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Abstract 

Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed 
to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML 
patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation 
datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox 
analysis, LASSO regression analysis, Kaplan–Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognos-
tic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), 
clustered P-AML patients in training dataset into high-risk group (above optimal cut-off ) with shorter OS, and low-risk 
group (below optimal cut-off ) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal valida-
tion dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group 
defined with the Children’s Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The 
model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pedi-
atric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated signifi-
cant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic 
factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy 
only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup 
of the combined dataset, outperforming two Children’s Oncology Group (COG) risk stratification systems, 2022 
European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene 
prognostic model generated by a single assay can further refine the current COG risk stratification system that relies 
on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML 
patients receiving chemo-therapy only treatment.
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Introduction
Pediatric acute myeloid leukemia (P-AML) accounts for 
15–20% of all childhood acute leukemia, which could be 
classified based on morphology, lineage, and genetics [1]. 
Over the past three decades, the overall survival (OS) 
rates of children with AML have increased dramatically, 
with the present 5-year survival rate varying between 65 
and 75%, and the initial complete remission rates around 
80% after the induction chemotherapy [2–6]. However, it 
remains a catastrophic disease with around 40% relapsed 
patients [6] and efforts to develop novel target therapies 
and cell therapies to enhance OS in these patients are 
ongoing.

The prognosis of P-AML is determined by a variety of 
cytogenetic and molecular traits [7]. Clinical protocol 
design has placed a strong emphasis on risk stratification 
of therapy for P-AML in order to maximize treatment for 
high-risk groups while minimizing therapeutic intensity 
for lower-risk groups. According to the groups partici-
pating in the pediatric cooperative clinical trials, different 
risk variables are employed for stratification [8]. Histori-
cally, risk-groups and treatments were categorized in the 
Children’s Oncology Group (COG) AAML0531 research 
based on the baseline genetic prognostic indicators and 
the disease responses following induction therapy [9]. 
The three-year event-free survival (EFS) in the low-risk, 
intermediate-risk, and high-risk groups of AAML0531 
COG classification was 64.0%, 46%, and 27%, respec-
tively, resulting in substantial survival disparities across 
the groups. However, 60% of pediatric AML cases lack 
chromosomal abnormalities that stratify prognosis, while 
20% of them lack all recognized markers [10]. In addition, 
it is generally difficult to quantify how these mutational 
signatures interact to affect survival. Measurement of 
measurable residual disease (MRD) by multidimensional 
flow cytometry has allowed the categorization of individ-
uals without genetic anomalies associated with treatment 
results, however, the accuracy of the MRD measurement 
is closely related to the selection of methodology and 
antigen [10].

With the advancement of new molecular biology 
technologies, risk-stratification systems have begun to 
incorporate elements from high-throughput sequenc-
ing, such as somatic mutation profiling discovered by 
genome sequencing and gene expression profiling based 
on microarray or RNA sequencing [11–15]. One of the 
most recent risk categorization methods for pediatric 
AML has been used in the ongoing COG phase III study 
AAML1831 [8], and the high-risk group was further 
expanded with 6 alterations by using the whole-genome 
sequencing data from two sequential COG phase III 
trials (NCT01407757 and NCT01371981) for de novo 
pediatric AML patients to interrogate structural and 

molecular alternations in the associated genes [16]. As 
Adam J. Lamble et  al. reported, the number of patients 
assigned to the allogenic donor stem cell transplantation 
cohort could have been increased by this expanded COG 
risk assessment algorithm (expanded_COG_AAML1831) 
[16]. The 2017 European LeukemiaNet (ELN) risk strati-
fication system combines cytogenetic abnormalities and 
genetic mutations to provide guidance on the risk strati-
fication of AML patients and is routinely used in clinical 
practice for adult AML patients [17]. Major strides have 
been made in our understanding of the AML patho-
physiology recently, including the identification of the 
molecular etiology of the disease. The updated 2022 
ELN guideline presented better performance in stratify-
ing survival between adult patients with intermediate- or 
high-risk AML treated with induction chemotherapy [18, 
19]. However, the distinct molecular profiling of AML in 
pediatric and adult patients limits the application of the 
models established in adult cohort to the pediatric popu-
lation [20].

While it is challenging to apply most of the above-
mentioned models extensively in the clinical environ-
ment since some have too many genes for ease of assay 
performance, some have interactions between the incor-
porated molecular makers, and some have mediocre risk 
stratification effectiveness in P-AML, new molecular bio-
markers are needed for better prognostic classification, 
ultimately, better therapeutic targets of P-AML [21]. In 
this study, we aimed to establish a prognostic score for 
P-AML based on gene expression profile from public 
databases and validate its stability and forecasting per-
formance, which may provide guidance for the choice of 
therapy and follow-up in P-AML.

Results
Patient characteristics
Clinical characteristics of the P-AML patients in TAR-
GET 256, training dataset TARGET 145, validation data-
sets (TARGET 111, AAML1031 and JAPAN P-AML) can 
be found in Table S1. Based on the data from the cohorts 
mentioned above, we established and validated a prog-
nostic model for pediatric AML. We also explored the 
potential clinical significance of the model and compared 
its prognostic ability with several existing models. Work-
flow of the study was presented in Fig. 1.

The distribution of age at diagnosis, gender, FAB (Leu-
kemia French American British Morphology Code), 
treatment protocol and vital status of pediatric AML 
patients in TARGET 256 was shown in Fig.  2a and 
Table S1. The median age of all evaluated patients was 
10.5  years (range, 10  days–22  years) and 135 patients 
(52.73%) were male. A total of 159 out of 256 patients 
(62.11%) received AAML0531 therapy, 56 (21.88%) 
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received AAML03P1 therapy, and 41 (16.02%) received 
CCG-2961 therapy. The type or timing of induction 
therapy was randomized (CCG-2961 therapy) [22] or 
gemtuzumab ozogamicin (GO) was administered in a 
single-arm pilot (AAML03P1) [23] or a randomized fash-
ion (AAML0531) [9]. Relapse as the first event occurred 
in 149 (58.20%) patients, and 47 (18.36%) patients had 
measurable residual disease (MRD1), defined as > 0.02% 
disease detected in the bone marrow by central differ-
ence from normal (ΔN) flow cytometry analysis after first 
course of induction chemotherapy [24, 25]. The percent-
age of hematopoietic stem cell transplantation (HSCT) 
was 12.50% (N = 32).

There were significant differences in COG, expanded_
COG_AAML1831 and 2022ELN risk-group distribu-
tion, treatment protocol, GO treatment and FLT3_ITD 
(FLT3 Internal Tandem Duplication present) distri-
bution between the TARGET 145 and TARGET 111 
cohort (all p < 0.01, Fig. 2b). Compared to TARGET 145, 
more individuals received CCG2961 treatment proto-
col in TARGET 111 (22.52% vs. 11.03%, p < 0.01), more 
individuals were FLT3_ITD carriers (26.13% vs. 7.59%, 
p < 0.001), and less individuals received GO treatment 
(42.34% vs. 62.07%, p < 0.001). Considering the treat-
ment subgroups in TARGET 256, P-AML patients 
received the AAML03P1 protocol presented the best 
prognosis (Fig. S1). These data revealed that TARGET 
145 and TARGET 111 are two distinct datasets with 

clinical differences, akin to real-world scenarios of 
training and validation datasets.

Construction of the prognostic risk score
Our clinical hypothesis is that gene RNA expression levels 
may serve as reliable and convenient prognostic indicators. 
To investigate this issue, we conducted univariate Cox regres-
sion analysis of 57,599 genes in the TARGET 145 dataset. As 
a result, 5,943 genes were identified as the potential biomark-
ers for predicting the patient-specific OS (based on a thresh-
old of p < 0.05 for individual gene analyses). Among these 
5,943 genes, the LASSO-Cox regression analysis identified 
14 genes that were the most relevant to OS prognosis (Fig. 3a 
b). Of these, expression levels of 11 genes (dichotomized by 
their median expression levels) were individually correlated 
with either a longer or a shorter OS according to the K-M 
survival curves (Fig. S2) and subsequently subjected to the 
multivariate Cox regression analysis. Notably, the results 
revealed that five genes were the independent predictors 
of OS (Fig. 3c, p < 0.05). A five-gene risk score (P-AML-5G) 
was then established by integrating the expression levels 
(normalized counts) and the coefficients derived from mul-
tivariable Cox regression analyses, and the formula was 
exhibited as below: Risk Value = [0.00024149 × COL23A1 
expression] + [0.00029096 × TTC38 expression] ​+​ [0.00054436 ​
× ​RNFT1 expression]- [0.000674 × ZNF775 expression] ​
+​ [0.0001792 × CRNDE expression]. ROC curve analysis 
showed that area under the ROC curve (AUC)s of P-AML-5G 

Fig. 1  Overall design of this study
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Fig. 2  Clinical characteristics of the P-AML patients in TARGET 256. a The distribution of age at diagnosis (top panel), gender, FAB (Leukemia 
French American British Morphology Code), treatment protocol and vital status of pediatric AML patients in TARGET 256 (middle panel); b Clinical 
characteristics with significant differences between TARGET 145 and TARGET 111 (p < 0.01)
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score for 1-, 3- and 5-year OS were 0.86, 0.78, 0.80, respec-
tively (Fig.  3d). The optimal cutoff risk value (1.676) was 
used further to divide patients into high- and low-risk 
groups. Patients in the low-risk group had a significantly 
longer OS than of those in the high-risk group (p < 0.001) 
(Fig. 3e). Patients in the low-risk group also had a signifi-
cantly longer event-free survival (EFS) than of those in the 
high-risk group (all p < 0.001) (Fig. S3a). AUCs for 1-, 3- and 

5-year EFS were 0.71, 0.70, 0.71, respectively (Fig. S3b). 
Heatmap showing the differential expression of five genes 
between the high- and low-risk groups (Fig. 3f). The results 
revealed that the expressions of COL23A1, TTC38, RNFT1, 
and CRNDE genes were significantly increased in the 
high-risk group compared with the low-risk group, while 
the expression of ZNF775 was significantly reduced in the 
high-risk group (Fig. S4).

Fig. 3  Prognostic model construction. a Each curve represented the changed trajectory of each prognosis-related gene variable coefficient. 
When fourteen variables remained, the lowest partial probability of deviance was observed; b A coefficient spectrum was generated for screening 
variables. The first dotted vertical lines at optimal log (Lambda) value; c A total of five genes were identified according to multivariate cox regression 
analysis to construct the prognostic model; d ROC analysis of gene signature for prediction of OS risk at 1, 3, and 5 years in TARGET 145 dataset; 
e Kaplan–Meier curves of OS based on prognosis model (p < 0.001); f Expression profiles of 5 genes in the high-risk group and the low-risk group. 
OS: overall survival; ROC: receiver operating characteristic
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Prognostic value validation
Further model validation results are essential to dem-
onstrate the stability and feasibility of the model. As 
expected, patients in the high-risk group presented sig-
nificantly shorter OS than those of the patients in the 
low-risk group in TARGET 256 (p < 0.001; HR = 3.74, 
95CI% (2.52, 5.57) (Fig.  4a). Considering the treatment 
subgroups in the TRGET 145 dataset, the P-AML-5G 
risk groups provided powerful stratified performance 
in patients received AAML03P1 therapy (p < 0.001; 
Fig. S5a) and AAML0531 therapy (p < 0.001; Fig. S5b), 
while the result was unsatisfactory for stratifying 
patients received CCG2961 therapy (p = 0.31; Fig. S5c). 

Therefore, patients receiving protocol AAML0531 and 
AAML03P1 in TARGET 111 dataset were kept for inter-
nal model validation (N = 86, hereafter TARGET valida-
tion). The results showed that OS and EFS of the patients 
in the high-risk group were significantly shorter than 
those of the patients in the low-risk group (p = 0.005; 
HR = 2.63, 95CI% [1.30, 5.26]; p = 0.000; HR = 3.10, 
95CI% [1.73, 5.56] (Fig.  4b and Fig. S6). We further 
demonstrated its prognostic generality in AAML1031 
and JAPAN P-AML datasets with univariate Cox 
regression analysis [HR = 1.377, 95%CI (1.117 ~ 1.697), 
p = 0.003; HR = 1.756, 95%CI (1.103 ~ 2.793), p = 0.018, 
respectively]. A notable survival contrast was observed 

Fig. 4  Prognosis model validation in internal and external datasets. In a TARGET 256, b TARGET validation, c AAML1031 and, d JAPAN P-AML, 
patients with high-risk scores had worse OS than patients with low-risk scores (all p < 0.01)
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between the high and low-risk groups, as determined by 
the optimal split point identified in both of these data-
sets [p = 0.001; HR = 1.55, 95CI% (1.19, 2.01); p = 0.005; 
HR = 2.94, 95CI% (1.33, 6.53), respectively] (Fig. 4c-d). In 
comparison to the bone marrow tissue of healthy chil-
dren, the RNA levels of COL23A1 and CRNDE exhibited 
significant upregulation in the bone marrow of pediat-
ric patients participating in the AAML1031 study [all 
log2(foldchange) > 3, p < 0.001] (Fig. S7). The aforemen-
tioned results revealed that our model exhibited prog-
nostic capability in multiple pediatric AML validation 
datasets, and two genes in the model showed significant 
differential expression between patients and controls.

Screening for prognostic factors for OS in the P‑AML 
dataset
To investigate whether the P-AML-5G model is an inde-
pendent prognostic factor for p-AML, we performed 
a univariate Cox regression analysis for screening the 
prognostic factors for OS using the P-AML-5G groups, 
COG, along with other clinical and/or genetic markers. 
Nine variables, including the P-AML-5G groups, treat-
ment protocol, inv(16), MinusX, Cytogenetic Complexity, 
FLT3_ITD, WT1 mutation, COG risk stratification sys-
tem and CBFB-MYH11 fusion were potential risk factors 
affecting OS in the TARGET 145 (p < 0.01, Table 1). Fur-
thermore, multivariate survival analysis using the above 
variables found that the P-AML-5G groups was an inde-
pendent prognostic factor for OS of the P-AML patients 
(p < 0.05, Table  2). In the TARGET validation dataset, 
the P-AML-5G groups, PB, COG risk stratification sys-
tem and MRD1 were associated with the OS (p < 0.05) 
(Table 1), while P-AML-5G groups and COG risk system 
were independent prognostic factors (Table  2). Hence, 
the P-AML-5G groups offer independent prognostic 
information for the overall survival of pediatric AML 
across multiple datasets.

Clinical significance of the P‑AML‑5G model
Pre-treatment risk stratification, post-treatment MRD 
status, and identifying suitable patients for HSCT are 
critical indicators or events in the clinical management 
of p-AML. Therefore, we also investigated the correla-
tion between P-AML-5G risk groups and these indicators 
to explore the potential clinical significance of P-AML-
5G. According to the Sankey diagram of the P-AML-5G 
groups and COG risk groups, we found that P-AML-5G 
resulted in the reclassification of 100% (8/8) of COG 
adverse patients, 25.00% (15/60) of COG favorable and 
65.20% (45/69) of COG intermediate patients in the high-
risk group of the TARGET 145 dataset. In the TARGET 
validation dataset, P-AML-5G classified 30.00% (9/30) 
of COG favorable, 47.80% (11/23) of COG intermediate, 

and 43.80% (7/16) of COG adverse patients to the high-
risk group (Fig. S8).

Based on the above observations, we did Kaplan–Meier 
survival analysis for OS of the COG risk groups strati-
fied by the P-AML-5G groups. We found that P-AML-
5G groups provided prognostic information beyond that 
provided by COG. Noteworthy was that within inter-
mediate risk groups, high-P-AML-5G score patient had 
worse prognosis than low-P-AML-5G score patients 
in TARGET 145, TARGET validation and AAML1031 
(p < 0.001, p = 0.011, p = 0.021; respectively, Fig. 5a-c).

Considering the missing rate of MRD1 and a low fre-
quency of individuals receiving HSCT, the impact of 
the MRD1 and HSCT on the P-AML-5G risk groups 
was explored in the TARGET 256 dataset. MRD1 sta-
tus was missing for 28.9% (74/256) of the patients. 
There were respectively 16.9% (25 of 148) and 20.4% 
(22/108) of subjects who were identified MRD1-positive 
in the low-, and high-risk categories. Although MRD1 
had no impact on the P-AML-5G high-risk group (log-
rank test, p = 0.22), MRD1-positive individuals in the 
P-AML-5G low-risk group presented a statistically 
suggestive worse prognoses compared to those with 
the low-risk/MRD1-negative patients (log-rank test, 
p = 0.09) (Fig. S9a). Including the four patients with 
incomplete HSCT information, there were 10.8% (16 
of 148) and 14.8% (16/108) of individuals in the low-, 
and high-risk categories, respectively, who underwent 
HSCT. According to the K-M survival curves, HSCT 
showed the trend to improve the OS among the P-AML-
5G high-risk patients (log-rank test, p = 0.20) (Fig. S9b).

In the TARGET 256 dataset, a total of 42 samples 
obtained from patients’ peripheral blood were col-
lected for further analysis. Our findings substantiate the 
model’s significant capacity for risk stratification in rela-
tion to OS and the consistent trend observed for EFS in 
these peripheral blood samples (see Fig. S10) [p = 0.001; 
HR = 4.76, 95CI% (1.67, 12.5); p = 0.10; HR = 1.85, 95CI% 
(0.870, 3.85), respectively].

The above results demonstrated that using a single 
assay, the 5-gene prognostic model might enhance the 
current COG risk stratification system that currently 
relies on multiple tests, and has the potential to improve 
risk assessment for pediatric AML patients.

Comparison with existing AML risk stratification tools
To demonstrate the clinical applicability of the P-AML-
5G model, we compared its prognostic capability with 
previous models across multiple datasets. As shown in 
Table 3 and Fig. 6, compared to the COG, LSC17 model 
and LSC6 model, the P-AML-5G groups demonstrated 
the highest value of C-index in TARGET 145, GO treat-
ment and chemotherapy-only treatment subgroups 
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Table 1  Univariable Cox proportional hazards regression analysis of P-AML-5G

Datasets TARGET 145 TARGET validation

Characteristic N HRa 95% CIa p-value N HRa 95% CIa p-value

P-AML-5G groups 145 86

  Low-risk Ref

  High-risk 6.646 3.671, 12.03 0.000 2.632 1.307, 5.301 0.007
Gender 145 86

  Female Ref

  Male 0.680 0.421, 1.098 0.114 0.772 0.385, 1.545 0.464

Ethnicity 141 80

  Hispanic or Latino Ref Ref

  Not Hispanic or Latino 0.644 0.361, 1.148 0.135 0.501 0.238, 1.055 0.069 0.501

Age at Diagnosis, days 145 1.000 1.000, 1.000 0.074 86 1.000 1.000, 1.000 0.575

Protocol 145 86

  AAML03P1 Ref

  AAML0531 1.883 1.014, 3.497 0.045 1.508 0.529, 4.301 0.442

  CCG2961 3.367 1.507, 7.523 0.003 \ \ \

WBC at diagnosis,103 mcl 145 0.999 0.996, 1.003 0.670 86 1.00 0.996, 1.003 0.785

BM at diagnosis, % 142 1.001 0.989, 1.013 0.859 82 0.987 0.970, 1.005 0.150

PM at diagnosis, % 145 0.997 0.988, 1.005 0.431 86 0.984 0.970, 0.997 0.019
CNS disease (yes vs. no) 145 1.561 0.675, 3.609 0.298 86 1.245 0.379, 4.088 0.718

Chloroma (yes vs. no) 144 0.694 0.253, 1.907 0.479 86 1.248 0.513, 3.035 0.625

c8_21 (yes vs. no) 135 0.871 0.414, 1.835 0.717 82 0.369 0.112, 1.218 0.102

inv(16) (yes vs. no) 135 0.417 0.189, 0.917 0.030 82 0.547 0.130, 2.296 0.409

t(9;11)(p22;q23) (yes vs. no) 134 0.841 0.336, 2.105 0.712 81 0.560 0.076, 4.118 0.569

del9q (yes vs. no) 135 1.072 0.262, 4.389 0.923 82 1.993 0.474, 8.382 0.347

trisomy8 (yes vs. no) 135 1.758 0.754, 4.099 0.191 82 1.078 0.327, 3.555 0.902

MLL (yes vs. no) 135 1.573 0.851, 2.907 0.149 82 1.353 0.518, 3.536 0.537

MinusY (yes vs. no) 135 0.750 0.183, 3.072 0.689 82 0.523 0.071, 3.841 0.524

MinusX (yes vs. no) 135 3.140 1.127, 8.745 0.029 82 0.000 0.000, Inf 0.998

Cytogenetic Complexity 138 82

  0 ~ 2 Ref

  3andmore 2.041 1.142, 3.650 0.016 0.725 0.220, 2.394 0.598

Primary Cytogenetic Code 135 82

  Normal Ref

  Not-normal 1.155 0.601, 2.222 0.666 1.267 0.564, 2.847 0.567

FLT3_ITD (yes vs. no) 145 3.879 1.958, 7.685 0.000 86 1.298 0.614, 2.745 0.495

FLT3_PM (yes vs. no) 145 0.439 0.138, 1.398 0.164 84 0.868 0.207, 3.634 0.846

NPM (yes vs. no) 140 0.614 0.150, 2.512 0.498 84 0.565 0.172, 1.857 0.347

CEBPA (yes vs. no) 144 0.000 0.000, Inf 0.996 84 0.364 0.050, 2.664 0.319

WT1 (yes vs. no) 141 2.864 1.228, 6.680 0.015 84 1.199 0.286, 5.037 0.804

MRD1 (yes vs. no) 110 1.436 0.772, 2.670 0.253 72 2.351 1.078, 5.127 0.032
CR1 145 86

  CR Ref

  not in CR 0.895 0.409, 1.958 0.781 1.462 0.629, 3.398 0.378

  unevaluable 6.903 0.922, 51.66 0.060 7.849 1.002, 61.50 0.050

COG 137 83

  favorabl Ref

  Intermed 2.622 1.464, 4.696 0.001 3.848 1.581, 9.368 0.003
  adverse 5.845 2.387, 14.31 0.000 3.049 1.104, 8.416 0.031
HSCT (yes vs. no) 144 0.511 0.186, 1.404 0.193 83 1.427 0.635, 3.207 0.390
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(0.71, 0.758, 0.648, respectively, Fig. 6a-c). In TARGET 
validation and GO treatment subgroup, the COG risk 
system presented the best C-index values (0.66 and 
0.693) (Fig. 6d-e). However, subgroup analysis suggested 
that our P-AML-5G groups demonstrated the highest 

values of C-index in the chemotherapy-only treatment 
subgroups of both the TARGET 145 and TARGET vali-
dation dataset (0.648 and 0.678, Table 3, Fig. 6c, f ). Our 
results revealed that existing clinical prognostic tools 
and published RNA-seq based models were outper-
formed by the P-AML-5G groups in the chemo-therapy 
subgroup of both the training and validation cohorts, 
which may have the potential for precision treatment in 
the pediatric AML.

The exclusion of individuals with missing values for 
any of the three risk assignment tools (COG, 2022ELN, 
expanded_COG_AAML1831) in the combined dataset 
TARGET 256, left us with a total of 150 pediatric AML 
cases (named TARGET WGS hereafter). The P-AML-
5G groups showed good model performance with the 
highest C-index value (0.712), outperformed COG, 
2022ELN, expanded_COG_AAML1831, and two LSC 
models (Fig. 6g).

Discussion
Prognostic guidance systems need to be adjusted as our 
knowledge of AML biology, cytogenetic and molecular 
characterizations, and the availability of novel treatment 
agents expand. This study established a cytogenic and 
genetic mutation independent five gene transcriptional 
signature, which may identify pediatric AML patients 
who will have negative outcomes at the time of diagno-
sis. The model has undergone successful validation in an 
internal validation set, as well as in two external valida-
tion sets. Notably, one of the external validation sets 
pertained to a Japanese population, characterized by 
a genetic background entirely distinct from that of the 

Table 1  (continued)

Datasets TARGET 145 TARGET validation

Characteristic N HRa 95% CIa p-value N HRa 95% CIa p-value

Gemtuzumab.ozogamicin.treat-
ment (yes vs. no)

129 0.799 0.461, 1.387 0.425 86 0.604 0.301, 1.211 0.155

NUP98 fusion (yes vs. no) 112 1.893 0.924, 3.877 0.081 56 0.000 0.000, Inf 0.998

KMT2A-r (yes vs. no) 112 1.328 2.084, 2.336 0.323 56 1.131 0.411, 3.115 0.811

RUNX1-RUNX1T1 (yes vs. no) 112 0.797 0.402, 1.581 0.516 56 0.343 0.100, 1.172 0.088

CBFB-MYH11 (yes vs. no) 112 0.336 0.152, 0.743 0.007 56 0.486 0.113, 2.096 0.334

WBC The absolute peripheral white blood cell count, BM Bone Marrow Blast Cell Outcome Percentage Value, PM Peripheral Blast Cell Outcome Percentage 
Value, Chloroma Chloroma Disease At Diagnosis Present, CNS Central Nervous System Disease At Diagnosis Present, c8_21 Chromosomal translocation between 
chromosome 8 and chromosome 21present, t(9;11)(p22;q23 Cytogenetic Abnormality t(9;11)(p22;q23) present, inv(16) Cytogenetic Abnormality Chromosomal 
Inversion Chromosome 16 present, del9q Cytogenetic Abnormality Deletion Mutation 9q present, trisomy8 Cytogenetic Abnormality Trisomy Chromosome 8 present, 
MLL Cytogenetic Abnormality Translocations Involving MLL1 (KMT2A) Gene present, MinusY Cytogenetic Abnormality Monosomy Chromosome Y Present, MinusX 
Cytogenetic Abnormality Monosomy Chromosome X Present, Cytogenetic Complexity Cytogenetic Abnormality Number of abnormalities, Primary Cytogenetic Code 
Cytogenetic Abnormality Predominant Classification Type, FLT3_ITD FLT3 Internal Tandem Duplication present, NPM mutation of the NPM gene present, CEBPA 
mutation of the CEBPA gene present, WT1 mutation of the WT1 gene present, FLT3_PM FLT3 point mutation at codon 835–836 present, MRD1 Minimal Residual 
Disease At End First Course, CR1: The remission status at the end of the first course of therapy determined by morphologic evaluation of marrow; < 5% blast, CR; COG 
Children’s Oncology Group; Protocol: Children’s Oncology Group Clinical Study Protocol, HSCT Stem Cell Transplant During First Complete Remission, ELN European 
LeukemiaNet, NUP98 fusion KMT2A-r, RUNX1-RUNX1T1, CBFB-MYH11: Gene Fusion by RNA or Whole Genome Sequencing or Karyotyping Identification
a HR Hazard Ratio, CI Confidence Interval

Table 2  Multivariable Cox Proportional Hazards Regression 
Analysis of P-AML-5G

MinusX Cytogenetic Abnormality Monosomy Chromosome X Present, FLT3_ITD 
FLT3 Internal Tandem Duplication present, COG Children’s Oncology Group
a HR Hazard Ratio, CI Confidence Interval

Datasets TARGET 145
Characteristic HRa 95% CIa p-value
P-AML-5G groups

  Low-risk Ref

  High-risk 10.941 5.042, 23.743 0.000
MinusX

  No Ref

  Yes 3.586 1.239, 10.379 0.018
FLT3_ITD

  No Ref

  Yes 4.474 1.634, 12.252 0.004
TARGET validation
HRa 95% CIa p-value

P-AML-5G groups

  Low-risk Ref

  High-risk 2.482 1.103, 5.588 0.028
COG

  favorabl Ref

  Intermed 5.454 1.771, 16.801 0.003
  adverse 4.170 1.243, 13.989 0.021
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model’s training cohort. In both the training and inter-
nal validation cohort, the risk model retained predictive 
value in multivariable analysis and improved risk pre-
diction in the setting of traditional cytomolecular COG 
classification, especially in the chemo-therapy treatment-
only subgroup.

A strong predictive biomarker of treatment outcomes 
would, in theory, early enough in the course of treatment 
identify a group of patients who had sufficiently high 
risk of recurrence and treatment resistance to warrant 

consideration of alternative therapies. In the training 
TARGET 145 and combined TARGET 256 datasets, the 
P-AML-5G risk groups in this study presented better 
performance in recognizing groups of high-risk patients 
from several clinical trials without the aid of predefined 
prognostic factors or COG risk system. Since the inclu-
sion of the training dataset TARGET 145 in the com-
bined cohort might unfairly bias the results towards the 
"trained" dataset, we further validate its independent 
prognostic value in the TARGET validation dataset. It 

Fig. 5  The P-AML-5G groups provided re-stratification value in the heterogeneous intermediate risk group defined by the traditional COG risk 
system in a TARGET 145, b TARGET validation and c AAML1031
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should be highlighted that the TARGET dataset being 
enriched in poor performing AML and the training and 
validation sets exhibiting very different clinical charac-
teristics. Meanwhile, our model also exhibits promising 
predictive capabilities for OS in a subset of peripheral 
blood samples, suggesting its clinical value in enabling 
risk assessment at an earlier stage with lower invasive-
ness. However, due to the limited involvement of only 42 
peripheral blood samples in this study, further compre-
hensive investigations in larger population cohorts are 
warranted.

With respect to model comparison using C-index val-
ues, we would have expected the P-AML-5G groups to 
show the best model predictive power in the TARGET 
validation dataset, and then the results would have been 
very intriguing, considering the clinical convenience of 
RNA-seq assays versus cytological and mutation assays. 
This may be due to the small sample size of TARGET 
validation, differences in clinical characteristics from the 
training dataset and the fact that it includes people on 
two treatment regimens, which also reflects the high het-
erogeneity of p-AML patients at both the genomic and 
transcriptomic levels. However, the P-AML-5G is well-
suited for future research and clinical use due to a num-
ber of properties. Firstly, P-AML-5G groups augments 
the existing standard COG risk system with new data, 
especially for re-stratifying heterogeneous populations 
now categorized as intermediate risk (over 40% of the 
combined cohort). Secondly, within patients receiving 
chemotherapy treatment only, P-AML-5G groups pre-
sented the best prognostic prediction performance. This 
result further suggests that a simple and straightforward 
gene expression assay panel, may have better perfor-
mance in certain AML molecular subgroups or treat-
ment subgroups. Thirdly, high-volume bone marrow is 
needed for many stages of testing according to the COG’s 
current methodology, while gene-expression assay panel 
is much more economical, material and time saving, 

and facilitates the application in less developed areas. 
Based on above discussion, clinical use of the P-AML-
5G model, either alone or in conjunction with traditional 
COG system, is completely consistent with the move-
ment toward better risk stratification for P-AML.

With data from 150 whole genome-sequenced patients, 
we were for the first time able to compare P-AML-5G 
groups with several latest risk stratification systems for 
pediatric our adult AML. The ELN risk stratification 
system is universally accepted for the risk stratification 
of adult AML patients [26], however, its application in 
P-AML is not idealistic in previous studies [27, 28] and 
our analysis The fact that the ELN risk stratifications are 
unquantified and broad molecular differences between 
age cohorts may be to account for this result. Notably, 
we were unable to find a satisfactory prognostic value 
for the expanded_COG_AAML1831. The possible rea-
sons might be the small sample size of the whole-genome 
sequenced individuals in this study or the complexity of 
the risk assignment for carriers with co-occurring muta-
tions spanning risk categories (6 in 150 individuals within 
expanded_COG_AAML1831 groups) [29].

The significance of responsiveness to the first medica-
tion and evaluation of early MRD in the individual risk 
assignment is emphasized in addition to the baseline 
genetic characterization [24]. Although MRD1 did not 
hold independent prognostic implications for P-AML 
in this study, it was one of the prognostic indicators in 
the TARGET validation dataset. It was intriguing that 
the MRD1-positive patients in the low-risk P-AML-5G 
group had poorer trend of prognoses than that of the 
low-risk/MRD1-negative group patients. The strategy of 
combing P-AML-5G with the MRD status after the ini-
tial induction therapy might help identify patients at a 
higher risk in the P-AML-5G low-risk group and prevent 
a worse prognosis. From the perspective of screening 
HSCT candidates, patients in the high-risk group iden-
tified by our model might benefit from HSCT, which is 

Table 3  Comparison of P-AML-5G with pre-existing AML risk classification tools

COG Children’s Oncology Group, ELN European LeukemiaNet, LSC leukemic stem cell, OS Overall Survival, se standard error

Concordance analysis for OS C-index (se)

Datasets P-AML-5G groups COG LSC17 LSC6 expanded_COG_
AAML1831

2022ELN

TAREGT 145 0.71(0.025) 0.632(0.031) 0.543(0.035) 0.579(0.037) \ \

   GO 0.758(0.03) 0.63(0.042) 0.476(0.046) 0.564(0.046) \ \

   Chemo-only 0.648(0.054) 0.648(0.059) 0.626(0.066) 0.557(0.076) \ \

TARGET validation 0.615(0.044) 0.660(0.045) 0.617(0.052) 0.551(0.055) \ \

   GO 0.569(0.066) 0.693(0.066) 0.560(0.085) 0.578(0.079) \ \

   Chemo-only 0.678(0.056) 0.669(0.057) 0.647(0.064) 0.533(0.081) \ \

TAREGT WGS 0.712(0.026) 0.611(0.031) 0.552(0.036) 0.57(0.036) 0.612(0.034) 0.596(0.032)
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consistent with previous findings [30, 31]. Since the risk 
groups determined by P-AML-5G showed a significant 
61% difference in survival probability in the TARGET 
discovery dataset. In the TARGET validation dataset, this 
difference was observed to be 44%. These findings high-
light the potential relevance of P-AML-5G in guiding 

HSCT treatment decisions for patients in the intermedi-
ate-risk category.

Expression levels of five feature genes (ZNF775, 
RNFT1, CRNDE, COL23A1, and TTC38) in the model 
were found to be significantly correlated with the prog-
nosis of the P-AML patients. We also observed intense 

Fig. 6  Model comparison of P-AML-5G with pre-existing AML risk classification tools. a, c Compared with pre-existing AML risk classification 
tools, the P-AML-5G groups had the highest C-index value in TARGET 145 and two treatment subgroups; d, e The COG risk system presented 
the highest C-index value in TARGET validation and GO treatment subgroup of the TARGET validation; f The P-AML-5G groups had the highest 
C-index value in chemo-therapy treatment only subgroup of TARGET validation dataset; g The P-AML-5G groups had the highest C-index value 
in the whole-genome sequenced subgroup
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increased expression of CRNDE and COL23A1 in the 
bone marrow of patients, compared to that of healthy 
children. This novel discovery serves as additional evi-
dence that reinforces the significance of these genes 
in pediatric AML. It expands the potential application 
of these genes in disease prognosis and underscores 
the importance of conducting further research on the 
functional mechanisms. The Zinc Finger Protein 775 
(ZNF775) has been predicted to enable the DNA-bind-
ing transcription factor activity and found to have strong 
predictive value for the OS in the hepatocellular carci-
noma patients [32], however, the functional role of this 
protein has not been explored in detail. Collagen Type 
XXIII Alpha 1 Chain (COL23A1) is reportedly associated 
with prostate cancer recurrence and distant metastases 
[33] and clinical stages in thyroid carcinoma [34]. Fur-
ther investigation of urine samples from prostate cancer 
patients before and after prostatectomy suggested that 
collagen XXIII may have application as a biomarker in 
human fluids. Unfortunately, no reports on the function 
of the Ring Finger Protein, Transmembrane 1 (RNFT1), 
and Tetratricopeptide Repeat Domain 38 (TTC38) or 
their role in cancer have been found so far. Especially, 
Colorectal neoplasia differentially expressed (CRNDE) is 
a well-known long non-coding RNA which was consid-
ered to play crucial roles in the development of multiple 
cancers [35]. Moreover, it was highly expressed in AML 
[35, 36], displayed functional roles in AML proliferation 
[37] and indicated by previous analyses to have prognos-
tic value in AML [36, 38]. Explorations focusing on the 
detailed mechanisms of CRNDE in P-AML pathology 
might help to identify a promising therapeutic strategy.

Taken together, we propose a robust P-AML-5G prog-
nostic model specific for pediatric AML, which was 
created particularly utilizing data from pediatric AML 
outcomes. It has the potential to redefine traditional 
COG risk categorization, identify patients at high risk 
and offer the possibility of clinical application for the 
development of innovative treatment options by decreas-
ing the panel and complexity of genetic markers without 
sacrificing the efficacy of the predictive capacity.

Materials and methods
Samples and datasets
Therapeutically Applicable Research to Generate Effec-
tive Treatments (TARGET) AML series consist of clinical 
data and RNA-sequencing from 256 peripheral blood or 
bone marrow samples of children, adolescents, and young 
adults with de novo AML enrolled on biology studies and 
clinical trials managed through the Children’s Oncol-
ogy Group, hereafter referred to as the “TARGET 256”. 
OS is defined as the time from study entry until death. 
EFS is defined as the time from study entry until death, 

induction failure or relapse. Overall, the mean time of 
the follow-up was 4.15 ± 2.84  years for TARGET 256. A 
subset of samples from TARGET AML project was ran-
domly chosen and provided to the Genomic Data Com-
mons (GDC) database for harmonization (N = 145), 
facilitating integration and analysis of multiple datasets 
for GDC researchers. This dataset served as the train-
ing cohort for our study (https://​portal.​gdc.​cancer.​gov/​
proje​cts/​TARGET-​AML, collected on 2021–10-21). The 
remaining 111 patients from TARGET were used as the 
validation set, simulating two distinct sets with clinical 
differences, akin to real-world scenarios of training and 
validation sets, gathered from the NCI’s data portal on 
2021–10-21[https://​target.​nci.​nih.​gov/​dataM​atrix/​TAR-
GET_​DataM​atrix.​html]. Individual-level whole-genome 
sequencing data of 150 samples in TARGET cohort were 
obtained from dbGaP (accession number phs000465). 
RNA-Sequencing and clinical data of 139 patients in Japan 
P-AML dataset deposited in the European Genome-Phe-
nome Archive (EGAS00001003701) [39] was extracted 
for external validation purpose, hereafter referred to as 
the “JAPAN P-AML”. In addition, RNA-sequencing and 
clinical data from 943 pediatric patients and 70 normal 
bone marrow samples, obtained from the COG study 
AAML1031 [40], were collected for external validation 
(collected on 2023–11-03, 923 out of 943 patients with 
survival data available). These data, deposited in the GDC, 
were also utilized to examine the expression disparities of 
prognostic genes between patients and healthy children.

Prognostic score construction and validation for AML
Combined with the survival information, the genes 
related to the prognosis of P-AML patients in TAR-
GET 145 were screened out by univariate Cox propor-
tional hazards regression analysis using normalized 
counts value from DESeq2 tool [41] (p < 0.05). LASSO 
regression analysis was conducted to identify the most 
stable gene set with 1000 time iterations [42]. Sub-
sequently, Kaplan–Meier survival analysis and mul-
tivariable Cox regression analysis were performed 
and a prognostic risk score formula was established 
based on a linear combination of expression lev-
els weighted with the regression coefficients derived 
from the multivariate logistic regression analysis. Risk 
score = expression of gene 1 × β1 + expression of gene 
2 × β2 + ⋯ + expression of gene n × βn. β values are the 
regression coefficients derived from the multivariate 
logistic regression analysis of the dataset. The optimal 
cutoff of risk score was determined via the maxstat 
package in R [43, 44], dividing patients into high-risk 
group and low-risk groups. TARGET 111 and JAPAN 
P-AML were used for prognostic value validation. All 
patients in the database were scored using the formula, 

https://portal.gdc.cancer.gov/projects/TARGET-AML
https://portal.gdc.cancer.gov/projects/TARGET-AML
https://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.html
https://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.html
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and the optimal cutoff risk score was used to divide 
the patients into high and low groups. Kaplan–Meier 
survival analysis was applied to assess the prognostic 
value of the derived risk groups.

The traditional COG risk system used in the clinical tri-
als on which the TARGET patients were enrolled (COG) 
[9, 45], expanded COG AAML1831 risk stratification 
system (expanded_COG_AAML1831) [16], 2022 ELN 
risk stratification system (2022ELN) [18] and two leuke-
mic stem cell (LSC) score based models established for 
adult (LSC17) [46] or pediatric (LSC6) [14] AML, were 
selected for model comparison (references and detailed 
models can be found in Table S2; definition of risk-groups 
for COG, expanded_COG_AAML1831 and 2022ELN 
Classification systems can be found in Table S3).

Statistical analysis
The chi-square test was applied for comparing the sta-
tistical difference in categorical variables, and two-tailed 
Student’s t test or Wilcoxon test was used for quantitative 
variables. Kaplan–Meier curves were plotted to estimate 
overall survival, and the log-rank test was performed to 
evaluate statistical significance of differences in survival. 
Variables identified as significant factors in the univariate 
Cox analysis were selected into the multivariate Cox pro-
portional hazards regression analysis to identify the inde-
pendent prognostic factors using the Forward Stepwise 
(conditional LR) method. ROC curves (receiver operating 
characteristic curves), the area under the curve (AUC) 
and the Harrell’s concordance index (C-index) [47] were 
utilized with survival package in R to determine pre-
dictive values. Differentially expressed genes (DEGs) 
between pediatric patients and normal bone marrow 
samples in COG AAML1031 study were analyzed with R 
package DESeq2 [41]. All statistical analyses were carried 
out using R (3.5.2) software, and p < 0.05 (bilateral) was 
defined as a statistical difference.
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