by  NLRPYD through 
a PYD-PYD interaction leading to polymerization of 
ASC, and ii) a second nucleation of caspase-1 CARD 
filaments by the polymerized  ASCCARD through a CARD-
CARD interaction that directly activates caspase-1, 
which induces release of IL-1β and IL-18 [256]. Besides, 
LPSs of Gram-negative bacteria also activate translated 
NLRP6. In-vitro studies reported that LPSs can interact 
directly with NLRP6, promoting conformational change 
and subsequently inducing NLRP6 homo-dimerization 
[257] (Fig. 6).

NLRP6 inflammasome regulation and dysfunction
Regulation of NLRP6 inflammasome activation
Like for NLRP1 and NLRP3, NLRP6 inflammasome 
activation needs to be highly and timely regulated, as its 
chronic imbalanced activation, including inactivation 
when needed or hyper-activation (excessive inflamma-
tion), yields several inflammatory and metabolic diseases 
[107] (Table  1). As previously described, expression of 

NLRP6 and activation of NLRP6 inflammasome is up-
regulated at the transcriptional and post-transcriptional 
levels. PPAR‐γ is so far though to be one of the first up 
regulators of Nlrp6 transcription. Besides, in quiescent 
cells or in absence of ligand activators, NLRP6 inflamma-
some activation is prevented by the closed conformation 
of the LRR and NACHT domains of NLR; this inhibition 
is known as auto-inhibition [256, 258].

Furthermore, recent reports demonstrated that deu-
biquitinase Cyld plays an important role in preventing 
uncontrolled and excessive activation of NLRP6 inflam-
masome. Interestingly, Cyld deubiquinates NLRP6 by 
destroying the bound to K63 that maintains NLRP6 ubiq-
uitinated, thereby preventing NLRP6 from recruiting 
ASC [259]. Specific LPSs, including γ-D-glutamyl-meso-
diaminopimelic acid (iE‐DAP, an agonist of NOD1), 
Pam3CysSerLys4 (Pam3CSK4, a synthetic triacylated LPS 
agonist of TLR1/TLR2), and muramyl dipeptide (MDP) 
were demonstrated to up-regulate NLPR6 inflamma-
some activation [243]. Beyond bacterial product, which 
additionally includes LTA as a strong up-regulator of 
NLRP6 inflammasome activation together with taurine, 
histamine, and spermine, ATP-dependent RNA helicase 
DEAH (Asp‐Glu‐Ala‐His) box helicase 15 (Dhx15) has 
been thought to be sensed by NLRP6 and enhances acti-
vation of NLRP6 inflammasome [235].

After infection clearance, the NLRP6 inflammasome 
needs to be down-regulated. Interestingly, it has been 
demonstrated that Nlrp6 transcription and NLRP6 
expression are down-regulated by miRNA‐331‐3p after 
cerebral hemorrhage [260], which stops the inflammatory 
response and restores cell homeostasis. Likewise, while 
miR-650 is thought to promote NLRP6 inflammasome-
related apoptosis, NLRP6 itself acts as an auto-inhibitor 
by decreasing the apoptosis increased by the effect of 
miR-650 through a direct binding of the Nlrp6 3’UTR 
and miR-650, to restore cell homeostasis after infection 
clearance [261]. Besides the described regulation mecha-
nism of NLRP6 activation, further studies would pro-
vide more details about, and with NLRP6 inflammasome 
implications in health and disease.

NLRP6 inflammasome dysfunction and associated diseases
When not properly regulated, dysregulation of NLRP6 
inflammasome activation manifests several diseases, 
which include familial Mediterranean fever caused by 
mutations in the pyrin‐coding gene MEFV, or cryopy-
rin‐associated periodic syndrome, caused by point muta-
tions in Nlrp6 gene [107] (Table  1). Moreover, because 
NLRP6 has mainly been associated with gut microbiota 
protection, dysregulation of NLRP activation has been 
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associated with colitis and persistent gut infection [109, 
110]. Besides, NLRP6 inflammasome dysfunctions have 
been associated with adrenomedullin (ADM) loci and 
male essential hypertension, which suggests that NLRP6 
inflammasome and potentially other NLRP inflamma-
some dysregulation promote pathogenesis of essential 
hypertension [262].

NLRP7 inflammasome
NLRP7 inflammasomes and its role in health and innate 
immunity
So far, NLRP7 protein has only been described in vari-
ous human cells and tissues, including lymphocytes, 
monocytic cells, lung, spleen, thymus, ovaries, and 
oocytes, but not in rodents’ [263], where it has been 
found to assemble into an inflammasome complex and 
induce pyroptosis [264, 265]. However, the exact role 
of NLRP7 inflammasome in health is currently contro-
versial. On the first hand, NLRP7 is associated with a 
pro-inflammatory protective function. NLRP7 has been 
found to sense bacterial lipopeptides (PAMPs) and form 
an activated inflammasome complex, promoting activa-
tion of caspase-1, maturation and release of IL-1β and 
IL-18, which induce a protective inflammatory response 
against intracellular bacterial replication [265]. Moreo-
ver, the protective role of NLRP7 inflammasome has 
also been described in ovaries and oocytes, where it pro-
motes embryonic development, though the mechanism 
modulating this protective role is unknown [263, 266]. 
On another hand, activation of NLRP7 inflammasome 
has been associated with an anti-inflammatory role [264, 
265]. Specifically, NLRP7 can prevent secretion of IL-1β 
and inhibit the effector function mediated by the NLRP3 
inflammasome [234, 267]. Note that a mutation in Nlrp7 
gene found in peripheral blood mononuclear cells from 
hydatidiform mole patients has been strongly associated 
with a reduced secretion of IL-1β upon LPS treatment, 
which was not the case in healthy individual cells. Taken 
together, it is fair to assume that mutation(s) in NLRP7 
might induce NLRP7 inflammasome anti-inflammatory 
activation response and might be specific to tissues or 
cells. Complementarily, because the anti-inflammatory 
response associated with NLRP7 inflammasome might 
be caused regardless of Nlrp7 mutation, it would be 
coherent to assume, as suggested by Zeng et  al. [268], 
that NLRP7 would negatively regulate inflammation in 
quiescent cells, while upon stimulation by PAMPs and 
DAMPs, NLRP7 would promote inflammasome assem-
bly, activation of caspase-1, and release of pro-inflamma-
tory cytokines. Whatever the case is, in-depth studies are 
required to elucidate the role of NLRP7 inflammasome in 
inflammatory response.

Structural and functional organization of NLRP7 
inflammasome
NLRP7 inflammasome has been found to form bona-fide 
inflammasome complex triggered by acylated bacterial 
lipopeptides [264, 265]. It consists of the sensor NLRP7, 
the adaptor ASC, the effector adaptor, and the effector 
pro-caspase-1 (Fig.  1). NLRP7 senses stimuli (such as 
ATP) through its NACHT domain to form inflamma-
some and remain ubiquitinated to regulate its functions 
[269]. However, its ability to form inflammasome com-
plex remain to be elusive, as several studies report con-
tradictory functions of NLRP7 inflammasome in health 
and diseases. Overall, the mechanism leading to NLRP7 
inflammasome activation remains to be elucidated.

NLRP7 inflammasome‑associated diseases
Like NLRP3 and NLRP6 inflammasomes, NLRP7 inflam-
masome activation needs to be highly regulated regard-
less of its functions (pro- or ant-inflammatory), to insure 
and maintain the associated protective functions. It has 
been reported that mutations occurring in Nlrp7 gene 
are associated with hydatidiform mole, a gestational 
trophoblastic disease that develops during the early 
stage of pregnancy and is responsible for a nonviable 
fetus [111, 266, 270]. Interestingly, these loss-of-function 
mutations that lead to hydatidiform mole phenotypes 
are mainly located within the LRR domain of Nlrp7 
gene [266], which suggests that LRR play a central role 
in NLRP7 inflammasome activation. Moreover, it has 
recently been suggested that a decreased level of NLPR7 
protein in trophoblasts disrupts the methylation of DNA 
and CpG and promotes differentiation of trophoblast 
lineages, which in turn causes typical trophoblast hyper-
trophy. This function has only been described for NLRP7 
inflammasome and indicates that Nlrp7 is involved in 
chromatin programming [112].

Other NLRP inflammasomes
Besides NLRP1, the newly identified CARD8, NLRP3, 
NLRP6, and NLRP7, known to form bona-fide inflam-
masomes, several other NLRP family proteins have 
been reported as sensors in inflammasome complex 
formation. For instance, NLRP2, NLRP9, NLRP10, and 
NLRP12 have been found to sense inflammasome stim-
uli, use ACS as adaptor molecules, and induce release of 
pro-inflammatory cytokines. However, for some of them, 
their roles in health are still unclear and their activation 
mechanisms are to be investigated.

NLRP2 inflammasome
NLRP2 (aka NALP2, PYPAF2, NBS1, PAN1, and 
CLR19.9) is expressed in many human cells, including 
astrocytes [271] and proximal tubular epithelial cells 
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specifically in people suffering from inflammatory dis-
eases [272]. The ability of NLRP2 to form an inflamma-
some has recently been suggested, though little is known 
about how NLRP2 specifically mediates to assemble into 
and form an activated inflammasome. As with all NLRP 
inflammasome structural organization, the NLRP2 
inflammasome is a multiprotein complex composed of 
the sensor NLRP2, the adaptor ASC, and the caspase-1. 
It is thought that, like NLRP1, NLRP2 inflammasome 
would assemble through a direct interaction of NLRP2 
with ASC and subsequently with CARD8 domain, which 
interacts with and regulates caspase-1 activation [273–
275]. In human astrocytes, the DAMP such as ATP medi-
ates NLRP2 inflammasome activation, leading to the 
processing of inflammatory caspase-1 and interleukin-1β 
(IL-1β). In addition, it was found that NLRP2 could inter-
act with the P2X7 receptor and the pannexin-1 chan-
nel, leading to NLRP2 inflammasome activation [271]. 
Moreover, NLRP2 positively up-regulates pro-fibrotic 
mediator expression and NF-κB activation, by modulat-
ing the p65 NF-κB phosphorylation, but down-regulates 
that expression of several interferon-inducible genes. 
However, overexpression of NLRP2 in proximal tubu-
lar epithelial cells hampers the apoptotic reaction [272]. 
Besides, kynurenine, a tryptophan metabolite produced 
as a biomarker in the immune dysfunction of depression, 
was recently shown to activate NLRP2 inflammasome in 
astrocytes. An increased level of kynurenine in the mouse 
hippocampus together with the presence of ATP is asso-
ciated with NLRP2 inflammasome activation, which is 
characterized by expression of caspase-1 and release of 
IL-1β. More interestingly, a treatment with kynurenine 
promotes the translocation of NF-κB to the nucleus and 
its binding to NLRP2 promotor, which subsequently 
induces an increased NLRP2 transcription, modulat-
ing inflammasome activation [276]. This recent study by 
Zhang et al. [276] evidenced that NLRP2 inflammasome 
plays an important role in depressive behavioral, as it par-
ticipates in inflammatory immune response. Knocking-
out kynurenine and/or NLRP2 hampers inflammation 
and restores homeostasis, which suggests that drugs tar-
geting kynurenine or NLRP2 in depression-like behaviors 
would relieve from these states. NLRP2 is also expressed 
in human brain vascular pericytes, together with NLRP1, 
NLRP3, NLRP5, NLRP9, and NLRP10. In these brain 
cells, NLRP2 inflammasome activation occurs through 
the non-canonical activation pathway triggered by intra-
cellular LPS or E. coli. Bacteria [277].

NLRP9 inflammasome
Similar to NLRP1, which is represented by only one gene 
in humans (hNLRP1), but four paralogues in rodents 

(mNLRP1a-d), NLRP9 is represented by only one gene in 
humans (hNLRP9) but three isoforms in rodents (mNL-
RP1a-c) [25] and are mainly expressed in reproductive 
organs [278]. Specifically expressed in human, murine, 
and bovine oocysts, ovaries, and testes, NLRP9 expres-
sion has been associated with preimplantation and devel-
opment of embryos, and lack of all mNLRP9 isoforms 
[279, 280] (not a single one [281, 282]) in mice hampers 
embryonic preimplantation and development.

While its role in reproductive cells is somewhat elabo-
rated, NLRP9 is one of the less- and the last character-
ized NLRP family proteins in terms of protein-forming 
inflammasome. Thus, the role of NLRP9 in infectious and 
inflammatory diseases is still elusive. Recent studies have 
reported that NLRP9 could initiate assembly into a pro-
tective activated inflammasome involved in host immune 
defense against proliferation of infectious diseases, espe-
cially in the intestine. Specifically, except in reproduc-
tive cells, mNLRP9b (not mNLRP9a or mNLRPb) was 
also found to be highly expressed in the ileum, where it 
was associated with caspase-1 cleavage and IL-18 release 
upon rotavirus infection, as mNLRP9b-depleted mice 
showed elevated viral load and severe pathogenesis com-
pared to wild-type mice harboring mNLRP9b [283]. This 
suggests that NLRP9 can potentially form a bona-fide 
inflammasome that triggers a protective inflammatory 
response against pathogens.

In regards to what precedes, conclusions on the molec-
ular and structural mechanisms of NLRP9 activation 
would be based on mNLRP9b investigations, as there are 
few or no studies on NLRP9 inflammasome mechanisms 
of assembly. Yet, how NLRP9 inflammasome assembles 
remains largely unknown. In their study, Zhu et al. [283] 
demonstrated that mNLRP9b serves as a sensor for rota-
virus infection to trigger NLRP9 inflammasome forma-
tion. Specifically, mNLRPb indirectly senses rotavirus 
RNA through an intermediate binding with DExH-box 
helicase (DHX)9, an RNA helicase that has a high binding 
affinity with dsRNA, here rotavirus, and forms a complex. 
In absence of DHX9 in experimental challenge cells with 
rotavirus, low production of IL-18 together with resist-
ance to pyroptosis were observed. It is necessary to note 
that DHX9 is unable to bind host RNA, which could trig-
ger NLRP9 inflammasome-associated auto-inflammatory 
response but specifically recognizes viral dsRNA, via a 
mechanism that is still unknown [284]. Moreover, which 
domain of NLRP9 that binds to DHX9 is also unrevealed. 
Moreover, how the NLRP9-DXH9-RNA complex recruits 
ASC and other monomeric subunits necessary for assem-
bly or how the formed complex induces activation of 
NLRP9 inflammasome, which protects against rotavirus 
needs to be elucidated. Furthermore, as it is shown for 
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rotavirus in intestine, more studies are needed to explore 
the NLRP9 effect in other cells and organs.

Conversely, while NLRP9 inflammasome could protect 
against rotavirus in intestine, another study has dem-
onstrated that mNLRP9b inflammasome is involved in 
enhancement of acute lung injury [285]. Indeed, wild-
type mice carrying mNLRPb gene showed a higher 
neutrophilic inflammatory response and a decreased 
survival rate compared with mNLRP9b-depleted mice, 
which suggests that NLRP9 inflammasome activation, 
like other NLRP inflammasomes, can be detrimental to 
health. More interestingly, as recently reviewed [286], 
besides lung injury [285], NLRP9 inflammasome is 
involved in the occurrence or the enhancement of many 
other diseases, including chronic childhood arthritis 
(systemic-onset juvenile idiopathic arthritis [287]), mul-
tiple sclerosis [288], Alzheimer’s disease [289], urothe-
lial carcinoma [290], and Helicobacter pylori-associated 
infection [291]. Note that these last cited NLRP9 inflam-
masome-associated diseases are related to a mutation 
in NLPR9 gene that may cause a dysfunction of NLRP 
inflammasome and its aberrant activation.

NLRP10 inflammasome
Also known as NOD8, PAN5, or PYNOD, NLRP10 pro-
tein was described for the first time by Wang et al. [292] 
and has been found in rodent immune and human cells, 
including epithelial cells, keratinocytes, macrophages, 
dendritic, and T cells [246]. However, the expression of 
NLRP10 in each of these cells and environment seems 
different and associated with different variable, but con-
tradictory functions. In fact, NLRP10 is the only protein 
from NLRP protein family that does not have the same 
structural features as other NLRP proteins known to 
form inflammasome complex, as it lacks the LRR domain 
involved in homotypic CARD-CARD domain interac-
tions required to recruit the enzyme pro-caspase-1 for a 
typical inflammasome complex assembly. Thus, NLRP10 
protein only consists of PYD and NBD (NACHT) 
domains. This characteristic suggests that NLRP10 might 
have an NLRP10 inflammasome-independent func-
tion, as NLRP10 protein may not act like a signal sen-
sor of PAMPs and DAMPs and be involved in forming 
inflammasome, but rather like a probable regulator or an 
adaptor [293]. In other words, NLRP10 looks more like 
a regulator rather than an inflammasome-associated sen-
sor, and may not form a bona-fide inflammasome, unless 
another domain is involved in recruiting pro-caspase-1 to 
allow assembly into an active inflammasome with effect 
on caspase maturation and interleukin release. Notably, 
Lech et al. [246] and Imamura et al. [294] demonstrated 
the anti-inflammatory and inflammasome-independent 
function of NLRP10 in innate immunity. They showed 

that NLRP10 protein negatively regulates other inflam-
masome activation and inflammasome-associated cell 
death. Specifically, they described that NLRP10 inhibits 
ASC-mediated NF-κB activation and prevents the release 
of IL-1β by hampering the caspase-1-mediated matura-
tion of IL-1β. These activities have been also shown in 
other reports and are attributed to the NACHT domain 
(and to a lesser extent PYD) of NLRP10, which interacts 
with caspase-1 through ASC of other inflammasomes 
[292, 293].

However, these findings may not result in a general 
conclusion because, it has also been surprisingly and con-
trarily shown that in other cells different from the human 
epithelial cells used in the above description, NLRP10 
may have an inflammasome-dependent activity, mean-
ing NLRP10 is able to form an inflammasome. Notably, 
while the negative regulation of NLRP10 was shown by 
others, reporting inhibition of NLRP3-associated nor-
mal canonical activation and IL-1β production in mouse 
DCs carrying NLRP10 [294], the presence of NLRP10 in 
transgenic mouse macrophages has no negative effects in 
ASC aggregate formation, nor does it have negative regu-
lation in caspase-1-mediated maturation of IL-1β. Also, 
recent studies by Prochnicki et al. [295] and Zheng et al. 
[296]have shown that NLRP10 can assemble into a bona-
fide inflammasome in differentiated human keratinocytes 
and is involved in monitoring mitochondrial integrity in 
an mtDNA-independent manner, as 3M3-FBS triggers 
NLRP10 inflammasome activation via mitochondrial 
disruption. This suggests that NLRP10 expression seems 
to depend on cell-type and its function is cellular envi-
ronment- and signaling pathways-dependent [296–298]. 
Therefore, more investigations are required for a better 
understanding of the NLRP3 inflammasome-depend-
ent and independent functions in innate immunity and 
whether, or not, NLRP10 forms a functional inflamma-
some. Such studies are relevant to facilitating new innate 
immune anti-inflammatory interventional strategies 
[296].

NLRP12 inflammasome
NLRP12 protein (aka Monarch-1 or Pypaf7) is mainly 
expressed in immune cells, including bone marrow-
derived dendritic cells, granulocytes, macrophages, 
and neutrophils [299, 300]. Like NLRP10, NLRP12 was 
described as a negative regulator for normal canonical 
activation and IL-1β secretion in activated B-cell sign-
aling through interaction with IRAK1 that prevents its 
accumulation. Similarly, NLRP12 down-regulates non-
canonical activation through interaction with TRAF3 
that promotes the degradation of NF-κB-inducing kinase 
[301–303]. In hematopoietic and non-hematopoietic 
stem cell subsets, NLRP12 has been found to act like an 
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inflammatory response modulator [301]. In addition, it 
has been found that NLRP12, together with NLRP10, can 
negatively regulate adaptive immunity [304].

Besides being an immune response regulator and like 
other NLRP family proteins (except NLRP10), NLRP12 
has been found to inflammasome-forming component. 
This role of NLRP12 in forming inflammasome and the 
inflammasome-associated function was evidenced in part 
from infection with Yersinia pestis, in which NLRP12 
inflammasome induced activation of caspase-1 and 
release of pro-inflammatory cytokines, including IL-1β 
and IL-18, and was associated with protection against 
Yersinia pestis infection [305]. However, in the in-vivo 
infection model, NLRP12 and NLRP3 inflammasomes 
are concomitantly required to provide an anti-infectious 
resistance against Yersinia pestis, which suggests that in 
some infection setups, activation of divers NLRP family 
proteins or NLRP inflammasomes might provide an opti-
mal protection again microbial antigens [306].

NLRP12 was amongst the first NLRP family proteins 
to be described together with NLRP1 and NLRP3, and 
displays structural similarities with NLRP3 [299, 300]. 
However, the structural and functional organization 
of NLRP12 inflammasome needs to be studied. Even 
though NLRP12 inflammasome activation mechanism 
is still unknown, its activation process should be highly 
regulated to ensure health and homeostasis. Indeed, 
dysregulation of NLRP12 inflammasome activation, in 
part caused by numerous identified mutations (above 
20 mutation types [307, 308]), has been associated 
with health disorders and systemic inflammatory dis-
eases [307–309]. Patients displaying CAPS-associated 
symptoms have been shown to carry a set of NLRP12 
but not always NLRP3 mutations, considered to dys-
regulate NLRP12 inflammasome activation and trig-
ger the NLRP12-associated auto-inflammatory diseases 
(NLRP12-AID) [307–309]. However, it is important 
to note that certain of these NLRP12 mutations do not 
always compromise the protective pro-inflammatory 
effect of NLRP12 inflammasome but rather promote a 
gain-of-function, as they are associated with increased 
caspase activation and enhanced IL-1β secretion. There-
fore, these conflicting roles of NLRP12 [306], including 
i) the NLRP12-assocciated protective pro-inflammatory 
function, ii) the NLRP12 mutation-associated diseases 
triggering function, and iii) the NLRP12 negative regu-
lation role described above might have rendered initial 
attempts for anti-IL-1 therapy difficult and unsuccessful, 
and may contribute to explain mechanisms underlying 
resistance to anti-IL-1 therapy observed in patients with 
CAPS [310]. Thus, to provide a successful therapy against 
such a scenario, further in-depth studies are highly 
needed.

Therapeutic strategies against pathogenic NLRP 
inflammasomes
As previously described, aberrant NLRP inflammasome 
activation and gain-of-function mutations have been 
associated with the development and enhancement of 
numerous metabolic, auto-inflammatory, autoimmune, 
and neurodegenerative diseases. The currently used 
immunosuppressive and anti-inflammatory treatment, 
which include cyclosporine, steroids, methotrexate, and 
general anti-TNF-a therapy allows to treat severe cases of 
inflammatory diseases [304, 311]. However, a challenge 
rises in such a way that the immunosuppressive and anti-
inflammatory treatment may hamper activation of a nor-
mal protective immune response that is not associated 
with disease-specific pathological mechanisms. Thus, to 
overcome this challenge, it is suggested to thoroughly 
understand the difference between activation mecha-
nisms of the proper induction of protective immune 
response and that is specifically leading to diseases, as 
this would allow development of aberrant inflamma-
some-specific drugs that could not hamper immune 
response induced to clear infection [304].

Fortunately, to pave this way, promising therapeutics 
that specifically and selectively inhibit aberrant NLRP 
inflammasome activation in inflammatory diseases have 
been developed and proven effective. As summarized 
in Table  2, these therapeutics mainly target and inhibit 
NLRP inflammasome products, including IL-1β and 
IL-18, and hamper the NLRP inflammasome activation 
ability of sensor stimuli [312]. For example, the inhibi-
tors in CAPS that inhibit downstream pro-inflammatory 
cytokine also contribute to reducing the pathogenic 
effect of CAPS by blocking inflammasome-independent 
but CAPS-dependent pyroptosis released DAMPs that 
are produced to induce more CAPS-related pathological 
inflammation [313]. The best example of inhibitors that 
play such roles includes canakinumab and anakinra, a 
monoclonal anti-IL-1β antibody and a recombinant IL-1 
receptor antagonist (IL-1RA), respectively. Canakinumab 
and IL-1RA anakinra are currently approved for treat-
ing certain forms of arthritis, CAPS, and Mediterranean 
fever, and they are effective in reducing cardiovascular 
events in atherosclerosis patients [314]. As highlighted 
by Bulte et  al. [304], these inhibitors may still hamper 
induced protective immunity upon infection.

Besides, recent research discovered and character-
ized many inflammasome inhibitors that directly target 
NLPR genes or NLRP inflammasome complex-associated 
components, blocking their oligomerization, the further 
inflammasome activation pathway, and the subsequent 
release of pro-inflammatory cytokines. For instance, the 
3,4-methylenedioxy-β-nitrostyrene (MNS) that has been 
demonstrated to treat inflammasome activation-induced 
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Table 2 Pharmacological inhibitors of NLRP inflammasome activation

Therapeutics (candidates) Inhibit(s): Diseases treated Ref.

NLRP3 inflammasome Glyburide ATP, nigericin, and NLRP3-associated 
IAPP and IL-1β production

TD2  [315, 316]

16,673–34-0 Glyburide derivate substrate AMI  [317]

RRX-001** SCLC and severe oral blistering 
or mucositis

 [318, 319]

ZYIL1* NLRP3 oligomerization, IL-1β 
and IL-18

CAPS  [320]

JC124 NLPR3, ASC, caspase-1, and pro-
IL-1β production

Protect from TBI enhancement  [317]

FC11A-2 IL-1β, IL-18 production and cas-
pase-1 activation

Colitis  [321]

NRTIs P2X7 signaling Retrovirus Infection, auto-inflamma-
tory and autoimmune diseases

 [322]

VX-740*, VX-765* CASP-1 activation and pro-IL-1β/
IL-18 production

RA, OA  [317, 323]

MCC950* IL-1β and IL-18 production Aberrant NLRP3 activation-based 
inflammatory diseases

 [317, 323]

MNS ATPase activity by binding to NLRP3 
LRR and NACTH

 [144, 324, 325]

CY-09 (Glitazone)* ATPase activity and NLRP3 activation Depression-like behavior, Alzhei-
mer’s disease

 [70, 317, 323, 326]

Tranilast* NLRP3-ASC interaction Homologous passive anaphylaxis  [317, 323]

OLT1177* IL-1β and IL-6 production Degenerative arthritis, gout  [323, 327]

Oridonin* NF-κB pathway and IL-1β and IL-18 
production
Abolish NLRP3-NEK7 interaction

Neuro-inflammation, sepsis, colitis, 
TD2, peritonitis, gouty arthritis

 [317, 323, 328]

Selnoflast* IL-1β production CAPS, ulcerative arthritis, IBD  [329]

CRID3 ASC oligomerisation  [330]

Auranofin NLRP3 IL-1β production  [331]

ILG ASC oligomerization, IL-1β and cas-
pase-1 production

HFD-induced obesity and macrove-
sicular steatosis, and adipose tissue 
inflammation

 [332]

25-HC IFN signaling and IL-1 Septic shock, exacerbated experi-
mental autoimmune
encephalomyelitis, and bacteremia

 [304]

BHB IL-1β and IL-18 production, and  K+ 
efflux

FCAS, MWS  [333]

IL-1RA anakinra** Downstream effect of IL-1 CAPS, arthritis, MEFV  [97, 334]

Canakinumab** IL-1β NmAbs CAPS, arthritis, MEFV  [97, 334]

Tranilast NLRP3 oligomerization NLRP3 inflammasome-associated 
diseases

 [317, 335, 336]

DFV890* NLRP3 inflammasome activation CAPS, knee osteoarthritis, COVID-19, 
and pneumonia

 [157]

Ibrutinib* NLRP3 Phosphorylation Colitis  [323, 337]

VI-16* TXNIP-dependent NLRP3 activation Colitis  [323, 338]

INF39* ATPase activity of NLRP3  [323, 339]

Disulfiram** Formation of GSDMD pore and IL-1β 
release

 [323, 340, 341]

IZD174*, IZD334* CAPS  [157]

VTX2735 IL-1β and hsCRP Inflammatory diseases, CAPS Link

NT-0796 / NT-0249* hsCRP Inflammatory diseases  [342]

HT-6184* NEK7 and NLRP3 pathways  [343, 344]

Rilonacept Downstream effect of IL-1 CAPS  [97, 334]



Page 32 of 43Xu et al. Molecular Biomedicine            (2024) 5:14 

inflammatory bowel disease (IBD), prevents NLRP3-
mediated ASC speck formation and oligomerization and 
inhibits NLRP3 ATPase activity by binding to NLRP3 
LRR and NLRP3 NACTH [324, 325]. Tranilast, another 
direct NLRP3 inhibitor, inhibits NLRP3 oligomerization 
by directly binding to NLRP3 NACHT domain and pre-
vents NLRP3 inflammasome assembly [317, 335, 336]. 
Moreover, VI-16 blocks oligomerization of NLRP3 and 
activation of TXNIP-dependent NLRP3 inflammasome. 
Table 2 shows other example inhibitors that directly tar-
get NLRPs or NLRPs-associated complexes.. These NLRP 
inflammasome inhibitors tend to be the best against 
pathogenic inflammatory responses because, unlike the 
previous, they inhibit the formation of inflammasome 
complex, so blocking any downstream activity. Drugs 
that inhibit NLRP inflammasome products would not 
prevent inflammasome complex formation. Therefore, 
treatment with such inhibitors would be a long-term pro-
cess and difficult to stop, as stopping it would still lead to 
production of downstream pro-inflammatory cytokines 
by activated inflammasomes, thus compromising the 
health state. This later might, however not be observed 
when treating with inhibitors that directly target NLPRs 
or NLRP components. In fact, we hypothesized that, 
besides mutations-based aberrant inflammation, block-
ing NLRP oligomerization for further aberrant inflamma-
some complex activation would help the inflammasome 
regulation system to restore proper regulation of NLRP 
inflammasome activation. It would be therefore suitable 
to study whether short-term treatment with direct NLRP 

inflammasome inhibitors permanently restores cellular 
homeostasis and ameliorates health conditions in aber-
rant inflammasome activation-associated diseases.

The way to deal with improper NLRP inflammasome 
activation and the associated pathological conditions 
is still long. Note that almost, if not all current NLRP 
inflammasome inhibitors considered under clinical tri-
als target NLRP3 inflammasome (Table 2 and review in 
[304]), unless the intravenous immunoglobulin (IVIg) 
which is an FDA-approved drug against NLRP1 and 
NLRP3 inflammasome activation [348]. Moreover, as 
presented in Table  2, most of the discovered or devel-
oped inhibitors of NLRP inflammasome activation are 
only towards NLRP3 inflammasome, but not other 
described NLRP inflammasomes. This suggests that 
besides the promising potential to inhibit aberrant acti-
vation of NLRP3 inflammasome, considerable progress 
is required, especially in developing other NLRP inflam-
masome-specific drugs than those targeting NLRP3 
inflammasome [351].

Concluding remarks and future perspectives
Among the NLRP inflammasomes, NLRP3 inflamma-
some is the most highly described, with its molecular 
mechanism of assembly and activation well enough 
elaborated so far. Its role in health preservation and 
occurrence of auto-inflammatory, autoimmune, and 
neurological diseases and aggravation of these condi-
tions is also well described. It is noteworthy that most 
studies in developing pharmacological inhibitors to 

*Under pre-clinical investigation, clinical trial phase 1, 2, or 3

**FDA pre-approved or approved for clinical use. CAPS, cryopyrin-associated periodic syndromes. TD2, Type 2 diabetes. IAPP Islet amyloid polypeptide. 
mAbs monoclonal antibodies. NmAbs neutralizing monoclonal antibodies. NRTIs nucleoside reverse transcriptase inhibitors. 25-HC 25-Hydroxycholesterol. 
CPG cyclopentenone prostaglandin. TBI traumatic brain injury. AMI Acute myocardial infarction. SCLC small cell lung cancer. RA rheumatoid arthritis. OA 
osteoarthritis. CRID3 cytokine release inhibitory drug. BHB β-hydroxybutirate. FCAS familial cold autoinflammatory syndrome. MWS Muckle-Wells syndrome. MNS 
3,4-methylenedioxy-β-nitrostyrene. ILG isoliquiritigenin. IBD inflammatory bowel disease. hsCRP, high sensitivity C-reactive protein. HFD, hand, foot, and mouth 
disease. RKIP Raf kinase inhibitor protein. IVIg intravenous immunoglobulin

Table 2 (continued)

Therapeutics (candidates) Inhibit(s): Diseases treated Ref.

NLRP3 and NLRP1 Parthenolide* CASP-1 activation; NLRP3 ATPase 
activity

 [345]

Bay 11–708 NF-κB pathway  [317, 345]

CPG 15d-PGJ2 CASP-1 activation  [346]

RKIP CASP-1 activation and IL-1β secre-
tion

Gouty arthritis and T2D  [347]

IVIg** Ischemic stroke  [348]

ADS032 IL-1β and TNF-α Pulmonary inflammation  [349]

Arsenic trioxide CASP-1 activation and IL-1β secre-
tion

 [350]

Sodium arsenite CASP-1 activation and IL-1β secre-
tion

 [350]
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treat pathological inflammasome activation are mainly 
directed against NLRP3 inflammasome, for which 
promising drugs against NLRP3 inflammasome-asso-
ciated diseases are in advanced stages of clinical trial. 
Although encouraging, as these studies/results allow 
management of NLRP3 inflammasome activation and 
the associated diseases, huge effort is still required for 
both understanding of NLRP3 inflammasome mecha-
nisms of modulation and other NLRP inflammasomes 
mechanisms of activation and modulation, and for the 
development of specific inflammasome therapeutic 
inhibitors.

Many parameters have hampered the studies on the 
mechanism of assembly of certain inflammasomes, such 
as NLRP1 and NLRP9 inflammasomes. The molecular 
mechanisms of NLRP1 assembly and activation were 
poorly characterized because of the lack of common acti-
vators in human and mouse models, and because of the 
inherent structural differences in hNLRP1 and mNLRP1s 
[25, 31–34]. Current reports have revealed numerous 
perturbations and molecular entities related to NLRP1 
biology (e.g., dsRNA, viral 3C proteases and reductive 
stress). Notably, NLRP1 stimuli can be divided into two 
distinct groups based on pathogens signals and danger 
signals. One group is pathogen signals which contain 
viral 3C proteases, viral dsRNA, KSHV-encoded ORF45, 
lethal anthrax toxin, IpaH7.8 of Shigella flexneri and T. 
gondii infections. UVB,  O3, ATP, peptide accumulation, 
metabolic inhibitors, and reductive and ribotoxic stress 
belong to the other group of danger signals. Interestingly, 
the wide variety of agonists has unraveled the pivotal role 
of NLRP1 inflammasome in cellular homeostasis and 
host defense responses.

Furthermore, although there are some unresolved mys-
teries regarding NLRP inflammasome activation, recent 
studies have provided much about NLRP1, NLRP6, and 
NLRP7 receptors that can detect diverse pathogens 
or dangerous activities. Yet, several questions arise to 
understand the molecular mechanisms of NLRP inflam-
masome activation. Indeed, regarding NLRP1, one inter-
esting question raised by these observations includes 
how dsRNA triggers a conformational shift of the N-ter-
minal region of NLRP1 to destabilize the ternary complex 
remains elusive. Another outstanding question consists 
of how DPP8/9 inhibitors precisely affect the CARD8-
DPP9 ternary complex to activate the NLRP1 inflamma-
some in cells. Although keratinocytes and AML (Acute 
Myeloid Leukemia) cells express NLRP1 and CARD8, 
the molecular mechanism of how VbP activates NLRP1 
inflammasome in keratinocytes, whereas CARD8 sense 
VbP in AML cells, remains unknown. Moreover, under-
standing how some NLRP inflammasomes are activated 
and modulated, post-activation mechanisms that trigger 

pyroptosis might serve as therapeutic targets to modu-
late or inhibit pathologic NLRP inflammasome activa-
tion. Also, it has been thought that expression of NLRPs 
is associated with either pathologic or benefic effect/
response in health or disease based on the tissue; thus 
more studies are needed to understand what drives these 
NLRP cell-specific differences of function.

As for NLRP3 activation pathways, studies character-
izing the upstream and downstream pathways of NLRP1, 
NLRP6, NLRP6, and NLRP7 inflammasome activation 
have suggested important roles in human diseases (Fig. 2 
and Table  1). Because the aberrant activation of NLRP 
inflammasomes is associated with several auto-inflam-
matory diseases, and their inhibition could be a useful 
pharmacological approach for managing chronic inflam-
matory disorders. Many studies have demonstrated that 
potential NLRP1 inhibitors significantly prevent NLRP1 
inflammasome complex formation [351]. In addition, as 
presented in Table  2, the blockade of NLRP inflamma-
some downstream signaling, such as the IL-1β receptor, 
could be a suitable pharmacological approach for treating 
immune-mediated inflammatory diseases [352].

In the effort to develop therapeutics against aber-
rant activation of NLRP inflammasomes, it is important 
to note that most of the current therapeutic inhibitors 
(Table  2) do not directly target NLRP inflammasome 
components, but are specific to the final products of 
inflammasomes such as IL-1β, IL-18, NF-kB signaling, 
and so on. Thus, we are tempted to suggest that more 
effort should be put into developing therapeutics that tar-
get NLRP inflammasome components. Targeting NLPR 
inflammasome components, if possible, would be more 
beneficial because it would reduce the random block-
ade of normal production of IL-1β and IL-18 for exam-
ple, which are not always harmful or induced by NLRP 
inflammasome activation. In addition, such targets could 
or may be directed to mutant NLRPs that lead to aber-
rant inflammasome activation, and therefore would solve 
the question of the limit between the harmful and the 
beneficial inflammasome activation and how to react 
accordingly.

Overall, these recent advances in our understanding 
of the mechanisms of NLRP inflammasome activation 
offer insight into inflammasome assembly and signal-
ing. Further exploration is needed to gain insight into the 
complex activation mechanism of other NLRP inflam-
masomes and how their dysfunction is associated with 
human diseases.
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