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Enteric glial cells aggravate the intestinal 
epithelial barrier damage by secreting S100β 
under high-altitude conditions
Huichao Xie1, Xiong Zeng1, Wensheng Wang1, Wei Wang2, Ben Han2, QianShan Tan1, Qiu Hu3, Xingyu Liu2, 
Shuaishuai Chen1, Jun Chen1, Lihua Sun1*, Yihui Chen1* and Weidong Xiao1* 

Abstract 

Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be 
responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully 
explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA 
conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples 
from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers 
increased significantly. HA mouse model was then established and the results revealed that EGCs were involved 
in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of 
glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence 
IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo expo-
sure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured 
in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Further-
more, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, 
and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage 
to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs 
may constitute a fresh avenue for the avoidance of GI disorders at HA.
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Introduction
Globally, more than 140 million people live at high-alti-
tude (HA), which defined as elevations located above 
2,500 m, and often experience HA-related diseases, such 
as gastrointestinal (GI) disorders and acute pulmonary 
edema [1, 2]. The GI tract is directly connected to the 
environment, and is therefore susceptible to the effects 
of low oxygen and pressure [3]. HA-related GI symptoms 
are commonly reported and have become a diagnostic 
criterion for acute mountain sickness (AMS) [4]. A large 
number (81.4%) of mountaineers experience GI symp-
toms, such as nausea, vomiting, flatulence, diarrhea, pep-
tic ulceration, and GI hemorrhage [5, 6]. Although the 
exact cause of GI issues in HA is unknown, it is known 
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that disruption to the intestinal epithelial barrier (IEB) is 
involved in the development of these illnesses [7].

IEB damage under HA conditions is considered to be a 
significant cause of GI symptoms because it can lead to 
antigen exposure and activation of the immune system, 
thereby contributing to intestinal inflammation, abnor-
mal intestinal motility, and non-GI-related symptoms 
[8]. Typically, the pathogenesis of IEB damage under HA 
conditions involves hypoxia, which can lead to local tis-
sue acidosis, hypoxia and necrosis, mucosal atrophy, and 
injury to epithelial tight junction proteins [9, 10]. How-
ever, this pathogenetic mechanism does not fully explain 
the observed symptoms, such as flatulence and motility 
diarrhea, which accompany the IEB damage under HA 
conditions [11]. Thus, the mechanism of IEB damage 
under HA conditions is still unclear, but enteric nervous 
system (ENS) activation is thought to be involved [12].

Enteric glial cells (EGCs) are widely available in the ENS 
[13] and play important roles in neuronal support, neuro-
protection, neurogenesis, neuroimmune interaction, and 
synaptic transmission [14]. Previous investigations dem-
onstrated that abnormal EGC activity is correlated with 
developing some intestinal diseases and their symptoms, 
such as chronic diarrhea, abdominal pain, bloating, and 
indigestion [15]. Furthermore, accumulating data indi-
cates the importance of EGCs sustaining IEB [16, 17]. 
The conditional deletion of EGCs causes IEB damage, 
resulting in intestinal inflammation [18]. Lipopolysaccha-
ride (LPS) and interferon γ (IFN-γ) increase EGCs prolif-
eration and S100β, glial fibrillary acidic protein (GFAP), 
and inducible nitric oxide synthase (iNOS) expression, 
which are vital for IEB regulation [19]. Furthermore, by 
examining the connection between the adenosine A2A 
receptor (A2AR) and the metabotropic glutamate recep-
tor 5 (mGluR5), we discovered that EGCs are vital for IEB 
regulation [20]. Based on these characteristics of EGCs, 
we speculate that they may participate in the regulation 
of the IEB under HA conditions, but there have been no 
previous studies of this potential mechanism.

S100β is a key protein released by EGCs; it is a dimer-
forming member of the S100 protein family [21]. 
Increased concentrations of tumor necrosis factor-alpha 
(TNF-alpha) and interleukin-6 (IL-6), as well as iNOS 
expression and inflammatory cell infiltration into the 
small intestine, all result from S100 β activation of the 
receptor for advanced glycation end-products (RAGE)/
nuclear factor kappa B (NF-kappa B) pathway, result-
ing in IEB injury [22]. Previous studies have shown that 
S100β expression increases under HA conditions, and 
this is associated with hypobaric hypoxic brain injury [23, 
24]. However, the exact role of EGC-derived S100β in the 
damage to the IEB that occurs under HA conditions has 
not been reported.

We speculate that EGCs aggravate the damage to the 
IEB by secreting S100β under HA conditions, which 
results in GI disorders. The results of the present study 
provide new information regarding the pathogenesis of 
GI disorders under HA conditions and suggest a novel 
means of preventing and treating the GI disorders that 
develop under HA conditions.

Results
The concentrations of biomarkers of EGCs are increased 
by HA conditions
To characterize EGCs under HA conditions, we collected 
serum samples from control and HA group partici-
pants and measured the concentrations of biomarkers of 
EGCs. The serum concentrations of biomarkers of ECGs, 
including nerve growth factor-β (NGF-β), glial cell-
derived neurotrophic factor (GDNF), GFAP, and S100β, 
were significantly higher in the HA group, according to 
ELISA analysis (Fig. 1a).

Considering the fact that these serum biomarkers are 
not only released by EGCs, and could be synthesized 
and released by the extra-intestinal  glial cells, including 
astrocytes, we created a mouse model of HA by hous-
ing C57BL/6 J mice in a hypobaric chamber for 28 days, 
after which we measured the expression of biomarkers of 
ECGs. Real-time quantitative PCR (RT-qPCR) analysis 
deployed a higher small intestinal GFAP, S100β, GDNF, 
and NGF-β expression in the HA group compared to 
controls (Fig.  1b, Supplementary Fig.  1a). This finding 
was consistent with those made using human serum sam-
ples. Moreover, immunohistochemical analysis was per-
formed and showed that the small intestinal expression of 
GFAP and S100β in the HA group was remarkably more 
increased compared to controls (Fig.  1c). These results 
indicated that EGCs are affected by HA conditions.

Characteristics of EGCs under hypoxic conditions
To determine whether the dysfunction of EGCs under 
HA conditions are the results of hypoxia, we established 
an in  vitro model of hypoxic ECGs (12  h). A CCK-8 
Proliferation Kit was used to assess the proliferation of 
EGCs under hypoxic conditions (Fig. 2a) and an Annexin 
V-FITC Apoptosis Detection Kit was used for evaluating 
apoptosis levels (Fig.  2b, c). Interestingly, there were no 
significant differences in the proliferation or apoptosis 
of the EGCs between hypoxic and normoxic conditions. 
This implied that the viability of EGCs is not affected by 
hypoxia.

However, RT-qPCR data showed that the EGC-secreted 
cytokine S100β levels of mRNA expression was high in 
the hypoxic cells (Fig.  2d, Supplementary Fig.  2), and 
ELISA and immunofluorescence analysis showed that 
the expression of S100β was also high at the protein level 
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Fig. 1 The levels of EGC biomarkers are significantly increased by HA conditions. a Serum concentrations of GFAP, S100β, GDNF, and NGF in control 
and HA group participants. b Relative mRNA expression per β-Actin of GFAP, S100β, GDNF, and NGF-β in the small intestines of control and HA 
group mice. c Immunohistochemical staining of the small intestine for GFAP and S100β. (n = 6–8 mice/group), Mean ± SD represent the findings. 
****p < 0.0001, **p < 0.01, *p < 0.05. MOD—Mean Optical Density, IHC - immunohistochemistry
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(Fig.  2e-g). Because S100β mediates the inflammation 
associated with damage to the IEB [25, 26], we speculated 
that S100β may play an important role in this process.

The IEB is damaged under HA conditions and this involves 
EGCs
To determine whether intestinal function is disturbed 
by HA conditions, we first assessed the sensitivity of vis-
ceral nerves using abdominal wall withdrawal reaction 
(AWR) analysis, which demonstrated a remarkably more 
increased visceral sensitivity in HA group compared to 
controls (Fig.  3a). This indicated that the intestine is in 
a stressed state under HA conditions, and this may be 
related to EGC function. To evaluate the intestinal per-
meability of mice under HA conditions, we performed 
the FITC-dextran transepithelial permeability assay, 
demonstrated a remarkably more increased intestinal 
permeability in HA group (Supplementary Fig. 3).

Furthermore, Chiu’s score analysis and staining with 
hematoxylin and eosin (H&E) were performed, which 
showed that the intestinal epithelium and villi of mice in 
the HA group were damaged (Fig. 3b, c). RT-qPCR analy-
sis showed that the proinflammatory cytokines IL-6, -1α, 
and -1β, and TNF-α encoding genes-related expression 
in the small intestines of the HA cohort was remarkably 
higher and that of IL-10 was lower. Moreover, the mRNA 
expression of tight junction proteins (zona occludens 
(ZO)-1, occludin, and claudin-1) had substantial reduc-
tion (Fig.  3d, Supplementary Fig.  1b), whereas western 
blotting (WB) analysis showed corresponding decreases 
in occludin and ZO-1 protein expression, respectively 
(Fig.  3e). These findings indicated that intestinal func-
tion is disturbed and that the IEB is damaged under HA 
conditions.

To determine whether the IEB damage is associated 
with EGC dysfunction, we analyzed the relationships 
between the relative mRNA expression of biomarkers 
of EGCs (GFAP and S100β) and tight junction proteins 
(ZO-1, occludin, and claudin-1). We found that ZO-1, 
occludin, and claudin-1 expression negatively cor-
related with that of GFAP and S100β (Fig.  3f, Supple-
mentary Fig.  1c), which implied that the pathological 

changes in intestinal structure and function under HA 
conditions may involve EGCs.

EGCs aggravate epithelial cell injury under hypoxic 
conditions
To confirm whether EGCs aggravate IEB damage under 
hypoxic conditions, we performed cell hypoxia experi-
ments comprising MODE-K epithelial cells and EGCs. 
EGCs were subjected to hypoxia for 12  h, and control 
cells were kept in normoxic environment. Then MODE-
K cells were cultured in media conditioned by EGCs 
(control or hypoxia medium) and subjected to hypoxia 
for a further 12 h to simulate in vivo exposure to HA. 
Proliferation of MODE-K cells treated with either the 
hypoxia or control conditioned medium did not vary 
significantly (Fig.  4a). Flow cytometric analysis, how-
ever, revealed that compared to MODE-K cells culti-
vated in control medium, those cultured in hypoxia 
medium had a considerably greater proportion of late-
stage apoptotic cells (Fig. 4b, c).

Furthermore, RT-qPCR analysis showed that MODE-
K cells cultured in hypoxia medium had more increased 
proinflammatory cytokines IL-6, -1α, and-1β, and 
TNF-α genes encoding expression and lower expression 
with IL-10. Moreover, ZO-1, occludin, and claudin-1 
mRNA expression was lower (Fig.  4d, Supplementary 
Fig. 4a), as was the levels of ZO-1 and occludin protein 
expression (Fig. 4e, f ).

We also incubated MODE-K cells in media condi-
tioned by EGCs (control or hypoxia medium) under 
classic oxygenation conditions. RT-qPCR analy-
sis showed that MODE-K cells cultured in hypoxia 
medium had more increased proinflammatory 
cytokines IL-6, -1α, and-1β, and TNF-α genes encod-
ing expression, lower expression with IL-10, and lower 
tight junction proteins ZO-1, occludin, and claudin-1 
mRNA expression (Supplementary Fig.  4b), consist-
ent with previous results. These results indicated that 
EGCs can aggravate epithelial cell injury under hypoxic 
conditions.

(See figure on next page.)
Fig. 2 Characteristics of EGCs under hypoxic conditions. a Effect of hypoxia on EGC proliferation. b Representative flow cytometric plots 
of apoptosis by control and hypoxic EGCs. Annexin V and PI were used to label the cells before they were analyzed by flow cytometry. The 
figures show what proportion of the total occur in each quadrant. c Statistical analysis of the frequency percentage in late-phase apoptosis. 
d Relative mRNA expression per β-Actin of S100β. e Concentration of S100β in the media. f Immunofluorescence labeling of S100β (red) 
and 4′,6-diamidino-2-phenylindole (DAPI) (blue). g Quantifying the red fluorescence (S100β) intensity. Representation of findings and significance 
as previously stated. ***p < 0.001. ns, no significance. OD - optical density, PI - propidine iodide, FITC - fluorescein isothiocyanate, DAPI 
- 4,6-diamino-2-phenyl indole, IF - immunofluorescence
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Fig. 2 (See legend on previous page.)
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Fig. 3 The IEB is damaged under HA conditions and this involves EGCs. a AWR scores for control and HA group mice. b Representative HE-stained 
small intestinal sections and (c) Chiu’s score for each group. d Small intestinal relative mRNA expression per β-Actin of IL-6, -10, -1α, -1β, and TNF-α, 
claudin-1, occludin, and ZO-1. e Expression of small intestinal protein occludin and ZO-1, analyzed using WB. f Hyperbolic function models 
of the relative mRNA expression per β-Actin of EGC biomarkers (GFAP and S100β) with that of tight junction protein-encoding genes (ZO-1, 
occludin, and claudin-1). Representation of findings and significance as previously stated
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S100β is responsible for aggravating epithelial cell injury 
by ECGs under hypoxic conditions
For exploring the pathogenesis of the aggravation of epi-
thelial cell injury by EGCs under hypoxic conditions, we 
cultured MODE-K epithelial cells with exogenous S100β 
under hypoxic conditions for 12 h. We found the MODE-
K cells proliferation between the S100β and control 
groups comparable (Fig.  5a). However, flow cytometric 
data demonstrated a remarkable elevation in the number 
of MODE-K cells in late-phase apoptosis in the S100β-
treated group (Fig. 5b, c).

RT-qPCR analysis showed the S100β-treated group 
had higher expression of genes encoding proinflamma-
tory cytokines IL-6, -1α, and-1β, and TNF-α and lower 
expression with IL-10. Moreover, ZO-1, occludin, and 
claudin-1 mRNA expression was lower (Fig. 5d, Supple-
mentary Fig. 4c), as was the levels of ZO-1 and occludin 

protein expression (Fig. 5e). These results indicated that 
EGCs can aggravate epithelial cell injury by secreting 
S100β under hypoxic circumstances.

Discussion
Our investigation indicated that EGCs undergo altera-
tions in an HA environment that aggravate damage to 
the IEB in a mouse model. The expression of biomark-
ers of EGCs (GFAP, S100β, GDNF, and NGF-β) was 
found to be high in a mouse model and in people living 
at HA, which implied that EGCs may play a pathogenic 
role under HA conditions. Furthermore, IEB damage 
under hypoxic conditions was found to be aggravated by 
EGCs in  vitro, as demonstrated by lower tight junction 
proteins expression, higher expression of genes encoding 
proinflammatory cytokines, and lower anti-inflammatory 
cytokine gene encoding expression. Importantly, S100β, 

Fig. 4 EGCs aggravate epithelial cell injury under hypoxic conditions. a Effect of conditioned medium from hypoxic EGCs on MODE-K epithelial 
cell proliferation under hypoxic conditions. b Representative flow cytometric plots of MODE-K cell apoptosis in the control group, hypoxia group, 
control medium (C.M.) group, and hypoxia medium (H.M.) group. Annexin V and PI were used to label the cells before they were analyzed by flow 
cytometry. The figures show what proportion of the total occur in each quadrant. c Statistical analysis of the frequency percentage in late-phase 
apoptosis. d Relative mRNA expression per β-Actin of IL-6, -10, -1α, -1β, and TNF-α, claudin-1, occludin, and ZO-1 in the C.M. and H.M. groups. e 
Occludin and ZO-1 protein expression. f Quantification of protein expression. Representation of findings and significance as previously stated
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which is secreted in substantial amounts by EGCs, was 
shown to have similar effects under hypoxic conditions 
in in vitro experiments. Thus, we have demonstrated that 
EGCs may aggravate IEB damage, principally through the 
secretion of S100β under HA conditions.

For various reasons, an increasing number of people 
have to spend time at HA. However, most of these people 
will experience headache, GI disorders, fatigue, dizziness, 
and other problems that seriously threaten their health 
and reduce their efficacy at work. GI disorders are the 
most common conditions associated with HA [27]. For 
example, 36% of hikers walking the Mount Everest base 
camp trek in the Nepali part of the Himalayas experience 
diarrhea [28]. In a prospective study, clinically relevant 
mucosal lesions and ulcerative disease were identified 
in mountaineers after a rapid ascent to HA within 2 to 
4  days [29]. In addition, gastroenteritis and GI hemor-
rhage have been often reported in working and trekking 

groups at HA [30, 31]. Therefore, it is worth exploring the 
underlying mechanisms and attempting to identify novel 
preventive strategies for GI disorders at HA.

Damage to the IEB is often reported under HA condi-
tions and may be responsible for these GI conditions. For 
example, HA exposure leads to a reduction in the number 
of acidic mucin-secreting goblet cells and mucosal layer 
atrophy, resulting in the disruption of the IEB [32]. HA 
may disrupt the IEB through altering the composition 
of the intestinal microbiota, breaking intestinal immune 
balance and reducing the levels of ZO-1, occludin, and 
claudin-1 expression as well [33–35]. Numerous studies 
have shown the crucial role of EGCs in maintaining intes-
tinal homeostasis and regulating IEB function. The con-
ditional deletion of EGCs causes IEB damage, resulting 
in intestinal inflammation [18]. Furthermore, EGCs can 
regulate IEB function by secreting S-nitrosoglutathione, 
which can increase expression of tight junction proteins 

Fig. 5 S100β mediates the effect of EGCs to aggravate epithelial cell injury under hypoxic conditions. a Effect of exogenous S100β on MODE-K 
epithelial cell proliferation under hypoxic conditions. b Representative flow cytometric plots of MODE-K cell apoptosis. Annexin V and PI were used 
to label the cells before they were analyzed by flow cytometry. The figures show what proportion of the total occur in each quadrant. c Statistical 
analysis of the frequency percentage in late-phase apoptosis. d Relative mRNA expression per β-Actin of IL-6, -10, -1α, -1β, and TNF-α, claudin-1, 
occludin, and ZO-1. e Occludin and ZO-1 protein expression. Representation of findings and significance as previously stated
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ZO-1 and occludin [36]. EGCs from CD patients can lead 
to IEB damage by reducing 15-hydroxyeicosatetraenoic 
acid (15-HETE) producing, which can increase expres-
sion of tight junction protein ZO-1 [37]. However, so far, 
few studies have investigated the role of EGCs under HA 
conditions.

Symptoms such as flatulence and motility diarrhea 
at HA suggest that the pathogenetic mechanism may 
be associated with EGCs. In the present study, we also 
found a GI stress state under HA conditions, illustrated 
by greater sensitivity of visceral nerves in mice exposed 
to HA pressure. Moreover, we found that EGCs may be 
involved in the pathological changes in intestinal struc-
ture and permeability function under HA conditions by 
correlation analysis. Furthermore, IEB damage under 
hypoxic conditions was found to be aggravated by EGCs 
in vitro, as demonstrated by lower tight junction proteins 
expression. However, the underlying mechanism of EGCs 
aggravating IEB damage under HA conditions is still 
unclear.

EGCs are the most abundant cells in the ENS and are 
involved in almost every gut function, including neuro-
transmission, motility, IEB, and immune defense. Because 
of their unique cellular microenvironment, EGCs can 
communicate with the surrounding cells, including neu-
rons, epithelial cells, mesenchymal cells, and immune 
cells [38, 39]. EGCs can be activated by specific signals, 
resulting in morphological and functional alterations. 
For example, inflammation induced by trinitrobenzene 
sulfonic acid promotes the proliferation and differen-
tiation of EGCs within the myenteric plexus [40], and 
a combination of LPS and IFN-γ induces c-fos expres-
sion in human-derived EGCs [19]. Furthermore, IL-1β 
induces c-fos expression in EGCs in isolated preparations 
of guinea pig ileum and colon [41]. Inflammation causes 
an increase in the expression of biomarkers of EGCs. For 
example, high GFAP and S100β expression is a feature of 
mucosal inflammation in patients with ulcerative colitis 
(UC) or Crohn’s disease (CD) [42, 43].

Disruption of the IEB under HA conditions allows bac-
teria to cross, which in turn activates innate immune cells 
such Kupffer cells, monocytes, and macrophages, set-
ting off inflammatory cascades in the local or systemic 
environment. Patients with AMS have been observed to 
have elevated levels of proinflammatory cytokines IL-6, 
-1α, and-1β, and TNF-α, and decreased levels of the anti-
inflammatory cytokine IL-10 [44, 45]. Bacteria exposure 
and inflammation response can activate EGCs, leading to 
increased expression of S100β [46]. In the present study, 
we also shown that HA causes IEB damage, increases 
the pro-inflammatory cytokines encoding genes expres-
sion, and reduces that of the anti-inflammatory cytokine, 
consistent with the results of previous studies. Moreover, 

greater secretion of the pro-inflammatory S100β by 
EGCs was also identified. Therefore, we speculated that 
S100β may be the key factor that aggravates IEB damage 
under HA conditions.

S100β is a classical biomarker of glial cells and is prin-
cipally expressed by EGCs in the intestine. S100β belongs 
to the S100 protein family, which has 25 members, and 
exists in the form of a dimer with a molecular weight 
of ~ 21 kDa. It is a calcium-binding protein, and therefore 
affects many cellular processes involving calcium signal 
transduction pathways [47]. It is vital for the pathogene-
sis of IEB damage and intestinal inflammation. For exam-
ple, in Clostridium difficile infection, S100β activates the 
RAGE/phosphoinositide 3-kinase (PI3K)/NF-κB path-
way, causing an increase in IL-6 expression, leading to 
IEB damage and intestinal inflammation [48]. S100β is 
produced in large amounts in the duodena of patients 
with celiac disease, where it plays an important role in 
NO production, also leading to IEB damage and intes-
tinal inflammation [49]. The present data showed that 
S100β can aggravate IEB damage under hypoxic condi-
tions in vitro, as demonstrated by low tight junction pro-
tein expression. Thus, we have suggested that S100β may 
be a new modality for preventing GI disorders at HA, and 
S100β inhibitor such as pentamidine may be a new treat-
ment method, which will be used on the mice under HA 
exposure to investigate the potential role in modulating 
the GI disorder in our further research.

The present study had two key limitations. First, more 
in  vivo experiments are needed to explore the effect of 
EGCs on IEB under altitude conditions. Two-photon 
microscopy could be used in further to observe EGCs 
visually at HA. Gfap-tdTomato mice also can be used to 
verified the variation of EGCs at HA. In addition, EGCs 
knockout mice could be studied in the future to confirm 
that these cells aggravate IEB damage under HA condi-
tions. Second, the underlying mechanism of the S100β 
under HA conditions still unclear, which therefore 
requires further research.

In the present study, we have shown that EGCs are 
altered under HA conditions and that they may aggravate 
IEB damage by secreting S100β. Thus, we have revealed 
a novel mechanism of IEB damage under HA conditions, 
and suggest that EGCs may be a new modality for pre-
venting GI disorders at HA.

Materials and methods
Participants
A total of 80 participants, comprising 40 individuals who 
lived at normal altitude and 40 who lived at HA (4,000 m) 
for 30  days, were studied. All the participants were 
healthy and had no GI abnormalities or disorders. The 
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two cohorts were comparable in terms of sex, age, height, 
weight and nation (Table 1).

Animals
Wild-type C57BL/6  J mice were provided by the Gem-
Pharmatech (Chengdu, China). All mice were female. The 
mice were housed in a hypobaric chamber (Guizhou Fen-
glei Aviation Ordinance Co., Ltd) [50, 51], simulating an 
altitude of 5,000 m, for 28 days.

Visceral sensitivity test
After they had been anesthetized with ether, a balloon 
catheter was inserted 2 cm into the anus of each mouse, 
and measurements commenced after 30 min of acclima-
tion. Half a milliliter of air was introduced into the bal-
loon and retained for 20 s, then the AWR was scored. This 
process was repeated three times and a mean response 
was calculated. The AWR scoring was as follows: 0 points 
for no response to balloon dilation; 1 point for a slight 
head movement during expansion, but no response of the 
body; 2 points for a contraction of the abdominal mus-
cles during expansion, but no abdominal wall taken off 
the table; 3 points for contracting the abdominal muscles 
and abdominal wall taken off the table; and 4 points for 
arching of the body and raising of the pelvis.

FD‑4 permeability test
Before testing, the mice fasted for 6 h and drank freely. 
Dissolve FD-4 (Sigma, USA) in physiological saline 

(50  mg/ml) and gavage it to mice (600  mg/kg). Take 
blood from the inner canthus after 4 h and centrifuge at 
4 ℃ (2000r × 10  min). Dilute the separated serum with 
phosphate buffer (pH = 7.4) in a ratio of 1:3. Detection of 
FD-4 concentration in serum using an enzyme-labeling 
instrument (Thermo Fisher Scientific, USA), with excita-
tion wavelength of 485  nm and emission wavelength of 
528 nm.

Hematoxylin and eosin staining
Staining with hematoxylin for 5 min and eosin for 2 min 
followed deparaffinization in xylene and rehydration uti-
lizing a water and alcohol gradient. After that, an alcohol 
gradient was used for drying the sections, and xylene was 
used for clarifying them. When everything was ready, we 
mounted the components using a neutral resin, which 
was evaluated through quantitative measurement of tis-
sue injury by a blinded observer. The Chiu’s score classifi-
cation was applied to evaluate the damage in the sections, 
as previously described [52].

Immunohistochemistry
Paraformaldehyde was used to fix small intestine tissue 
samples in 0.1 M phosphate buffer (PBS) at room temper-
ature for 12 h before the tissue was dried and embedded 
in paraffin. Tissue slices were produced and deparaffi-
nized, and then GFAP and S100 protein in the intestinal 
mucosa were detected using an immunohistochemical 
technique using a Polink-2 Plus detection kit (GBI Inc., 

Table 1 Characteristics of the participants

Factors Control group (n = 40) HA group (n = 40) P value

Age, years 37 ± 6.67 37.86 ± 7.01 0.599

Height, cm 167.1 ± 5.14 168.9 ± 6.39 0.212

Weight, kg 65.86 ± 10.78 67.19 ± 11.31 0.612

Sex, n (%) 0.204

 Female 13 (32.5) 8 (20)

 Male 27 (67.5) 32 (80)

Nationality, n (%) 0.556

 the Han nationality 38 (95) 39 (97.5)

 the Minority nationality 2 (5) 1 (2.5)

Education, n (%) 0.687

 Associate 4 (10) 2 (5)

 Undergraduate 13 (32.5) 13 (32.5)

 Master or above 23 (57.5) 25 (62.5)

Smoking, n (%) 0.217

 Yes 9 (22.5) 14 (35)

 No 31 (77.5) 26 (65)

Drinking, n (%) 0.073

 Yes 17 (42.5) 25 (62.5)

 No 23 (57.5) 15 (37.5)
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Mukilteo, WA, USA). Briefly, slices were treated with 
antibodies against S100β (Abcam, 1:1,000) and GFAP 
(Proteintech, 1:1,000) at 4  °C overnight, after endoge-
nous peroxidase activity was blocked with 3% H2O2. In 
order to achieve the required staining intensity, sections 
were incubated in diaminobenzidine (DAB) substrate 
(Zhongshan Biotechnology, Beijing, China) after being 
treated with antibody enhancer (reagent 1) and Polymer-
AP (reagent 2). Hematoxylin was used as a counterstain 
on the sections. As a comparison, we compared results 
using primary antibody-free conditions and normal goat 
serum. Two independent pathologists blinded to the out-
come analyzed the immunoreactivity semi-quantitatively.

Cell culture
High-glucose DMEM enriched with 10% fetal calf serum, 
2 mM L-glutamine, and 100 U/mL penicillin/streptomy-
cin was employed for cultivating rat EGCs/PK060399egfr 
(CRL-2690™) cells. Epithelial cells from a mouse strain 
known as MODE-K (GD-C22218703) were grown in 
RPMI 1640 with 10% fetal calf serum, 2 mM L-glutamine, 
and 100 U/mL penicillin and streptomycin. Humidified 
37 °C incubators containing 5% carbon dioxide and 95% 
air were approached for cultivating the cells.

In vitro hypoxia investigations
For the hypoxia tests, EGC/PK060399egfr cells were 
exposed to 1% oxygen, 5% carbon dioxide, and 94% nitro-
gen in a 37 °C incubator (Forma® Series II Water Jacketed 
CO2 Incubator; Thermo Scientific) for 12 h, whereas con-
trol cells were kept in a humidified incubator containing 
5% carbon dioxide and 95% air. Centrifugation at 10,000 x 
g for 1 min removed the remaining cells from the medium 
that had been conditioned by EGC/PK060399egfr cells. 
Hypoxia was applied to MODE-K epithelial cells for 12 h 
while they were grown in this control or test medium. To 
explore the role of S100β, MODE-K cells were treated 
with 5 μM recombinant mouse S100β (Solarbio, P00208) 
and subjected to hypoxia for 12 h, and control MODE-K 
cells were subjected to hypoxia alone.

Immunofluorescence
The cells had been embedded in 4% paraformaldehyde 
for 20  min at room temperature after being cultured in 
dishes. Primary antibody against S100β (Abcam, 1:100) 
was incubated with the cells at 4  °C overnight after a 
30-min pre-incubation in a blocking solution that con-
tained 5% bovine serum albumin. Following a wash with 
PBS, the cells spent 1 h at 37  °C being probed with flu-
orescence-conjugated secondary antibodies. The cells 
were then stained for their nuclei using DAPI for 5 min 
after being washed in PBS. TCS-SP5 confocal microscope 
(Leica, Wetzlar, Germany) images were used.

Detection of apoptosis using annexin V‑FITC
Apoptotic cells were identified using flow cytometry. In 
brief, adherent cells were digested with 0.5% pancreatic 
enzyme for 1 min after the culture media was withdrawn. 
Before examination by flow cytometry, around 50,000 of 
the digested cells were washed with the collected culture 
media, suspended in PBS, and treated with an apopto-
sis detection reagent (Beyotime) per the manufacturer’s 
instructions.

CCK‑8 assay of proliferation
Following the manufacturer’s protocol, cell proliferation 
was quantified using a CCK-8 kit (Chongqing BaoGuang 
Bioengineering Co. Ltd.). In a 96-well plate, around 5,000 
cells were grown in each well. The cells were cultured at 
37  °C for 1  h after adhesion with 10% CCK-8 added to 
each well. A microplate reader was applied for determin-
ing the optical density (OD) at 450 nm.

Real‑time quantitative PCR
RNA extraction: add 1  ml of RNAiso plus (Takara; 
Dalian, China) to the sample (cultured cells and small 
intestinal tissues) and decompose it at room temperature 
for 10 min; add 200 μl chloroform oscillates for 30 s and 
remain it at room temperature for 2–3 min; centrifuge at 
4 ℃ (12 000 g × 15 min); absorb 400 μl upper water phase; 
add 600 μl isopropanol and precipitate it at room temper-
ature for 10 min; centrifuge at 4 ℃ (12 000 g × 10 min); 
wash with 75% ethanol; dry the sediment and dissolve it 
in DEPC-treated water. Single-stranded cDNA was gen-
erated from RNA (1ug) using Moloney murine leuke-
mia virus reverse transcriptase (Takara; Dalian, China) 
according to the manufacturer’s instructions. The SYBR 
PrimeScript RT Kit was used for real-time qPCR as per 
the protocol provided by the manufacturer (Takara). The 
following conditions were used for the amplification on 
a PCR System 7500 (Applied Biosystems, Carlsbad, CA, 
USA): 94°C for 5  min, followed by 35 cycles of 94  °C, 
59 °C, and 72 °C for 30 s each, and finally 72°C for 10 min. 
Values were determined by using the cycle threshold (CT) 
method. The β-Actin and Hypoxanthine  guanine  phos-
phoribosyl transferase (Hprt) genes in mice and rats were 
employed as standard genes, and the Comparative CT 
(2^-ΔCT) method was used to determine relative expres-
sion levels. Gene primers were found at PrimerBank 
according to Gene ID from National Center for Biotech-
nology Information and synthesized by Sangon Biotech 
(Shangehai) Co., Ltd (Supplementary Tables  1  and  2). 
The amplification efficiency was determined by drawing 
a standard curve. Dilute the template into a series of 10 
concentration gradients for PCR reaction. Use the log 
value of the template dilution ratio and the CT value of 
the diluted sample to draw a standard curve, and obtain 
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the slope and R squared value (Supplementary Fig.  5). 
The formula (amplification efficiency% = (10^(-1/slope)-
1) * 100%) was used to calculate the amplification effi-
ciency (Supplementary Tables 3 and 4).

Western blotting
Lysed cells and tissues were centrifuged at 13,000 x g for 
30 min at 4°C after being incubated in cold RIPA buffer 
for 30  min. A BCA assay reagent (Beyotime) was used 
to calculate the protein levels of the lysates. Rabbit anti-
occludin (1:1,000, Abcam), rabbit anti-ZO-1 (1:1,000, 
Abcam), and rabbit anti-β-actin (1:1,000, Abcam) were 
employed as the main antibodies. The chemiluminescent 
technique was used to identify proteins, and ImageJ was 
used to quantify them.

Enzyme‑linked immunosorbent assay
Centrifuge tubes were used to collect blood samples, 
which were then kept at room temperature for 1  h to 
allow coagulation before being centrifuged at 4,000 g for 
10 min. After centrifuging the samples at 12,000 rpm for 
10 min at 4°C, the supernatants were analyzed for GFAP, 
S100β, GDNF, and NGF concentrations using ELISA kits 
(EIAab). We collected the EGC culture medium and uti-
lized an ELISA kit (Chongqing JinMai Bioengineering 
Co., Ltd.) to determine the S100β concentrations. All 
ELISAs were conducted following the package directions.

Statistical analysis
The relationships between the EGCs and IEB were char-
acterized using Pearson’s correlation coefficient. The 
experimental data is presented as means and standard 
deviations. Prism version 9.0 software was used to run an 
unpaired, two-tailed Student’s t-test to establish statisti-
cal significance (GraphPad, San Diego, CA, USA). p < 0.05 
was considered to represent statistical significance.
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