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Abstract 

The increasing number of approved nucleic acid therapeutics demonstrates the potential for the prevention 
and treatment of a broad spectrum of diseases. This trend underscores the significant impact and promise of nucleic 
acid-based treatments in the field of medicine. Nevertheless, employing nucleic acids as therapeutics is challeng-
ing due to their susceptibility to degradation by nucleases and their unfavorable physicochemical characteristics 
that hinder delivery into cells. Appropriate vectors play a pivotal role in improving nucleic acid stability and deliver-
ing nucleic acids into specific cells. The maturation of delivery systems has led to breakthroughs in the development 
of therapeutics based on nucleic acids such as DNA, siRNA, and mRNA. Non-viral vectors have gained prominence 
among the myriad of nanomaterials due to low immunogenicity, ease of manufacturing, and simplicity of cost-effec-
tive, large-scale production. Here, we provide an overview of the recent advancements in nanomaterials for nucleic 
acid delivery. Specifically, we give a detailed introduction to the characteristics of polymers, lipids, and polymer-lipid 
hybrids, and provide comprehensive descriptions of their applications in nucleic acid delivery. Also, biological barri-
ers, administration routes, and strategies for organ-selective delivery of nucleic acids are discussed. In summary, this 
review offers insights into the rational design of next-generation delivery vectors for nucleic acid delivery.
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Introduction
Nucleic acid therapy offers a novel therapeutic modality 
for congenital and acquired diseases by delivering exog-
enous nucleic acids into lesions to modulate the expres-
sion of proteins [1–5] (Fig. 1). Compared to conventional 
small-molecule and antibody drugs, nucleic acid drugs 
have advantages of short development cycle, abundant 
choice of targets and remarkable curative effect [6–10]. 
Furthermore, nucleic acid drugs offer a solution to cir-
cumvent the limitations associated with undruggable 
targets [11–13]. These advancements provide potential 
treatment alternatives for previously considered incur-
able conditions [6, 14]. With the rapid development of 

molecular biology techniques such as in vitro transcrip-
tion (IVT) and Clustered regularly interspaced short 
palindromic repeats associated (CRISPR-Cas) gene edit-
ing, nucleic acid drugs have made tremendous advances 
in the prevention and treatment of a variety of diseases 
[15–19].

Naked nucleic acids face numerous challenges in 
in vivo delivery [20]. The key to achieving the complete 
functions of nucleic acid drugs is the choice of delivery 
vectors [21]. Ideally, these vectors should protect nucleic 
acids from enzymatic degradation, facilitate cellular 
uptake and endosomal escape, and exhibit minimal tox-
icity. Viral vectors, such as adenovirus, lentivirus, and 
adeno-associated virus, have been developed to enable 
efficient cellular uptake [22–24]. Several nucleic acid 
drugs delivered using viral vector platforms, such as Lux-
turna® and Zolgensma®, have received approval from the 
U.S. Food and Drug Administration (FDA) [25]. Gener-
ally, viral vector-based nucleic acid drugs have long-last-
ing efficacy over conventional medications, only a single 
injection of these nucleic acid drugs maintains therapeu-
tic efficacy for a considerable length of time [22, 26–29]. 
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Nevertheless, viral vectors can potentially induce antivi-
ral immune responses, which poses a challenge for repeat 
administration [26, 29, 30]. In addition, adverse reactions 
of abnormal blood clots occurred in some instances of 
clinical use of viral vector nucleic acid drugs [29–31].

There has been a growing interest in structuring non-
viral vectors in recent years. Compared with viral vectors, 
non-viral vectors exhibit low immunogenicity without 
the risk of insertional mutagenesis and ease of large-scale 
production [32, 33]. Conventional non-viral vectors gen-
erally suffer from low transfection efficiency and limited 
tissue targeting [34]. Fortunately, novel nanomaterials 
with superior cell transfection and active tissue target-
ing capability have emerged [35, 36]. For instance, lipid 
nanoparticles (LNPs) have shown significant potential in 
nucleic acid drug delivery, as evidenced by numerous pre-
clinical and clinical studies [37, 38]. One notable exam-
ple is the siRNA-LNP drug Onpattro® (patisiran), which 
has gained positive outcomes in treating Hereditary 
Transthyretin-Mediated (hATTR) amyloidosis with only 
one dose every three weeks and received FDA’s approval 

in 2018 [39–42]. Since Onpattro’s approval, five siRNA-
based drugs have been available on the market, and over 
200 siRNA therapies are currently in development.

Most recently, the global SARS-CoV-2 pandemic 
has triggered an unprecedented emergence of mRNA-
based vaccines for infectious diseases. Among these 
candidates, BNT162b2 (Comirnaty®) by BioNTech/
Pfizer and mRNA-1273 (Spikevax®) by Moderna have 
demonstrated high effectiveness in the prevention and 
control of SARS-CoV-2 [43, 44]. mRNA vaccines have 
great promise in terms of preventing and treating pan-
demics owing to high efficacy, ease of manufacture, 
scalable production, and high success rate of clinical 
trials [45–47]. In March 2023, SYS6006, an mRNA vac-
cine developed by the CSPC Pharmaceuticals Group, 
became China’s first domestic COVID-19 mRNA vac-
cine for emergency use. A recent survey identified 
966 vaccine candidates in development worldwide, of 
which approximately 20% are nucleic acid-based vac-
cines [48]. They have the potential to usher in a new 
era of pandemic prevention and control, opening up 

Fig. 1 Schematic illustration depicting nanoparticles’ route and functional mechanisms within cells. When nanoparticles contact cells, they are 
recognized and internalized by the cell membrane. Inside the cell, the lysosome-endosome system engulfs the nanoparticles, where the cargo 
they carry is subsequently released. a mRNA is translated by the ribosome in the cytoplasm, and the resulting protein may be processed 
by the golgiosome for secretion or presented as an antigen. b siRNA binds with the RNA-Induced Silencing Complex (RISC) in the cytoplasm, 
inhibiting the translation of mRNA transcribed from genes. c pDNA crosses the nuclear membrane and undergoes transcription in the cell nucleus. 
Created with BioRender.com
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new opportunities for drug discovery and development 
[46, 49–53]. So far, nucleic acid drugs have remarkably 
progressed in treating liver, eye, and cardiovascular 
diseases [54–60].

In this review, we focus on recent advances in nano-
materials, including polymers, lipids, and polymer-
lipid hybrids, as vehicles for nucleic acid delivery. The 
physiological barriers and the diverse administration 
routes are also described. Understanding these fac-
tors is crucial for rationally designing optimal vectors 
for targeted delivery of nucleic acids to ensure both 
efficacy and safety. Overall, we aim to offer insights 
into developing next-generation delivery carriers for 
nucleic acids with optimal properties.

Biological barriers for nucleic acid delivery
Systemic barriers
Before reaching target cells, nanoparticles face a barrier 
known as the extracellular barrier, which exists within 
the bloodstream and intercellular matrix (Fig.  2a). This 
barrier primarily includes the complex components in 
the blood. The blood serum contains a large number 
of nucleases, including endonucleases and exonucle-
ases, which can hydrolyze the phosphodiester bonds 
of exposed nucleic acids and inactivate them [61]. In 
early research concerning nucleic acid delivery, nucleic 
acids were tightly bound to carrier materials or chemi-
cally modified to prevent nuclease-induced degradation. 
However, these strategies have several drawbacks com-
pared to the utilization of advanced delivery carriers [62]. 

Fig. 2 a Effect of factors such as blood nuclease and MPS on nanoparticles. b Alveolar-capillary physiology and barrier effect on respiratory delivery 
of drugs. Created with BioRender.com
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Like all foreign substances, once nanoparticles are rec-
ognized by the mononuclear phagocyte system (MPS), 
they often undergo degradation and trigger undesired 
immune reactions in inappropriate sites. After entering 
the bloodstream, the surface of nanoparticles quickly 
adsorbs a layer of proteins, including opsonins, serum 
albumin, complement, and others, referred to as the 
“protein corona” [63–65]. The presence of the protein 
corona not only enhances the phagocytosis of nanopar-
ticles by phagocytic cells [65] but may also mask ligands 
on the nanoparticle surface responsible for active target-
ing [66], leading to a decrease in nanoparticle specificity. 
It has been found that polyethylene glycol (PEG) modi-
fication prevents protein corona formation and reduces 
MPS clearance [67]. Similarly, Tasciotti et  al. developed 
a coating of bionic particles consisting of cell membranes 
isolated from leukocytes, reducing MPS’s conditioning 
effect [68].

Organ barriers
Nanoparticles targeting organs other than the liver and 
kidneys also face the risk of hepatic and renal clearance, 
mainly related to the nanoparticles’ properties (size, sur-
face charge, etc.). Nanoparticles with a diameter of less 
than 5 nm are rapidly excreted through the kidneys after 
entering the bloodstream. In contrast, larger nanoparti-
cles are eliminated by the liver’s reticuloendothelial sys-
tem (RES) [69, 70]. In addition, particle size is related to 
the passage of nanoparticles to tissue-specific structures. 
For example, nanoparticles targeting the spleen must 
also overcome the splenic barrier after spilling out of the 
blood vessels. Macrophages in the red medulla and mar-
ginal zone of the spleen prevent the nanoparticles from 
entering the white medulla, thus lessening the strength 
of the immune response [69]. Only nanoparticles with 
appropriate size can cross the marginal zone through the 
bridging channel and enter the T-cell and B-cell zones 
in the white medulla, which are densely populated with 
lymphocytes that can quickly and efficiently initiate an 
adaptive immune response against specific antigens. 
Moreover, the human body houses various organs, such 
as the brain and placenta, which possess robust protec-
tive mechanisms. Additional obstacles must be overcome 
to successfully transport nanoparticles to these organs, 
such as the blood–brain barrier for delivering nucleic 
acids to the brain and the blood-labyrinth barrier for tar-
geting the inner ear [71–73].

The case of the lungs is even more specific, where the 
delivery of nanoparticles to the lungs via the respiratory 
tract, such as inhalation, must overcome a complex res-
piratory barrier (Fig. 2b). The mucus-cilia clearance sys-
tem (MC) on the airway epithelium is an initial barrier 
to overcome [74]. Airway mucus, derived mainly from 

submucosal glands and goblet cells, consists of mucin 
fibers forming a dense meshwork [75]. The mucus layer 
immobilizes inhaled foreign bodies, including nucleic 
acid-nanocarrier complexes, through electrostatic inter-
actions and removes them from binding sites. Stud-
ies have shown that only particles smaller than 40  nm 
can effectively penetrate the mucus layer through pas-
sive Brownian motion [76]. In diseases like cystic fibro-
sis and asthma, excessive mucus accumulation hinders 
drug delivery and induces coughing, which further clears 
foreign substances [77]. Researchers are attempting to 
overcome the barriers of mucociliary clearance by uti-
lizing material properties [78, 79]. Angelo and others 
have developed mucus-inert nanomaterials that exploit 
the intrinsic properties of the mucus layer to enable 
sustained siRNA release within the mucus layer [80]. 
Additionally, due to proteins, lipids, and ions in the air-
ways, cationic polymer- and lipid-based carriers inter-
act readily with negatively charged mucus components 
and aggregate [81]. Surfactant, a lipoprotein secreted by 
alveolar type II epithelial cells, is another barrier to the 
pulmonary delivery of nucleic acids. It comprises dipal-
mitoyl phosphatidylcholine (DPPC) and surfactant-bind-
ing protein (SP) and significantly affects the bio-efficacy 
of RNA-nanoparticle complexes [82]. In animal experi-
ments, adding the surfactant “Alveofact” reduced the 
transfer efficiency of DNA-PEI complexes [83].

Cellular barriers
Once nanoparticles successfully circumvent the barri-
ers mentioned above and approach target cells, the cell 
membrane becomes the first obstacle encountered dur-
ing cellular uptake. Unlike small molecule drugs, nano-
particles rely on active uptake mechanisms to enter cells, 
including receptor-mediated endocytosis, macropinocy-
tosis, and caveolae-mediated endocytosis [84]. Overall, 
cellular uptake of nanoparticles can be categorized into 
two types: phagocytosis and pinocytosis [84, 85]. Phago-
cytosis only occurs in phagocytic cells such as mono-
cytes, neutrophils, and macrophages, while pinocytosis is 
widely present in various cell types. The cellular uptake 
of nanoparticles is typically receptor-mediated, where 
ligands on the nanoparticles bind to specific receptors 
on the cell membrane, leading to membrane invagina-
tion. Different nanoparticles employ distinct pathways 
to breach the cell membrane. Kubota et al. treated HeLa 
cells with specific inhibitors targeting different uptake 
pathways and found that cellular uptake of lipid nanopar-
ticles (LNPs) mainly relies on caveolae-mediated endocy-
tosis, while the uptake of lipoplexes depends on at least 
two pathways [86]. Efficient cellular uptake is a prerequi-
site for enhancing the cell availability of nanocomplexes 
carrying nucleic acids. The composition, size, surface 
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charge, and shape of nanoparticles can influence cellular 
uptake efficiency [86–88]. Notably, the protein corona 
is not the sole factor affecting the interaction between 
nanoparticles and target cells. Suberi et  al. found that 
the content of PEG on the surface of polymers influences 
their cellular uptake efficiency. However, this influence is 
not linear. In-depth studies have revealed that high PEG 
density can affect the peripheral conformation of poly-
mers, impacting the interaction between nucleic acid-
loaded nanoparticles and target cells [89]. Hatakeyama 
et al. also reached a similar conclusion when using a dif-
ferent material to deliver siRNA [90].

The vesicles formed during the endocytosis men-
tioned above fuse with early endosomes within the 
cell and gradually mature into late endosomes through 
acidification, ultimately combining with lysosomes. 
Lysosomes are acidic organelles within the cell with 
a firm acidity (pH around 5 [91, 92]) and contain vari-
ous enzymes. Therefore, if the nanocarriers loaded with 
nucleic acids cannot escape promptly, both the carrier 
and its cargo will be destroyed in the extreme environ-
ment of the lysosome. Different materials used to form 
nanoparticles have different mechanisms for endosomal 
escape. However, most nanoparticles, including cati-
onic lipid nanoparticles, disrupt the negatively charged 
endosomal membrane through electrostatic interac-
tions [93, 94]. For example, it is widely believed that 
some cationic polymers interact with the endosomal 
membrane through the “proton sponge effect” and sub-
sequently disrupt it (which will be described in detail 
in the corresponding section) [95]. This interaction can 
also be achieved using ionizable lipids, as these pH-sen-
sitive lipids can be protonated in acidic environments, 
acquiring a positive charge [96]. It is worth noting that 
some helper lipids can also be protonated in acidic envi-
ronments. For example, 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) with a hexagonal inverted 
cone structure can form ion pairs with membrane 
phospholipids in the endosome, thereby promoting the 
process of endosomal escape [97]. Another promising 
approach is to conjugate viral-derived proteins or pep-
tides on the surface of nanoparticles, utilizing the natu-
ral entry mechanisms of viruses to achieve endosomal 
escape. For example, the HIV-1 transmembrane protein 
gp41 and H5WYG are derived from the influenza virus 
[98–100].

Delivery routes for nucleic acids
Systemic routes
Systemic administration mainly includes subcutane-
ous injection (SC), intramuscular injection (IM), intra-
dermal injection (ID), and intravenous injection (IV) 
(Fig.  3). Among them, the nanoparticles administered 

via SC, IM, and ID are not directly entering the blood-
stream but are taken up by APCs in the subcutaneous 
or muscle tissue [101]. Each of these injection meth-
ods has its pros and cons. For example, it is gener-
ally believed that subcutaneous injection has a lower 
capillary density, allowing the antigen to be continu-
ously released at a certain rate after SC [102]. Still, 
some argue that SC is an outdated immunization 
method [103]. Although nucleic acid drugs or vaccines 
administered through SC, IM, and ID mainly activate 
immune cells in peripheral lymph nodes, it is difficult 
to achieve targeted delivery to central immune organs 
or other specific tissues to date. Owing to their higher 
safety and patient compliance compared to IV, these 
routes remain the mainstay of preventive vaccination. 
Generally, most nanoparticles targeting a specific tis-
sue efficiently rely on the IV route. In this case, nano-
particles enter the bloodstream at the fastest rate after 
injection and participate in blood circulation. Nucleic 
acid-nanocarrier complexes tend to passively tar-
get tissues with abundant blood supply, especially for 
nucleic acid drugs targeting the liver, IV is an excellent 
delivery route.

Despite the advancements in nucleic acid delivery 
technologies using various materials, achieving effi-
cient delivery of nucleic acid-nanocarrier complexes 
via systemic administration to extrahepatic tissues 
remains challenging [104–106]. When nucleic acid-
nanocarrier complexes are injected intravenously, due 
to the dependence on the circulatory system for drug 
transport from the injection site to the target cells, a 
large amount of the complex is intercepted mainly by 
hepatocytes, resulting in a significant release of nucleic 
acids in the liver, and consequently, a lower-than-antic-
ipated concentration of the drug reaching the target tis-
sues. Researchers have thought of many ways to achieve 
extrahepatic targeting of nucleic acids. In the case of 
LNPs-RNA, for example, the scientific community has 
been exploring three main directions to achieve extra-
hepatic targeting. These approaches aim to enhance the 
targeted delivery of nucleic acid-nanocarrier complexes 
to the target tissues and improve their therapeutic effi-
cacy while overcoming the challenges associated with 
systemic administration.

 1). Pre-injecting a large number of irrelevant 
liposomes (Nanoprimers) to occupy hepatocyte 
sites and slightly weaken the uptake of LNPs by 
hepatocytes [107]. Regardless, the clinical transla-
tional potential of this approach is limited.

 2). Modifying ligands by splicing to improve the 
existing LNPs. For example, Lee et  al. enhanced 
the delivery and transfection efficiency of siRNA 
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in cancer cells by conjugating the EphA2 ligand, 
Ephrin-A1, on the surface of LNPs, taking advan-
tage of the overexpression of the EphA2 receptor in 
most cancer cells [108].

 3). Designing and synthesizing new LNPs with endog-
enous targeting functions. Qiu et  al. discovered 
that LNPs containing an amide bond in their 
lipid tails selectively delivered mRNA to mouse 
lung cells, especially alveolar endothelial cells. 
They also altered the selectivity of drug deliv-
ery to alveolar endothelial cells or alveolar mac-
rophages by adjusting the structure of the head 
of lipids [109]. Moreover, changing the compo-
nents of LNPs can achieve selective targeting of 
tissues and organs.

Respiratory routes
Given the challenges of systemic drug delivery, topical 
delivery techniques have received increasing attention 
in recent years [110]. Theoretically, the respiratory 
route is optimal for lung epithelial cells targeting [111]. 
This approach has successfully prevented and treated 
viral infections and respiratory diseases [112–115]. 
Unlike other organs, the lungs are directly exposed 
to the external environment through the respira-
tory tract, and the mucosa of the respiratory system 
provides a vast absorptive surface area. This unique 
characteristic makes the delivery of nucleic acid-nano-
carrier complexes to the lungs through intratracheal/
intranasal drops and nebulization a highly promis-
ing strategy [116–118]. By delivering the complexes 

Fig. 3 a, b Illustration of the main routes of administration of nucleic acid drugs or vaccines. c Comparison of the advantages and limitations 
of different delivery routes of nucleic acid drugs or vaccines. Created with BioRender.com
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via the respiratory tract, complexes can directly reach 
cells, such as alveolar epithelial cells, in the pulmonary 
airways and alveoli without relying on systemic circu-
lation. This approach achieves efficient drug delivery 
and minimizes drug loss [119].

Inhalation presents great potential among various 
routes for delivering nucleic acid-nanocarrier com-
plexes to the respiratory tract [120]. This route typically 
requires the use of specialized devices. Early equip-
ment involved metered-dose inhalers (MDIs), which 
deliver drugs dissolved or suspended in a liquid pro-
pellant (e.g., hydrofluoroalkanes) to achieve rapid and 
convenient drug delivery. Later, dry powder inhalers 
(DPIs) were introduced to overcome the problem of 
limited drug deposition in the lower respiratory tract 
by MDIs, which deliver drugs in the form of solid aero-
sols. Nevertheless, the efficiency of dry powder inhal-
ers is mainly dependent on the patient’s respiratory 
function, posing new challenges for quality control 
stability [121]. Subsequently, nebulization devices were 
developed. Dolovich et al. demonstrated that the liquid 
aerosols produced by nebulizers, capable of carrying 
hundreds of nanoparticles per drop, can reach nearly 
all regions of the lungs [122]. Philip J. Santangelo [123, 
124] and Daniel G. Anderson’s team [114] achieved 
effective deposition and efficient transfection of func-
tional mRNA in the lungs of experimental animals 
using devices such as small animal vibrating sieve mesh 
nebulizers and nebulizing towers, demonstrating the 
role of nebulization in delivering nucleic acids to coun-
ter respiratory pathogens. It’s worth mentioning that 
ALN-RSV01, a nebulized siRNA therapy targeting the 
RSV nucleocapsid protein (N), has been clinically vali-
dated and proven safe and effective in over 3,000 symp-
tomatic patients [125]. Despite that, nebulized drug 
delivery also faces many challenges due to the instabil-
ity of liquid nucleic acid-nanocarrier complexes. Nebu-
lization devices like jet and ultrasonic nebulizers may 
apply a continuous shear force to the complexes, lead-
ing to nanoparticle coalescence. Consequently, nebuli-
zation technology poses challenges related to delivery 
materials, buffer systems, and nebulization device 
design [126].

Organ‑selective nucleic acid delivery
Due to the unique physiological configuration and func-
tion of the liver, nucleic acids carried by nanomaterials 
such as LNPs tend to aggregate in the liver [127], granting 
nucleic acids unique advantages in treating liver diseases. 
So far, among the five siRNA drugs approved by the FDA, 
except for Onpattro®, all have employed GalNAc-based 
modifications. This proven strategy allows nucleic acid 
drugs to achieve efficient liver parenchymal cell targeting 

[128, 129]. However, the liver has a complex cellular com-
position. In addition to hepatic parenchymal cells, the 
hepatic microenvironment includes hepatic stellate cells 
(HSCs), Kupffer cells (hepatic macrophages), and hepatic 
endothelial cells [130], which have been associated with 
a wide range of liver diseases and metabolic disorders. 
For example, HSCs are considered significant cells in the 
formation of hepatic fibrosis and are closely associated 
with various chronic liver diseases [131]. It is necessary 
to develop better strategies targeting multiple cell types.

Efficiently modulating the immune system is crucial for 
treating diseases such as infectious diseases, tumors, and 
autoimmune diseases. In this regard, nucleic acid drugs 
also have advantages. The liver is also a component of the 
body’s immune system [132]. However, secondary lym-
phoid organs, including lymph nodes (LN) and spleen, 
are the core foundation of immune responses [133]. The 
spleen, the largest lymphoid organ, stores about one-
third of circulating lymphocytes and possesses a large 
number of antigen-presenting cells (APCs) and tissue-
resident lymphocytes [134]. After intravenous admin-
istration, nanocomplexes targeting the spleen can be 
internalized by the large number of APCs in the spleen, 
resulting in mighty and enduring cellular and humoral 
immunity [135]. Thus, the spleen has become another 
promising organ for nucleic acid delivery, which has 
greatly attracted a lot of interest.

Unlike other organs, the lungs are immediately exposed 
to the external environment through the respiratory 
tract, making them susceptible to a wide range of patho-
gens [136]. Recently, increasing environmental pollution 
and outbreaks of pandemics, such as Influenza, respira-
tory syncytial virus (RSV) infection and COVID-19 [137, 
138], have led to a significant rise in the incidence of pul-
monary diseases. It has imposed an enormous burden on 
society and even triggered global public health crises on 
multiple occasions [139, 140]. Nucleic acid drugs present 
remarkable strengths in the treatment of inherited lung 
diseases [141], lung cancer [142], asthma [143], and infec-
tious pneumonia [144]. Over the past few years, several 
lung-targeted nucleic acid drugs, including MRT5005®, 
RCT1100®, VX-522®, and ARO-ENaC®, have entered 
clinical trials (Table  1). However, the majority of lung-
targeted nucleic acid drugs remain in the preclinical 
stage, restricting breakthroughs in these studies due to 
the lack of appropriate delivery materials [145–148].

Nanomaterials for nucleic acid delivery
To protect nucleic acids and ensure efficient trans-
fection, encapsulating them into nanoparticles using 
safe materials is often necessary. However, selecting 
suitable materials presents a challenge, as they must 
achieve effective encapsulation, be taken up by target 
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cells, and successfully deliver the gene to the intended 
site of action within the cell. Additionally, these mate-
rials should possess good biosafety and degradability 
properties. The success of organ-targeted nucleic acid 
delivery using nanomaterials should circumvent vari-
ous extracellular barriers and intracellular barriers. 
Different routes of drug delivery are associated with 
distinct physiological barriers. In the case of respira-
tory tract delivery, the challenge lies in overcoming the 
barriers presented by the highly branched respiratory 
tract, characterized by varying diameters and lengths. 
Nanoparticles, due to their nanoscale dimensions, are 
quickly exhaled. Therefore, specific methods, such as 
integrating nanoparticles with excipients, need to be 
employed to confer inhalation characteristics upon 
the particles. Furthermore, respirable particles tend to 
accumulate in the mucus layer, preventing their entry 
into cells. When administered via intravenous injec-
tion, drugs must traverse the vessel wall and be endocy-
tosed by cells, subsequently releasing the encapsulated 
nucleic acids through endosomes. Consequently, deliv-
ery carriers for nucleic acids should possess enhanced 
endosomal escape capabilities. A comprehensive 
understanding of diverse nanomaterials’ chemical 
properties and applications is crucial in the rational 
development of more effective and selective nucleic 

acid delivery vehicles catering to treating specific tis-
sues and cells.

Polymer‑based delivery system
Polyethyleneimine (PEI)
Polyethylenimine (PEI) is a highly charged cationic pol-
ymer that easily binds negatively charged nucleic acids 
to form complexes transfected into adherent and sus-
pension cells, and is commonly used for transient gene 
transfer (Fig.  4a). Moreover, PEI is easily synthesized, 
allowing for flexible adjustment of its physicochemi-
cal properties. It demonstrates significant transfection 
efficiency in delivering nucleic acids in  vivo. The main 
advantage of PEI as a nucleic acid delivery material lies 
in its efficient endosomal escape. The “proton sponge 
effect” is considered one of the critical principles. PEI 
can capture a large number of protons. Then, the influx 
of chloride ions and water into endosomes/lysosomes 
disrupts osmotic pressure homeostasis, leading to 
endosomal rupture and subsequent release of nucleic 
acids [95]. These characteristics have positioned PEI as 
extensively employed vectors for the delivery of various 
nucleic acids, including plasmid DNA and siRNA, to 
diverse tissues [149–151]. However, this disruptive effect 
is not limited to endosomal membranes, the uncontrol-
lable proton sponge effect along with the high-density 

Table 1 Clinical trials based on siRNA or mRNA therapy for lung diseases

The clinical trials were from ClinicalTrials.gov

Drug name Sponsor Cargo Disease Administration 
route

Nanocarrier Trial number Phase Status

MRT5005 Translate Bio mRNA Cystic Fibrosis (CF) Inhalation 
(Nebulization)

LNP NCT03375047 1/2 Unknown

RCT1100 ReCode mRNA Primary Ciliary 
Dyskinesia (PCD)

Inhalation 
(Nebulization)

LNP (SORT) NCT05737485 1 Recruiting

VX-522 Vertex-Moderna mRNA Cystic Fibrosis (CF) Oral inhalation 
(Nebulization)

LNP NCT05668741 1 Recruiting

ARCT-032 Arcturus mRNA Cystic Fibrosis (CF) Inhalation 
(Nebulization)

LNP (LUNAR®) NCT05712538 1 Recruiting

ARO-ENaC Arrowhead siRNA Cystic Fibrosis (CF) Inhalation 
(Nebulization)

Chemical Modification
(Targeting ligands)

NCT04375514 1 Terminated
(Adverse reaction)

ARO-MUC5AC Arrowhead siRNA Muco-obstructive,
Chronic Obstruc-
tive Pulmonary 
Disease (COPD), etc

Inhalation 
(Nebulization)

Chemical Modification
(Targeting ligands)

NCT05292950 1/2 Recruiting

ARO-RAGE Arrowhead siRNA Inflammatory Lung 
Disease
(e.g. asthma)

Inhalation 
(Nebulization)

Chemical Modification
(Targeting ligands)

NCT05276570 1/2 Recruiting

ARO-MMP7 Arrowhead siRNA Idiopathic Pulmo-
nary Fibrosis (IPF)

Inhalation 
(Nebulization)

Chemical Modification
(Targeting ligands)

NCT05537025 1/2 Recruiting

TRK-250 (BNC-
1021)

Toray-Bonac siRNA Idiopathic Pulmo-
nary Fibrosis (IPF)

Inhalation Chemical Modification
(PnkRNA)

NCT03727802 1 Completed

NBF-006 Nitto siRNA Non-Small Cell 
Lung Cancer 
(NSCLC)

Intravenous 
infusion

LNP NCT03819387 1 Recruiting
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charge of the polymer, can potentially damage cell mem-
branes, and mitochondria and even induce cell necrosis 
[152]. Moreover, the difficulty of PEI biodegradation and 
its cytotoxicity have limited its widespread application 
as a nucleic acid delivery material [153].

To address these limitations, efforts are being made 
to improve the safety of PEI while maintaining its 
delivery efficiency. Strategies such as reducing the 
molecular weight of PEI, decreasing branching struc-
tures (e.g., deacetylation), hydrophobic modification, 

Fig. 4 a Schematic illustration, chemical structures, and comparison of advantages and drawbacks of several polymers used as nucleic acids 
nanocarriers. Created with BioRender.com. b hDD90-118 was synthesized by adding N-methyl-1,3-diaminopropane, a tri-functional amine. 
Bioluminescence 24 h after inhalation of hDD90-118 polyplexes. hDD90-118 vectors produced significantly higher radiance localized to the lung. 
A Cre-loxP mouse model was utilized to quantitatively assess the lung cell subtypes transfected by hDD90-118 polyplexes. The tdTomato + lung 
cells were typed using flow cytometry, where endothelial cells were labeled with CD31, epithelial cells with EpCAM, and immune cells with CD45. 
Reprinted with permission [114]. Copyright 2019, Wiley. c The schematic of the PBAE used in the article. IVIS shows the biodistribution of luciferase 
expression in dissected mouse organs at a nanoparticle-to-DNA ratio of 50:1. IVIS whole-body imaging shows the in vivo bioluminescence 
following treatment with PBAE nanoparticles. Flow cytometry analysis of the PBAE nanoparticle distribution (blue curve) in different respiratory 
cell types compared to the control (red curve). Flow cytometry shows mCherry reporter activity in endothelial cells isolated from different murine 
organs. PBAE nanoparticles (blue curve); Untreated control (red curve). Immunofluorescence of frozen lung sections after I.V. injection of DyLight 
650-labeled nanoparticles. The PBAE nanoparticles (light blue); Endothelial cells (CD31, red); Smooth muscle cells (αSMA, green); nucleus (DAPI, dark 
blue). Reprinted with permission [154]. Copyright 2023, KeAi
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or conjugation with other polymers (e.g., PEG, chi-
tosan, hyaluronic acid) to form nanoparticles have 
shown promise [155, 156]. For example, using PEG-
PEI as a siRNA delivery system may reduce cytotoxic-
ity while maintaining the target gene silencing effect. 
It should be noted that PEGylated modifications have 
the potential to initiate immune responses and inflam-
matory responses in the lungs but are generally not 
sufficient to cause lung tissue damage [126, 157]. In 
another example, it was observed that the 32P-siRNA-
PEI complex showed a minimal reduction in the radio-
lucent signal detected after treatment compared to the 
naked 32P-siRNA. Of note, the presence of PEI con-
siderably influenced the uptake of 32P-siRNA by bron-
choalveolar lavage cells (BAL cells) [158, 159].

Daniel J. Siegwart’s group found that fluorinated PEI 
successfully mediated siRNA binding in the triple-neg-
ative breast cancer (TNBC) cell line, MDA-MB-231, 
while reducing cytotoxicity and aggregation compared 
to unmodified PEI. Moreover, fluorinated PEI caused 
a distinct shift in the biodistribution of siRNA from 
the lungs to the liver [103]. Fernando et al. showed that 
pDNA was transfected into retinal pigment epithe-
lium (ARPE-19) and human hepatocellular carcinoma 
(HepG2) cell lines via succinic acid-modified PEI. 
They found that adding succinic acid slightly reduced 
the strength of the polymer-DNA interaction, result-
ing in better intracellular DNA release and reduced 
cytotoxicity by avoiding the adsorption of proteins 
onto the polymers [160]. In a separate study, Kurosaki 
et  al. observed that the positive charge of the pDNA/
PEI complex was effectively shielded by the addition of 
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS). 
In their finding, the gene was selectively highly 
expressed in the spleen after intravenous injection of 
the pDNA/PEI/DOPS ternary complex [161]. Yang 
et  al. designed a biocompatible biomimetic system 
based on nano-erythrocyte bodies (NER) and black 
phosphorus nanosheets (BP) to achieve spleen target-
ing. BP was covalently modified with PEI and served 
as the core to efficiently condense mRNA via electro-
static interactions, forming NER@BPmRNA. In in vivo 
experiments, they demonstrated that NER@BP, when 
injected into the muscle, effectively targeted the spleen 
for antigen delivery [162].

Chitosan
Chitosan is a naturally occurring and biocompatible 
polysaccharide material that exhibits positive electri-
cal properties due to the presence of amine groups 
[163–165] (Fig. 4a). These positive charges enable chi-
tosan to encapsulate nucleic acids effectively. In addi-
tion, chitosan possesses immunomodulatory properties 

and, therefore, has the potential to be used as an adju-
vant for nucleic acid vaccines [166, 167]. The adhesive 
and mucosal permeable properties of chitosan have 
been reported to contribute to the delivery of nucleic 
acids to the lungs through the respiratory tract [105]. 
For example, Silva et  al. showed that chitosan and 
siRNA powders prepared using carbon dioxide-assisted 
spraying with dry drying (SASD) technique effectively 
deposited in the mouse lungs after administration 
[168]. Okamoto et  al. also used chitosan as a carrier 
to deliver pDNA as a dry powder. They found that chi-
tosan as a dry powder resulted in higher expression of 
pDNA compared to intravenous or intratracheal infu-
sion administration [169].

However, the strong electrostatic interactions between 
chitosan and nucleic acids can pose a challenge in achiev-
ing high transfection efficiency compared to other poly-
meric materials. To obtain higher nucleic acid delivery 
efficiency, chitosan-derived nanocarriers need to be 
developed to improve deacetylation degree, molecular 
weight, particle size, and N/P molar ratio [170, 171]. One 
possible solution to this problem is incorporating nega-
tively charged compounds, such as γ-Polyglutamic acid 
(γ-PGA), into chitosan-nucleic acid complexes [172]. It 
was found that guanylated chitosan (GCS) promotes cel-
lular uptake of siRNA and safely improves gene silenc-
ing efficiency. Further studies showed that the chemical 
coupling of salbutamol to GCS (SGCS) improved the 
targeting of siRNA nanoparticles to lung cells contain-
ing β2-adrenergic receptors [173]. Capel et  al. modified 
chitosan with piperazine substitution. They showed that 
using modified chitosan as a carrier could mediate effec-
tive lung drug deposition after intratracheal administra-
tion and enhance siRNA-induced gene silencing in lung 
epithelial cells [174]. In a separate study, Jin et  al. used 
imidazole ring-modified allantoic acid-modified chitosan 
as an aerosol delivery vehicle. They found that this modi-
fication resulted in higher gene transfection efficiency 
[175].

Klausner’s group used NOVAFECT chitosan (a cur-
rently commercially available chitosan designed by 
Arturrson [176]) for gene delivery studies. NOVAFECT 
chitosan-DNA nanoparticles injected into rat corneas 
showed specific expression of the luciferase gene in 
corneal fibroblasts and a 5.4-fold increase in expres-
sion compared to injection of polyethyleneimine-DNA 
nanoparticles [177]. Cheng and co-workers synthesized 
and applied galactosylated chitosan (GC) to encapsulate 
plasmids encoding macrophage colony-stimulating fac-
tor (GM-SCF) and interleukin (IL)-21. They found that 
following intravenous injection of GC/GM-CSF-IL-21 
nanoparticles, GC/GM-CSF-IL-21 nanoparticles specifi-
cally accumulated in the liver and activated natural killer 
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(NK) cells and cytolytic T-lymphocytes (CTLs) in tumor 
tissues of mice with liver metastasis model of colon can-
cer [178]. Similarly, Xiao et al. synthesized galactosylated 
chitosan-hydroxypropyltrimethylammonium (gal-
HTCC) with galactosylated and quaternised chitosan. 
In vitro gene transfection results showed that gal-HTCC 
delivered pGL3 luciferase plasmid targeting to human 
hepatocellular carcinomas (HepG2) with remarkably 
higher transfection efficiencies (7–32-fold) compared 
with chitosan and gal-chitosan [179].

Poly‑β‑amino‑ester (PBAE)
Due to the inherent cytotoxicity of PEI, there is a grow-
ing focus on developing polymers that retain the advan-
tages of PEI but are easily degradable. One such cationic 
polymer is Poly-β-amino-ester (PBAE) (Fig.  4a), which 
has gained attention recently for its potential in the 
pulmonary delivery of nucleic acids. PBAE exhibits a 
highly adaptable chemical structure and is readily bio-
degradable. It can be synthesized by the Michael addi-
tion reaction [180]. The first attempt to use PBAE as a 
nucleic acid delivery vector was reported by Langer’s 
team. They assembled pDNA with PBAE and found that 
the resulting complexes possessed a preferred nano-
size and low cytotoxicity [181]. Later, Daniel G. Ander-
son and Robert Langer’s team explored the relationship 
between the capacity of pDNA-PBAE to overcome cel-
lular barriers and the physicochemical properties of the 
materials [182]. They observed that the branched struc-
ture of PBAE was essential for enhancing the efficiency 
of nucleic acid delivery [180]. Concretely speaking, 
branched polymers demonstrated high transfection effi-
ciency due to their three-dimensional (3D) spatial struc-
ture with multiple end groups [183].

The transfection efficiency of PBAE was also affected 
by the form of the end groups, such as end oligopep-
tides [184]. Anderson’s group designed and synthesized 
a hyperbranched PBAE polymer, hDD90-118, that effi-
ciently delivers nucleic acids to lungs by nebulization. 
Specifically, they delivered mRNA encoding luciferase 
using hDD90-118 and observed an even distribution 
of nanoparticles in all lung lobes. In the Ai14 reporter 
mouse model, they observed efficient transfection of lung 
epithelial cells [114] (Fig. 4b). Santangelo’s group further 
investigated the use of hDD90-118 in nebulized delivery 
of nucleic acids to the lung. hDD90-118 was employed to 
deliver mRNA encoding virus-specific CRISPR-Cas13a 
protein or membrane-anchored neutralizing antibody 
[119, 124]. In one study, they used hDD90-118 to deliver 
mRNA encoding Cas13a to the respiratory tracts of mice 
and hamsters by nebulization, which resulted in effi-
cient virus degradation and attenuation of respiratory 
infections [124]. In another experiment, the delivered 

cargo was exchanged for mRNA encoding a membrane-
anchored neutralizing antibody. This led to the efficient 
expression of antibodies that alleviated the infection in 
the lungs of the experimental animals [119]. Afterward, 
they designed 166 new hyperbranched PBAE or Poly-β-
amino-thio-ester (hPBATE) polymers using hDD90-118 
as a precursor. Among these polymers, they found that at 
least five polymers, including P76, outperformed hDD90-
118 in mediating lung mRNA expression. In thera-
peutic models of viral infections in hamsters, ferrets, 
cows, and non-human primates, P76 showed improved  
delivery efficiency in the pulmonary delivery of nucleic 
acids [123].

Generally, most nebulized or other inhalation methods 
target lung epithelial cells. Targeting pulmonary vascu-
lar endothelial cells also holds great potential in treat-
ing acute and chronic lung diseases, such as pulmonary 
hypertension and alveolar capillary dysplasia. In recent 
years, Anderson’s team has successfully achieved targeted 
delivery of mRNA to lung endothelial cells by combining 
PBAE with lipids in the form of nanoparticles (narrated 
in the corresponding section) [185, 186]. Modification 
of PBAE using lysine/histidine oligopeptides is also a 
promising approach. Dosta et al. found that high levels of 
gene silencing were observed in the pulmonary vascular 
endothelium after intravenous injection of PBAE-siRNA 
nanocomplexes, significantly reducing featureless deliv-
ery to organs such as the liver [187]. Kalinichenko’s group 
successfully achieved endothelial targeting after intrave-
nous injection by unique structural design (altering the 
ratio of the two alkyl chains in the backbone and PEGyla-
tion and fluoride modification) of PBAE. They found that 
this modified PBAE could efficiently deliver pDNA to 
lung microcapillaries following intravenous administra-
tion [154] (Fig. 4c).

Kim et al. found that the structure of PBAE affects the 
biodistribution of nano complexes and gene transfec-
tion efficiency after intravenous injection. Also, they 
discovered by high-throughput barcode screening that 
PBAE NPs accumulated in the liver and spleen within 
30  min of administration [188]. To target APCs in the 
spleen, Fornaguera et  al. used oligopeptide-terminated 
modified PBAEs (OM-PBAEs) to deliver mRNA. They 
found that this newly designed material was able to 
accumulate efficiently in the spleen and was hardly 
affected by freeze-drying [189]. In a similar approach, 
Palmiero et  al. utilized a strategy based on the synthe-
sis of copolymers using polycaprolactone (PCL) and 
poly (beta-amino ester) (PBAE) through ring-opening 
and Michael addition polymerizations (PCL-based 
PBAE). They discovered that the selected ternary poly-
mer exhibited significantly higher transfection efficiency 
compared to polyethyleneimine (PEI). The developed 
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polymer primarily accumulated in the spleen with 
improved biocompatibility [190]. Zamboni et  al. found 
that a primary formulation (Polymer 536, polymer to 
DNA weight ratio of 25) effectively transfected human 
Hepatocellular carcinoma (HCC) cell lines with a supe-
rior transfection efficiency over PEI and other commer-
cially available transfection reagents (Lipofectamine™ 
2000 and jetPRIME™). Notably, this biodegradable, end-
modified PBAE gene delivery vector was non-cytotoxic 
[191]. Vaughan et  al. administered PBAE nanoparticles 
via hepatic artery injection in a rat model of liver tumors. 
They found that arterial injection of PBAEs increased 
targeted transfection of HCC tumors compared to 
intravenous administration, making it a potential alter-
native method to Transcatheter Arterial Chemoemboli-
zation (TACE) [192]. Green’s team used PBAE to deliver 
transgenes intracranially to enable specific gene expres-
sion in mouse gliomas. They found that the nanoparticles 

didn’t lose their potency after two years of freeze-drying 
and storage [193]. In another study, Mastorakos et  al. 
showed that PEGylation PBAE nanoparticles delivering 
DNA rapidly penetrated healthy brain parenchyma and 
orthotopic brain tumor tissues. The nanoparticles signifi-
cantly improved the survival in two aggressive orthotopic 
brain tumor models in rats [194].

Lipid‑based delivery system
Cationic lipids
Cationic lipids have a permanent positive charge due to the 
covalent binding of a positively charged head group (such 
as a quaternary ammonium salt, an amine, a guanidine, 
or a heterocyclic compound) to a hydrophobic tail group 
through linkages chains [195, 196] (Fig. 5). In 1987, Felgner 
et al. synthesized cationic lipid 1,2-di-O-octadecenyl-3-tri-
methylpropylammonium (DOTMA) and 1,2-Dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE), which exhibited 

Fig. 5 a Schematic illustration and c chemical structures of several lipids used as nucleic acids nanocarriers. b Comparison of the properties 
of cationic and ionizable lipids. Created with BioRender.com
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superior DNA loading capacity and efficient gene expres-
sion in vitro. It marks a pivotal moment for the application 
of cationic lipids in the field of nucleic acid delivery [197]. 
Since then, numerous research groups have embarked on 
employing cationic lipids as nucleic acid delivery vectors. 
It has been demonstrated that after intravenous injec-
tion, lipoplexes, positively charged complexes formed by 
cationic lipids and siRNA, can electrostatically interact 
with negatively charged erythrocytes to form agglomer-
ates [198]. These agglomerates facilitate the adsorption of 
lipoplexes in highly dilated pulmonary capillaries, result-
ing in 60–70% drug accumulation in the lung within a few 
seconds after intravenous administration [199]. In a clini-
cal trial, the successful treatment of patients with non-small 
cell lung cancer (NSCLC) was achieved through the deliv-
ery of pDNA encoding the tumor suppressor gene TUSC2/
FUS1 using liposomes consisting of DOTAP and choles-
terol [200]. In one study, positively charged ichthyoglobulin 
was used to form a complex with mRNA, and the resulting 
complex was further encapsulated with 1,2-dioleoyl-3-tri-
methylammonium propane (DOTAP). The prepared nano-
pcomplex induced robust cellular immune responses and 
delayed tumor growth [201]. High-density and low-molec-
ular-weight PEGs have been applied to shield the surface 
charge of cationic lipids [202, 203]. The mucus barrier is the 
primary obstacle for nanoparticles delivering nucleic acids 
to the lung via inhalation. Taratula et  al. achieved effec-
tive cell death induction and target gene silencing by co-
delivering siRNA and chemotherapeutic drugs in the lung 
through nebulized inhalation using nanoparticles prepared 
with PEG-coated cationic lipid DOTAP. Also, with LHRH 
peptide modification of nanoparticles, they found that the 
drug was mainly enriched in lung tumors [204].

Cationic lipid-modified aminoglycoside (CLA) was 
explored to deliver mRNA to the liver. The results 
showed that a typical CLA named GT-EP10, deliver-
ing luciferase mRNA to mice at 0.05  mg/kg, achieved 
an average luminescence intensity of  107 in the liver 
[205]. Woitok et al. produced clinically functional LNP 
that contained the cationic amino-lipid KL52 using 
a T-junction. This LNP delivering c-Jun N-terminal 
kinase-2 (Jnk2) siRNA achieved efficient accumulation 
in the liver, and Jnk2 silencing ultimately reduced car-
cinogenesis in a model of advanced hepatocellular car-
cinoma [206]. Hattori et al. developed a novel method 
for siRNA transfer to the liver via intravenous injection 
of an anionic polymer and a cationic liposome/cho-
lesterol-modified siRNA complex (cationic liposome). 
They found that siRNA accumulation shifted from the 
lungs to the liver when injected with poly L-glutamic 
acid (PGA) or chondroitin C (CS) sulfate [207]. Hsu 
and co-workers developed cationic nanoparticles, LNP-
DP1, to deliver miR-122 for restoration of dysregulated 

gene expression in hepatocellular carcinoma (HCC) 
cells [208].

Afterward, novel cationic lipids with superior trans-
fection efficiency were developed. Commercially avail-
able cationic lipids, such as Lipofectamine 2000, have 
been widely used for nucleic acid delivery owing to their 
superior encapsulation rate and transfection effect. For 
example, intratracheal injection of Lipofectamine 2000 
delivering PAI-1 siRNA inhibited fibroblast proliferation 
and promoted apoptosis of fibroblasts in a rat model of 
bleomycin (BLM)-induced pulmonary fibrosis [209]. 
Johler and colleagues found that nebulized Lipofectamine 
2000 nanoparticles encapsulating EGFP mRNA achieved 
a transfection rate of 38% in 16HBE cells, while polymer-
based nanoparticles achieved a transfection rate of only 
3% [210]. Another study found that intratracheal deliv-
ery of Rip2 siRNA using Lipofectamine 2000 suppressed 
indicators of cigarette smoke (CS)-induced inflammation 
and oxidative damage, as well as inhibiting the accumu-
lation and transcriptional activation of nuclear p65 in 
lung tissues [211]. Mo et  al. first reported that delivery 
of siRNA to Huh7.5 and H4IIE hepatocellular carcinoma 
cells using Lipofectamine 2000 increased autophagosome 
levels [212]. It should be noted that multivalent cationic 
lipids, such as Lipofectamine®, are more toxic than mon-
ovalent cationic lipids, such as DOTAP [213].

Another notable cationic lipid is GL67, considered the 
“gold standard” for respiratory non-viral gene delivery 
vectors. GL67 was first synthesized by LEE and co-work-
ers as a cationic lipid with spermine as the head group, 
conjugated to cholesterol in a T-shape structure. GL67 
efficiently delivered the plasmid encoding chlorampheni-
col acetyltransferase (CAT) to the lungs [214]. In another 
study, pDNA expressing the human cystic fibrosis trans-
membrane conductance regulator (CFTR) was delivered 
as an aerosol to sheep lungs using GL67A (a mixture of 
GL67/DOPE/DMPE-PEG5000) [215]. Recently, DACC 
formulation, composed of the b-L-arginyl-2,3-L-diami-
nopropionic acid N-palmitoyl-N-oleyl-amide trihydro-
chloride (AtuFECT01), cholesterol, mPEG2000-DSPE, 
facilitated efficient delivery of siRNA to lung tissues and 
reduced VE-calmodulin mRNA expression in the lungs 
by approximately 50% [216]. Moreover, gene expression 
can be silenced in pulmonary endothelial cells by a sin-
gle-dose of DACC lipid complexes [217].

Ionizable lipids
Recently, ionizable lipids offer pH sensitivity to enhance 
nucleic acid delivery in  vivo [218]. In physiological 
conditions with a pH of 7.4, ionizable lipids are elec-
trically neutral and have reduced interactions with ani-
onic cell membranes, rendering them biocompatible 
(Fig.  5). Moreover, ionizable lipids undergo ionization 
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in endosomes where the pH is lower than that of the 
extracellular environment, resulting in a positive charge, 
which facilitates the escape of nanoparticles from the 
endosomes [219, 220]. In general, ionizable lipids are 
less toxic and more effective at endosomal escape than 
cationic lipids [221, 222]. The development of ioniz-
able lipids began with the introduction of the first ion-
izable lipid, 1,2-dioleoyl-3-dimethylpropanaminium 
(DODAP), in which the head of a cationic lipid was 
replaced with an ionizable molecule [223]. Subsequently, 
Semple et  al. formulated the first LNP consisting of 
DODAP, which achieved 70% encapsulation efficiency 
with oligonucleotides [224]. To further improve the 
encapsulation efficiency, the ionizable lipid 1,2-dil-
inoleyl-N, N-dimethyl-3-aminopropane (DLin-DMA) 
with a superior unsaturation degree was successfully 
synthesized [225]. Later, a more potent ionizable lipid 
2,2-dilinoleyl-4-dimethylaminoethyl-1,3-dioxolane 
(DLin-KC2-DMA) was developed [226]. These previous 
studies have led to dilinoleylmethyl‐4‐dimethylamin-
obutyrate (DLin‐MC3‐DMA) with potent encapsulation 
efficiency and transfection capability. The head linker of 
DLin-MC3-DMA is an ester bond, making DLin-MC3-
DMA biodegradable in  vivo [227]. Onpattro®, a DLin-
MC3-DMA-based nucleic acid drug, marks significant 
progress in the field of ionizable lipid molecules. Moreo-
ver, two mRNA vaccines (mRNA-1273 and BNT162b2) 
based on ionizable lipids received historic emergency 
use approvals, which may indicate a regulatory advan-
tage for ionizable lipids [43, 228].

Drew Weissman’s group synthesized a lipid library of 
anisodamine ligands using a one-pot, two-step modular 
synthesis. The best-performing ionizable lipid, AA-T3A-
C12, was able to silence heat shock protein 47 by ~ 65% 
and was twice as effective as the MC3 LNP in a preclini-
cal model of liver fibrosis. AA-T3A-C12/siHSP47 LNP 
significantly reduced collagen deposition and alleviated 
liver fibrosis without significant toxicity [229]. Mount-
ing evidence has demonstrated that LNP accumulates 
mainly in the liver after intravenous administration [230]. 
Therefore, there is a great challenge to design ionizable 
lipids for extrahepatic delivery. Kimura et al. first discov-
ered that LNP prepared with DODAP and DOPE under 
a specific ratio could selectively deliver plasmid DNA to 
the spleen [231]. Recently, Zhang et al. designed a novel 
ionizable lipid for specific delivery of mRNA to the 
spleen. This lipid carried a positive charge under physi-
ological conditions. It rapidly acquired a negative charge 
in the presence of esterases, thus allowing stabilization of 
mRNA encapsulation during storage and in vivo delivery 
while balancing effective mRNA release from the cyto-
plasm [232] (Fig. 6).

To address biological barriers to nucleic acid deliv-
ery, Harashima and co-workers designed the first mul-
tifunctional envelope-type nano device (MEND) [233]. 
MEND is a nanoparticle that enables cell-specific target-
ing through surface modification by targeting ligands and 
incorporating pH-sensitive lipids. Pulmonary endothelial 
cell targeting is promising for treating various acute and 
chronic lung diseases [234]. Harashima’s group achieved 
targeted delivery to pulmonary endothelial cells by modi-
fying a GALA peptide (developed initially as an endo-
somal destabilizer) on the surface of MEND [235, 236]. 
The same research group later designed a GALA-MEND 
incorporating a pH-sensitive lipid (YSK05) that effi-
ciently delivered siRNA to pulmonary endothelial cells 
and inhibited lung cancer metastasis in mice. The addi-
tion of YSK05 improved the endosomal escape of MEND 
and enhanced the gene knock down effect in pulmonary 
endothelial cells [237]. Subsequently, they developed a 
dual-layer MEND delivery system with cell-penetrating 
peptide (R8 peptide). This system specifically delivered 
pDNA to macrophages and B cells in the spleen [238].

Xu and co-workers developed ionizable lipid 113-
O12B targeting lymph nodes, which showed robust gene 
expression in lymph nodes. Targeted delivery of mRNA 
to lymph nodes increased  CD8+ T-cell responses against 
a model antigen encoding ovalbumin (OVA) [239]. Most 
recently, the same group developed a unique LNP with 
a novel ionizable lipid containing an amide bond in the 
tail selectively delivered mRNA to the lungs. They syn-
thesized a lipid library with amide bonds via a Michael 
addition reaction between the amine head and acryla-
mide tail and screened out the best lung-targeting lipid, 
306-N16B. Interestingly, specific cell populations in the 
lungs can be targeted by simply switching the head struc-
ture of the LNP. In addition, through proteomics study, 
the researchers found that the abundant protein com-
ponent in the 306-N16B corona was the fibrinogen beta 
chain. Then, they encapsulated mRNA encoding mouse 
tuberous sclerosis complex 2 (Tsc2) with 306-N16B. Fol-
lowing intravenous injection, the resulting nanocomplex 
restored the expression of the Tsc2 tumor suppressor for 
the treatment of lung lymphangioma (LAM) [109].

In a separate study, Daniel G. Anderson’s team con-
structed OF-Deg-Lin lipids that induced 85% of pro-
tein expression in the spleen and effectively targeted 
B lymphocytes in vivo (~ 7%), showing the potential to 
modulate B cell function [240]. The same research team 
later synthesized 720 biodegradable lipids based on a 
three-component reaction system and screened out the 
top-performing ionizable lipid, RCB-4–8. In particular, 
the carbonate groups in RCB-4–8 rendered it more bio-
degradable than lipids with ester groups. They found 
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that RCB-4–8 LNPs efficiently delivered mRNA to club 
cells and ciliated cells (the two significant subtypes of 
airway epithelial cells) via intratracheal delivery. More-
over, the pulmonary transfection efficiency of RCB-4–8 
LNPs was superior over that of LNPs formulated with 
DLin-MC3-DMA, and the addition of the cationic lipid 
DOTAP further improved luciferase expression upon 
intratracheal administration. Also, they proposed a 
strategy for co-delivery of SpCas9 with adeno-associ-
ated virus (AAV) and RCB-4–8. Following intratracheal 
administration, immunostaining analysis of lung tissue 
sections showed activation of the tdTomato fluorescent 
reporter gene in 17.0 ± 5.0% of pulmonary cells [141].

Other lipids
In some studies, solid lipid nanoparticles (SLNs) were 
also employed for the pulmonary delivery of nucleic 
acids. Jacobson et al. demonstrated that siRNA-DOTAP 

complexes can be efficiently encapsulated within the 
neutral hydrophobic cores of SLNs using a hydropho-
bic ion-pair approach [241]. Recently, Wang and co-
workers successfully delivered tumor necrosis factor-α 
(TNF-α) siRNA-SLNs by dry powder inhalation through 
a simulated mucus layer and achieved gene silencing 
in pulmonary macrophages and epithelial cells [242]. 
Most recently, Siegwart’s group developed selective 
organ targeting (SORT) technology, which modulates 
the molar composition and internal charge of LNPs by 
adding new lipid molecules to conventional four-com-
ponent LNPs. The addition of the SORT molecule to 
the original four-component LNP formulation allows 
for liver, lung, and spleen-specific targeting. They found 
that when negatively charged 1,2-dioleoyl-sn-glycero-
3-phosphate (18PA) was added at 10–40%, SORT LNPs 
selectively accumulated and induced protein expres-
sion in the spleen, with no luciferase expression in 

Fig. 6 a The schematic of the lipid compounds (AMP-POC18) used in the article. b Transfection was assessed using AMB-POC18 LNPs encapsulating 
mRNA encoding luciferase and imaged using IVIS at different time points. c Detection of IFN-γ secretion using enzyme-linked immunospot analysis 
(ELISpot) after re-stimulation of splenocytes with SIINFEKL in vitro. d-g Antitumor effects of AMB-POC18-LNP loaded with mRNA encoding OVA 
as a therapeutic vaccine, evaluated by tumor volume, mouse survival, quantification of various types of immune cells, and tumor cell proliferation. 
h Lung metastases were recorded during the assessment of the therapeutic effect of vaccines on tumors by a laboratory model of tumor lung 
metastasis [232]. Copyright 2023, Wiley
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other organs. Optimal lung delivery was achieved when 
DOTAP was added up to 50%, and complete liver target-
ing was reached by adding 20% DODAP. Based on SORT, 
ReCode has developed an inhalable mRNA vaccine 
(RCT1100) against Primary Ciliary Dyskinesia (PCD) 
that has entered Phase I clinical studies. The vaccine 
showed high DNAI1 protein expression, rapid LNP clear-
ance in ciliated, rod, and basal cells, excellent tolerability, 
and the potential for repeated administration [147]. The 
same group later synthesized a novel LNP delivery sys-
tem called iPLNPs, which consist of novel phospholipids 
(iPhos) with endosomal escape properties. They found 
that adding DDAB to the top-performing iPhos 9A1P9 
effectively mediated enhanced mRNA delivery and 
CRISPR-Cas9 gene editing in the lungs [243].

Polymer–lipid hybrid delivery system
Polymer–lipid hybrid nanoparticles may improve the 
safety and long-lasting efficacy of single nanomaterial for 
nucleic acid delivery by taking advantage of the comple-
mentary properties of polymer and lipid nanoparticles 
[151, 154, 187, 188]. Thanki and colleagues developed 
a lipid-polymer hybrid nanoparticle by incorporating 
poly(DL-lactic-co-glycolic acid) (PLGA) with DOTAP 
for siRNA delivery. Compared to DOTAP alone, this 
hybrid nanoparticle effectively increased the siRNA pay-
load and greatly optimized the gene-silencing effect [244, 
245]. Meyer et  al. designed self-assembled lipid/poly-
mer hybrid (LPH) nanoparticles of PLGA with DOTAP 
or MC3. It was demonstrated that LPH nanoparticles 
accumulated predominantly in the liver post intravenous 
administration, whereas luciferase proteins were specifi-
cally expressed in the spleen and lungs [246]. Matsumoto 
et  al. designed PEI lipopolyplexes with DOTMA and 
pDNA. The charge ratios of the complexes to pDNA were 
calculated from the molar values of the nitrogen of PEI 
and the nitrogen of DOTMA to pDNA phosphate. As 
the charge ratio was four, the lipopolyplexes selectively 
expressed the gene in the spleen [247].

Recently, Philip J. Santangelo’s group developed a 
novel polymer–lipid hybrid nanoparticle named NLD1 
using DOTAP in conjunction with 7C1 (a low molecu-
lar weight PEI) [248]. Nebulized NLD1 mRNA encoding 
broadly neutralizing antibodies targeting haemaggluti-
nin substantially prevented lethal H1N1 influenza virus 
infection in mice, with higher delivery efficiency com-
pared to MC3 and cKK-E12 [249]. Anderson’s research 
team demonstrated that intravenous injection of PBAE 
delivering mRNA remarkably accumulated in the lungs 
of mice [186]. Moreover, they found that adding PEG-
lipid to PBAE reduced the nanoparticle size and further 
increased its specificity towards the lungs [185]. The 
resulting nanoparticles efficiently delivered Cre mRNA to 

pulmonary endothelial cells and immune cells. Recently, 
the same group optimized the properties of PBAE by 
incorporating a third hydrophobic alkylamine monomer 
to form a terpolymer. This copolymer, D90-C12-103, 
achieved DNA transfection with 1–2 orders of magni-
tude higher efficacy than other transfection reagents such 
as C12-200 and PEI [250] (Table 2).

Outlook and conclusion
Initially, viral vectors were utilized for nucleic acid 
delivery. However, their potential immunogenicity and 
safety concerns have posed insurmountable challenges, 
leading to a gradual shift towards synthetic nanocar-
riers. Recently, polymers have been one of the pioneer-
ing nanomaterials employed for the delivery of nucleic 
acids. Although polymers possess the advantages of 
easy synthesis and variable chemical structures, they 
often face restrictions in terms of biodegradability [251, 
252]. Undoubtedly, the most successful nucleic acid car-
riers in the current stage are LNPs. A growing body of 
studies has confirmed that LNPs have been the most 
advanced nucleic acid delivery systems to date. They 
have gained extensive usage, including two approved 
mRNA vaccines on the market against SARS-CoV-2. 
Nevertheless, conventional LNPs are difficult to specifi-
cally target extrahepatic organs [55]. So far, the focus has 
shifted to designing delivery systems that can effectively 
deliver therapeutic agents to targeted tissues and cells 
[253]. Researchers have found that the tissue selectivity 
of nanoparticles is closely related to factors such as the 
surface charge of lipid fractions. Although cationic lipid-
based LNPs consisting of cations, such as DOTAP, have 
achieved pulmonary delivery of nucleic acids to a cer-
tain extent, there are still some potential safety hazards 
associated with the unavoidable cytotoxicity of positively 
charged substances in vivo [251]. The emergence of ioniz-
able lipids, which carry a positive charge only in a specific 
physiological environment, avoids the toxicity of cationic 
lipids and brings superior transfection efficiency [38, 222, 
254–258]. Currently, most lung-targeted nucleic acid 
products that have entered the clinical research stage 
have been developed based on ionizable lipids, includ-
ing MRT5005® RCT1100®. Recent studies have explored 
new approaches, such as attaching peptides or antibodies 
on the surface of nanoparticles, to achieve active target-
ing. The researchers have investigated the properties of 
materials that influence delivery efficacy and intend to 
provide solutions to overcome the limitations of existing 
materials [259].

We must acknowledge that existing technologies 
still cannot solve all problems, partly due to the chal-
lenges in material synthesis and design, and partly 
due to the factors determining the targeted effects of 
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Table 2 List of nanomaterials for tissues-targeted delivery of nucleic acids

Nanocarrier Composition Cargo Targeted cell types or treated 
diseases

Administration route Ref

Hybrid nanoparticles PLGA-PEG/G0-C14 siRNA Idiopathic pulmonary fibrosis (IPF) Inhalation [79]

Polymer Fluorinated PEI siRNA Liver disease Intravenous injection [103]

Polymers PEI-PEG siRNA Bronchial and alveolar cells Intratracheal [104]

Ionizable lipids 306-N16B/Cholesterol /DOPC 
or DOPE or DSPC/mPEG2000-DMG

mRNA Pulmonary lymphangioleiomyoma-
tosis

Intravenous injection [109]

Polymers Hyperbranched-PBAE (hDD90-118) mRNA Pulmonary epithelial cells Inhalation [114]

Polymers Hyperbranched-PBAE (hDD90-118) mRNA Virus infection Inhalation [119]

Polymers PBATE (P76) mRNA Virus infection Inhalation [123]

Polymers PEI pDNA Mucosal epithelial cells Intranasal [150]

Polymers PEI-PEG siRNA Lung cells (leucocytes) Intratracheal [157]

Polymers PEI siRNA Bronchial and alveolar cells Intratracheal [158, 159]

Polymers PBAE pDNA Hepatocellular carcinoma Intratumoral injection [191]

Polymers PBAE (P22-F1) (Fluorinated) pDNA Pulmonary endothelial cells Intravenous [154]

Polymers PEI/DOPS pDNA Spleen Intravenous injection [161]

Polymers Chitosan siRNA Lung cancer Intratracheal [168]

Polymers Chitosan (Piperazine-substituted) siRNA Lung cancer Intratracheal [174]

Polymers Chitosan pDNA Liver Intravenous injection [178]

Hybrid nanoparticles Cholesterol/PBAE/PEG2000 PE/DOPE mRNA Pulmonary endothelium 
and immune cells

Intravenous injection [185]

Polymers PBAE (C6-KH)
(Lysine-/histidine-oligopeptide 
modified)

siRNA Pulmonary endothelial cells Intravenous [187]

Polymers PBAE pDNA Glioblastoma Intracranial administration [189]

Polymers PBAE pDNA Malignant Brain Tumors Convection-enhanced delivery [190]

Cationic lipids DOTAP/Cholesterol pDNA Lung cancer Intravenous injection [200]

Cationic lipids DOTAP/Cholesterol/DSPE-PEG-2000 mRNA Lung cancer Intranasal [201]

Cationic lipids DOTAP/DSPE-PEG/LHRH peptide siRNA Lung cancer Inhalation [204]

Cationic lipids Lipofectamine 2000 transfection 
agent

mRNA Pulmonary epithelial cells Nebulization [210]

Cationic lipids Lipofectamine 2000 transfection 
agent

siRNA Chronic obstructive pulmonary 
disease (COPD)

Intratracheal [211]

Cationic lipids Lipofectamine 2000 transfection 
agent

siRNA Hepatoma Cells NA [212]

Cationic lipids GL67/DOPE pDNA Cystic Fibrosis Intranasal [214]

Cationic lipids GL67/DOPE/DMPE/ PEG5000 pDNA Cystic fibrosis Inhalation [215]

Cationic lipids AtuFECT01/DPhyPE/DSPE-PEG siRNA Pulmonary endothelial cells Intravenous injection [216]

Cationic lipids AtuFECT01/Cholesterol/mPEG2000-
DSPE

siRNA Pulmonary endothelial cells Intravenous injection [217]

Ionizable lipids AA-T3A-C12/Cholesterol/DSPC/C14-
PEG 2000

siRNA Liver fibrosis Intravenous injection [229]

Ionizable lipids DODAP/Cholesterol/DOPE/DMG-
PEG 2000

pDNA Spleen Intravenous injection [231]

Ionizable lipids AMB-POC18/DOPE/PEG-DMG 2000 mRNA Spleen Intravenous injection [232]

MEND EPC/Cholesterol/STR-mPEG/Chol-
GALA

siRNA Pulmonary endothelium cells Intravenous injection [236]

MEND YSK05/Cholesterol/EPC/DMG-PEG/
Chol-GALA

siRNA Pulmonary endothelial cells Intravenous injection [237]

MEND DOPE/STR-R8/YSK05/Cholesterol/
DMG-PEG

pDNA Spleen B cells Intravenous injection [238]

Ionizable lipids 113-O12B/Cholesterol /DSPC/
PEG2000-DMG

mRNA Lymph node Subcutaneous injection [239]
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materials not being fully elucidated [260]. The key to 
developing next-generation nucleic acid delivery vec-
tors with optimal properties lies on overcoming com-
plex physiological barriers. Some strategies have been 
applied to overcome physiological barriers, such as the 
blood–brain barrier (BBB) [261]. The characteristics of 
nanoparticles, such as particle size and surface charge, 
play vital roles in overcoming the physiological barri-
ers. When developing innovative nanomaterials, it is 
crucial to comprehensively assess their characteris-
tics, including cytotoxicity, nucleic acid loading capac-
ity, endosomal escape efficiency, and storage stability. 
A thorough exploration of the relationship between 
material properties and tissue targeting ability should 
be conducted. Most recently, high-throughput screen-
ing methods, such as DNA barcoding technology, have 
been employed to explore the active targeting ability 
of nanomaterials [262, 263]. The past decade has wit-
nessed the accelerating development of nanomateri-
als for nucleic acid delivery. We envision that with the 
rapid development of biomaterial science, nucleic acid 
drugs will play central roles in the prevention and treat-
ment of various diseases in the near future.
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