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Abstract

Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence

of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy
can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsat-
isfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mecha-
nisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary

to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lym-
phoma overall and specifically for different anatomical sites. This review summarizes the current progress in the com-
mon key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore,
it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas,
including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell
lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL

is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indi-
cators and discusses the challenges and opportunities related to its clinical applications. The aim of this review

is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling
them to make informed clinical decisions that contribute to improving patient prognosis.
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Introduction

Approximately 30% of lymphomas arise from sites other
than the lymph nodes, spleen or bone marrow [1]. The
prevalence of extranodal lymphoma has increased over
the past decade [2]. There are two main types of lym-
phoma exist: B-cell lymphoma and T-cell lymphoma,
with B-cell lymphomas being more prevalent than T-cell
lymphomas [3]. Common sites of extranodal lymphoma
include the gastrointestinal tract, head and neck, skin/
soft tissue, central nervous system (CNS) [4, 5]. Different
sites of extranodal lymphoma often have unique cellular
origins, genetic abnormalities, and clinical behaviour [6].

The diagnosis of extranodal lymphoma necessitates a
comprehensive assessment encompassing clinical symp-
toms, physical examination findings, and laboratory tests.
Commonly utilized diagnostic tools comprise imaging
studies, such as X-rays, CT scans, MRIs, and PET scans,
enabling the identification of the site and extent of lym-
phoma involvement. Biopsy procedures, including needle
biopsies or surgical interventions, are employed to obtain
tissue samples, which serve as definitive evidence for lym-
phoma diagnosis. Immunohistochemistry and genetic
tests may be conducted to determine the specific subtype
and prognosis of the lymphoma. Furthermore, given the
potential involvement of the bone marrow in extranodal
lymphoma, a bone marrow biopsy is often performed
to evaluate disease spread and facilitate the selection of
appropriate treatment strategies. This comprehensive
diagnostic approach provides valuable insights into the
nature and extent of extranodal lymphoma, aiding in the
formulation of effective management plans [7, 8].

The treatment of extranodal lymphoma depends on
aspects such as subtype, stage of the disease and the
patient’s overall health. Conventional treatments include
chemotherapy, radiation therapy, targeted therapy, and
immunotherapy. Chemotherapy stands as the corner-
stone of treatment for the majority of extranodal lym-
phomas [9] and radiation therapy represents a localized
therapeutic modality [10]. In addition, autologous hemat-
opoietic stem cell transplantation (ASCT) may also be an
effective salvage measure for extra-nodal lymphoma.

As the diagnosis and treatment of extranodal lym-
phoma are influenced by its different pathogenesis at
different anatomical sites, it is necessary to discuss the
pathogenesis of extranodal lymphoma at different sites
separately. This review will summarize the common
key signaling pathways and intervention treatments in
extranodal lymphomas. Furthermore, we thoroughly
explore the pathogenesis, diagnosis, and treatment strat-
egies of MALT, NKTCL, mycosis fungoides (MF), and
PCNSL, which are the most notable types of extranodal
lymphomas occurring in the gastrointestinal tract, head
and neck region, skin, and CNS. Besides, considering that
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PCNSL is one of the lymphomas with the poorest prog-
nosis and there are few articles synthesizing its prognos-
tic indicators, we have comprehensively summarized the
prognostic markers of PCNSL and discussed the chal-
lenges and opportunities related to clinical applications.
This review will contribute to enhancing our under-
standing of extranodal lymphomas and provide valuable
insights for future clinical decision-making.

Signaling pathways and interventional therapy

in extranodal lymphoma

A variety of signaling pathways have been implicated in
the pathogenesis of extranodal lymphomas. While dif-
ferent sites of extranodal lymphoma may exhibit distinct
signaling pathways, there are still common key signal-
ing pathways shared among them (Fig. 1). These include
the NF-kB pathways, Janus-associated kinase/signal
transducer and activator of transcription (JAK/STAT)
pathways, phosphatidylinositol 3-kinase (PI3K)/ protein
kinase B (Akt)/ mammalian target of rapamycin (mTOR)
pathway, apoptosis pathway, programmed death-1/pro-
grammed death-ligands (PD-1/PD-Ls) pathway, and Cell
receptor signaling pathway. Table 1 summarizes the com-
mon signal pathway inhibitors currently under clinical
investigation for extranodal lymphoma.

NF-kB pathway

The NF-kB pathway is constitutively activated and plays a
role in cell survival, proliferation, and immune responses
in various types of extranodal lymphoma [11-15]. Both
the classical NF-kB pathway, activated by the tumor
necrosis factor-a receptor (TNFR) 1, interleukinl recep-
tor (IL1R), toll-like receptor (TLR), T-cell receptors
(TCR), B-cell receptors (BCR), and growth factor recep-
tors (GFR), and the alternative NF-kB pathway, activated
by TNEFR, CD40 and B-cell activating factor (BAFF),
play roles in cell survival, proliferation, inflammation,
and immune. In lymphoma, both pathways are constitu-
tively activated and contribute to oncogenic events [16].
Abnormalities in the NF-kB pathway and its upstream
or downstream pathways, such as the BCR (B-cell recep-
tor) or TLR pathways, are important mechanisms in the
development of lymphomas. Mutations or chromosomal
translocations in CARDI11, CD79A/B and myeloid dif-
ferentiation primary response 88 (MYD88) contribute to
the activation of the NF-«xB pathway [15, 17]. Currently,
inhibitors targeting upstream targets of the NF-kB path-
way, such as Bruton’s Tyrosine Kinase (BTK) inhibitors
[18], receptor proximal kinases in NF-«B (like interleu-
kin-1 receptor associated kinase 4 inhibitors) [17] and
CD30 inhibitors (typical examples include brentuximab
vedotin) [17], have been found to be effective in treating
extranodal lymphomas.
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Fig. 1 Common key signaling pathways in extranodal lymphoma

Table 1 Overview of signaling pathway inhibitors undergoing clinical studies in extranodal lymphoma

Cancer Type Signaling Pathway Drugs

PCNSL PD-1/PD-Ls Camrelizumab, Durvalumab, F520, GNC-038, Nivolumab, Pembrolizumab, Penpulimab, Sintilimab

PCNSL B-cell receptors Acalabrutinib, Ibrutinib, NX-2127, NX-5948, Orelabrutinib, Tirabrutinib, Zanubrutinib

PCNSL PI3K/AKT/mTOR Bimiralisib, Buparlisib, Emavusertib, Paxalisib

MALT PD-1/PD-Ls Pembrolizumab

MALT B-cell receptors AC-676, Acalabrutinib, AS-1763, BGB-16673, HMPL-760, Ibrutinib, NX-2127, Orelabrutinib, Zanubrutinib

MALT PI3K/AKT/mTOR BGB-10188, BGB-16673, BR101801, Copanlisib, Duvelisib, GS-9901, HMPL-689, HMPL-760, IBI376, Idelal-
isib, NX-2127, Orelabrutinib, SHC014748M, Umbralisib, YY-20394, Zandelisib, Zanubrutinib

MALT NF-kB BGB-21447,CC-99282, LP-168, VAY736, XL114

MALT JAK/STAT CpG-STAT3 siRNA CAS3/SS3

MALT Apoptosis L-Bcl-2 antisense oligonucleotide

PTCL PD-1/PD-Ls AB-101, F-520, GB-226, ONO-4685, Sintilimab, Tislelizumab

PTCL NF-kB Copanlisib, Duvelisib, HMPL-689, IOA-244, Linperlisib, Parsaclisib, SHCO14748M, TQ-B3525, YY-20394

PTCL JAK/STAT AZDA4205, KT-333

PTCL Apoptosis ASTX660, L-Bcl-2 antisense oligonucleotide, Tolinapant

NK-T PD-1/PD-Ls IMC-001, SHR-1210, Sintilimab, Sugemalimab, Tislelizumab, Toripalimab

NK-T NF-kB YY-20394

NK-T JAK/STAT Ruxolitinib, Tofacitinib

MALT Mucosa-associated lymphoid tissue lymphomas, NKTCL-NT Natural killer/T-cell ymphoma, nasal type, PCNSL Primary central nervous system lymphoma, PTCL
Peripheral T cell ymphoma
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JAK/STAT pathway

The JAK/STAT pathway mediates the transmission of
signals from cytokines and growth factors. Dysregula-
tion of this pathway has been observed in extranodal
lymphomas, including mucosa-associated lymphoid tis-
sue (MALT) lymphomas, natural killer/T-cell lymphoma
(nasal type, NKTCL-NT) [13, 19], primary central nerv-
ous system lymphoma (PCNSL) [20] and peripheral T
cell lymphoma (PTCL) [21, 22]. The JAK/STAT pathway
is associated with immune homeostasis, inflammation,
cell proliferation, apoptosis and differentiation in extran-
odal lymphoma [21]. Abnormalities in JAK and STAT
have been identified as distinct characteristics of lym-
phoma. Besides, JAK/STAT pathway may play a role in
upregulating PD-L1 and PD-L2 expression in extranodal
lymphomas [23]. Inhibitors targeting JAK kinases have
shown promising results. The JAK2/FLT3 fusion inhibi-
tor pacritinib has demonstrated preclinical safety and
efficacy [22]. The JAK3 inhibitor tofacitinib has shown
therapeutic effects in PTCL [24] and NKTCL [19]. A
small molecule inhibitor of STAT3 called Stattic can also
be effective by inducing apoptosis or inhibiting cell pro-
liferation in NKTCL cells [19]. Targeting the JAK/STAT
pathway may provide new treatment options for patients
with extranodal lymphomas.

PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR pathway plays an oncogenic role
in extranodal lymphomas. Isoforms p1108 and pl10y
belong to the Class I kinase of the PI3K family play a
crucial role in the development, proliferation, migra-
tion, cytokine secretion, and other cellular functions of
B-cells [25, 26], T-cells [26, 27], and NK-cells [28, 29].
Novel PI3K inhibitors (idelalisib, buparlisib, duvelisib and
copanlisib) have recently demonstrated promise for the
treatment of MALT [30-32], PCNSL [33], NKTCL [34]
and PTCL [27, 34, 35].

AKT and PTEN are key proteins in the PI3K pathway, act-
ing as positive and negative regulators, respectively. When
PTEN is inactivated, it leads to an increase in AKT and
mTOR activity, which in turn promotes tumor growth and
other pathological changes [17]. Therefore, it is reasonable
to target the PI3K/AKT/mTOR pathway for the treatment
of PTEN-deficient extranodal lymphomas. Several agents
such as AKT inhibitors (MK-2206) [36, 37] and pan-PI3K
inhibitor (buparlisib) [38] are under clinical evaluation.

The mTOR is also a key protein kinase in the PI3K/
AKT/mTOR pathway, and it serves as a structural unit
for mTORC1 and mTORC2 complexes. Upon receiving
phosphorylation signals from upstream AKT, activated
mTORC1 and mTORC2 carry out their respective func-
tions, positively regulating cell survival, induction of cell
cycle arrest, and negatively regulating autophagy [39].
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The current focus of research is primarily on first-gener-
ation mTOR inhibitors. Among them, temsirolimus and
everolimus are typical mTORCI1 inhibitors. They can be
used alone or in combination with rituximab and have
been shown to have favorable efficacy in PCNSL [40, 41],
PTCL [42, 43], MZL [40] and NKTCL [44].

Apoptosis pathway

The apoptosis pathway dysregulation in extranodal lym-
phomas is often due to abnormalities in key regulators
like BCL2, p53, and MYC [45-47]. For example, upregu-
lation of P53 may inhibit apoptosis in NKTCL [45, 46].
Overexpression of MYC and BCL2 is frequently seen in
patients with B-cell extranodal lymphomas [47, 48] and
PTCL [49, 50]. BCL2 inhibitors like venetoclax [49] and
obatoclax [50] can restore apoptosis. MYC inhibitors and
p53 reactivate drugs are being explored. Currently, inhib-
itors targeting BCL2, p53 and MYC aim to restore apop-
tosis in lymphoma cells by reactivating programmed cell
death mechanisms.

PD-1/PD-Ls pathway

Extranodal lymphoma cells can exploit the PD-1/PD-Ls
pathway to avoid immune surveillance by modulating
T-lymphocyte activity [51]. PD-1, PD-L1 and PD-L2 were
found to be overexpressed in B-cell and T-cell extranodal
lymphomas and their tumor microenvironment [52]. The
application of immune checkpoint inhibitors in lymphoma
is receiving increasing attention. Checkpoint inhibitor
antibodies blocking PD-1 (nivolumab, pembrolizumab and
Sintilimab) or PD-L1 (atezolizumab, avelumab) have been
classified as Level 3 evidence for use in salvage therapy
for extranodal lymphoma, including MALT [52], NKTCL
[51-55], PCNSL [56], PTCL [52, 54].

Cell receptor pathway

The B-cell receptor (BCR) pathway is a crucial mecha-
nism involved in the immune response. It is character-
ized by the activation of CD79A/CD79B heterodimers,
which transmit antigen-stimulated signals from the cell
membrane to the cytoplasm. The persistent activation
of BCR pathway relies on the phosphorylation of immu-
noreceptor tyrosine-based activation motifs by Src fam-
ily kinases, leading to the recruitment and activation of
spleen tyrosine kinase. This activation triggers down-
stream signaling pathways, including PI3K/AKT/mTOR,
NF-«B, and MAPK. CD79A/B and BTK play critical roles
in this process, and their dysregulation has been impli-
cated in B-cell extranodal lymphoma such as PCNSL
[57, 58], MALT [59, 60]. Inhibition of BTK, with drugs
like ibrutinib, has shown promising efficacy against these
malignancies by disrupting BCR pathways and down-
stream NF-«kB pathways.
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The T-cell receptor (TCR) plays a key role in the
pathogenesis of PTCL by providing "signal 1" through
engagement with antigen peptides presented on major
histocompatibility complex (MHC) molecules for lym-
phoma cell growth and survival [61]. Targeting TCR
signaling, like Src family kinase inhibitors dasatinib is
effective in treating PTCL. Dasatinib demonstrated an
overall response rate of 29% in relapsed/refractory PTCL
[62]. However, no TCR pathway inhibitor drug has been
approved by the FDA. This may be due to the fact that
the efficacy and safety of TCR pathway inhibitors require
further study [63].

Gastric mucosa-associated lymphoid tissue
Lymphoma
Pathogenesis
Gastric lymphoma is the most common form of extran-
odal lymphoma, accounting for 30-40% of all extra-nodal
lymphomas. Histopathologically, MALT lymphoma is the
most common primary gastric lymphoma subtype [64].
The majority of patients (80-90%) with gastric MALT
lymphoma are infected with H. pylori (HP) [65]. The
development of gastric MALT lymphoma is closely
associated with HP-mediated regulation of T cells, HP-
induced cytokines and chemokines, HP antigen stimu-
lation, and s mediation of signaling molecules. T-cell
responses induced by HP infection play a critical role
in tumor growth and progression. In the early stages of
gastric MALT lymphoma development, HP-stimulated
infiltrating T cells promote the proliferation and dif-
ferentiation of B lymphoma cells. This process involves
CD40 signaling, secretion of Th2-type cytokines (such
as interleukin-4, interleukin-5 and interleukin-10) upon
exposure to HP antigens [66]. Moreover, alterations such
as the loss of CXCR4 [67] and upregulation of CXCR7,
BCA-1 and its receptor CXCR5 [68] are also involved in
the development of gastric MALT lymphoma. Activation
of phospho-Src homology-2 domain-containing phos-
phatase and HP CagA-mediated signaling molecules fur-
ther promote B-cell proliferation [69]. Chronic infection
often contributes to gastric MALT lymphoma by induc-
ing aberrant B cell survival and proliferation through
BCR pathway [70]. PI3K pathway is critical for the pro-
liferation and survival of malignant B cells [71]. Interest-
ingly, HP-negative MALT lymphomas have shown a high
frequency of positive t(11;18) (q21;q21) [72]. This trans-
location event leads to the formation of a fusion protein
called API2-MALT1, which in turn activates the tran-
scription factor NF-kappa through enhanced IKK gamma
polyubiquitination [73]. The above findings suggest that
t(11;18)(q21;q21) may be a major contributor to the
development of gastric MALT lymphoma and is associ-
ated with a poor prognosis [73].

Page 5 of 38

Diagnosis

In addition to routine physical examinations, blood
tests, biochemistry, enhanced whole-body CT scans,
and endoscopy can also be used as part of the pre-treat-
ment evaluation of gastric MALT lymphoma. Endos-
copy is an indispensable tool for the initial diagnosis
and follow-up of gastric MALT lymphoma cases and
for obtaining biopsy specimens [74]. The urea breath
test can rapidly detect the presence of HP infection
and can also assist in the repeated evaluation of the
effectiveness of anti-HP treatment [75]. HBV [76] and
HCV [77] testing not only aids in the diagnosis of cer-
tain types of gastric MALT lymphoma but may also
serve as a therapeutic target. Gastric MALT lymphoma
diagnosis depends on pathological diagnosis and all
pathological specimens should be routinely tested by
immunohistochemistry (IHC). The typical immunophe-
notypes of gastric MALT lymphoma are CD5-, CD10-,
CD20+, CD21-/+4, CD23-/4, CD43-/+, cyclin D1-
and MNDA + [8]. Detection of the translocation should
also aid in the clinical management of patients with gas-
tric MALT lymphoma. HP-negative gastric MALT lym-
phoma can be detected by reverse transcription-PCR or
FISH and (t 11;18) is often indicative of advanced dis-
ease and poor anti-HP efficacy [78].

Treatments

Anti-HP therapy is highly recommended for patients
diagnosed with limited gastric MALT lymphoma and
confirmed positive for HP infection [79]. Anti-HP ther-
apy results in remission in 60—-80% of patients, even in
HP-negative patients [65]. For patients who are t(11;18)
(q21;q21) positive, have residual tumors after anti-Hp
therapy, experience symptoms such as concurrent bleed-
ing, or are not suitable candidates for HP treatment,
radiotherapy is frequently employed as a salvage treat-
ment [78, 80]. Rituximab in combination with chemo-
therapy is the usual treatment modality for stage III/IV
gastric MALT lymphoma that has failed local radiother-
apy without B symptoms, bleeding, blood cell depletion,
large masses or rapid tumor progression [81]. If the above
treatments fail, new targeted drugs may be considered.
The BTK inhibitor, ibrutinib, provides a chemotherapy-
free treatment alternative for patients diagnosed with
gastric MALT lymphoma. Remarkably, single-agent ibru-
tinib therapy has shown durable responses and a favora-
ble benefit-risk profile in patients with gastric MALT
lymphoma who have received prior treatment [70]. The
PI3K inhibitor copanlisib has demonstrated significant
efficacy and a manageable safety profile in patients with
relapsed/refractory gastric MALT lymphoma who have
received intensive treatment, and may be a salvage treat-
ment option for patients [71].
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Mycosis fungoides

Pathogenesis

Cutaneous lymphoma most commonly originates from
T-cells [82]. Cutaneous T-Cell Lymphoma (CTCL) is
broadly classified as a type of PTCL [83]. Mycosis fungoi-
des (MF) is the predominant form of PTCL, constituting
approximately 60% of all CTCL cases and approximately
50% of primary cutaneous lymphomas [82]. A dominant
feature of MF is the presence of UV signature mutations,
which contribute to a high tumor mutational burden. It is
believed that UV exposure plays a role in the malignant
transformation of skin-resident T-cells [84]. Besides, MF
exhibits a complex genomic landscape characterized by
frequent mutations in various genes involved in different
cellular processes. These include genes associated with
TCR signaling (PLCG1, CARD11, CD28, RLTPR), epi-
genetic regulation (TET2, DNMT3A, ARID1A/B), DNA
damage response (TP53, POT1, ATM, BRCA1/2), and
cell cycle control (CDKN2A/B, TP53) [85]. Moreover,
aberrant activation of the NF-kB pathway is commonly
observed in ME, primarily due to mutations in genes such
as TNFRSF1B, NFKB2, PRKCB, and TNFAIP3 [86]. This
activation leads to increased cell proliferation and sur-
vival. Furthermore, the JAK-STAT pathway is frequently
dysregulated, with copy number gains in STAT3/STAT5B
[85]. This dysregulation affects T-cell proliferation, differ-
entiation, and gene regulation. Additionally, disruption
of the PI3K/AKT/mTOR pathway, caused by mutations
in PIK3CA, RHOA, and VAV], further impacts T-cell
metabolism, growth, and proliferation [27].

Epigenetic changes, including DNA methylation and
histone modification, result in the dysregulation of gene
expression in MF [87]. Subclonal evolution and intra-
tumor heterogeneity are key aspects of MF pathogenesis
[88]. These factors contribute to the diversity and com-
plexity of the disease.

Diagnosis
Early patch/plaque stage MF can clinically mimic benign
inflammatory dermatoses such as eczema or psoriasis,
which initially presents a diagnostic challenge [89]. How-
ever, histopathology in early MF reveals a superficial
perivascular and epidermotropic lymphocytic infiltrate.
Immunophenotyping further demonstrates the pres-
ence of CD4+small/medium pleomorphic T-cells [89].
To aid in the differentiation of early MF from its mimics,
genomic profiling and the identification of mutations in
genes such as TET2, DNMT3A, and TP53 can be utilized
[85]. These molecular markers provide valuable insights
for accurate diagnosis and management of the disease.
As MF progresses to advanced stages, the atypi-
cal CD4+ cerebriform lymphocytes become more
prominent. In the tumor stage of MF, sheets of atypical
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lymphocytes can be observed. Additionally, Sezary syn-
drome, the leukemic variant of MF, is characterized by
the presence of clonal circulating Sezary cells [89, 90].

Treatments
Early-stage MF can be managed using skin-directed
therapies, such as topical steroids and phototherapy
(UVA/UVB, PUVA). In cases of refractory disease, sys-
temic retinoids or interferons may be employed [85].
For localized plaques and tumors, radiation therapy has
proven effective but relapses frequently occur after a few
months, and maintenance therapy is mandatory [91].
Conventional chemotherapy, like CHOP (cyclophos-
phamide, doxorubicin, vincristine, prednisone), yields
poor outcomes in advanced MF [92]. However, promising
results have been seen in relapsed/refractory cases of MF
with the use of novel targeted therapies. These include
JAK inhibitors, proteasome inhibitors, HDAC inhibitors,
anti-CCR4 antibody, and PD-1/PD-L1 inhibitors [85]. As
MEF is a complex and chronic disease, it requires a mul-
tidisciplinary approach for effective treatment based on
disease stage.

Natural killer T-cell ymphoma (nasal type)
Pathogenesis

NKTCL-NT is characterized by the malignant prolifera-
tion of CD56 + and cytoCD3 + lymphocytes and is known
for its aggressive clinical course. This type of lymphoma is
more commonly observed in Asian and Latin American
populations [93, 94]. The most common sites of occur-
rence for NKTCL-NT are the nasal cavity, nasopharynx,
and palate, followed by the oropharynx, hypopharynx,
and tonsils [95].

The pathogenesis of NKTCL-NT involves Epstein-Barr
virus (EBV) infection, which act as predisposing risk fac-
tors for the disease [96]. In EBV-infected NK/T cells,
expression of latent membrane protein 1 (LMP1) and
LMP2A is observed. LMP1, which mimics CD40, con-
tinuously activates AKT, STAT, JNK, MAPK, and NF-xB
pathways. This activation inhibits apoptosis, promotes
cell cycle progression, and modulates the immune sys-
tem. Moreover, LMP1 can induce genomic instability
by upregulating activation-induced cytidine deaminase.
Genomic instability triggered by EBV infection further
leads to somatic mutations in oncogenes and tumor sup-
pressor genes, contributing to the development of EBV-
associated NK and T-cell lymphomas [97]. On the other
hand, LMP2A mimics the B cell receptor, leading to
sustained activation of AKT, Syk, B-catenin, and protein
kinase C. Consequently, this sustained activation pro-
motes cell proliferation while inhibiting differentiation.
Collectively, these mechanisms contribute to the patho-
genesis of EBV-associated NK/T cell lymphoma [97].
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The JAK/STAT pathway also plays a significant role
for the development of NKTCL-NT. Mutations in the
STAT3 gene are commonly observed in NKTCL-NT
[98]. Activation of STAT3 is significantly correlated with
the expression of programmed cell death-ligand 1 (PD-
L1), suggesting that STAT3 activation leads to increased
PD-L1 expression, promoting immune evasion by the
tumor [99]. These findings suggest that immunotherapy
targeting the programmed cell death 1 (PD-1)/PD-L1
checkpoint holds promise as a novel therapeutic option.
In addition to the JAK/STAT pathway, other potential
therapeutic targets in NKTCL-NT include Aurora kinase,
MYC, NF-«B, FOXO3, deletion of chromosome 6q21-25,
and promoter hypermethylation [100].

Diagnosis

Common primary symptoms of NKTCL-NT include
nasal obstruction, nasal discharge, and nasal bleeding
caused by nasal masses [95]. The occurrence of B symp-
toms is important in assessing NKT [95]. In the pre-
treatment evaluation of NKTCL-NT, routine physical
examinations, blood tests, biochemical examinations,
enhanced whole-body CT scans, enhanced MRI, and
endoscopy can be utilized. PET-CT is useful for stag-
ing, as lymphomas are known to have high avidity for
18-fluorodeoxyglucose [100]. Additionally, quantification
of circulating EBV DNA serves as an accurate biomarker
for assessing tumor load [100]. The typical immu-
nophenotype of NKTCL-NT is determined based on
pathological histology and immunohistochemistry. It is
characterized by the absence of CD20, presence of CD3,
lack of CD5, expression of CD56, high Ki-67 proliferation
index, and increased levels of cytotoxic molecules such as
granzyme B, perforin, and TIA-1 [100].

Treatments
Stage I NKTCL-NT patients without risk factors
(age <60 years, ECOG score 0-1, normal LDH, no exten-
sive local invasion) can achieve favorable outcomes with
radiotherapy alone [101]. On the other hand, stage I
patients with risk factors and stage II patients are typi-
cally treated with a combination of radiotherapy and
chemotherapy as the standard of care [102]. In stages I-1I,
the success of early NKTCL-NT treatment depends on
the radiotherapy field and dose, which are closely associ-
ated with local control rates and prognosis [102].
L-menthanate-based chemotherapy regimens have shown
the highest effectiveness in systemic treatment for NKTCL-
NT [103]. One of these regimens is the SMILE regimen
(dexamethasone, methotrexate, ifosfamide, L-asparagi-
nase, and etoposide), which has demonstrated significant
efficacy in primary stage III/IV and refractory relapsed
cases [104]. Despite the improved response rates with
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L-menthanate-based chemotherapy, relapse still occurs in
approximately 50% of patients with disseminated disease
[100]. Targeted therapy, immunotherapy or transplantation
may be options for patients with advanced, and relapsed/
refractory NKTCL-NT.

The anti-PD-1 inhibitor sintilimab has shown unique
efficacy in refractory relapsed NKTCL-NT, with pre-
liminary results indicating an overall response rate of
67.9%, a complete response rate of 7.1%, and a 1-year
overall survival (OS) rate of 82.1% [53]. Preliminary
results from small-sample studies suggest that pem-
brolizumab may also have good efficacy [105]. Addition-
ally, a phase II study has demonstrated the effectiveness
of the histone deacetylase inhibitor chidamide in some
patients, making it a potential option for those with
refractory relapses [106].

Conventional chemotherapy alone has poor prog-
nosis for relapsed/refractory NKTCL-NT. Although
the value of ASCT remains controversial, several ret-
rospective studies have shown that advanced or sen-
sitive relapsed patients can benefit from ASCT after
achieving high-quality remission [107-109]. Alloge-
neic transplantation is currently being explored due to
its associated treatment-related risks but may be con-
sidered for refractory patients who have relapsed after
autologous transplantation [109].

Primary central nervous system lymphoma
Pathogenesis

PCNSL is a highly aggressive, rare form of hematolym-
phoid tumor that occurs in the CNS, recognized as a
primary large B-cell lymphoma of immune-privileged
sites by the 5th edition of the World Health Organization
Classification of Hematolymphoid Tumors [110-112].
PCNSL occur mostly among patients aged between 50
to70 and the median age at diagnosis is 65 [113]. The
incidence of PCNSL has steadily increased over the past
two decades, with an annual incidence rate of 0.4—0.5 per
100,000 [114-117]. The prognosis for PCNSL is poor,
with a median survival of approximately 26 months [118]
and the 5-year and 10-year survival rates of 35.2% and
27.5%, respectively [119].

Pathologically, more than 95% of PCNSL cases are
diffuse large B cell lymphoma [120, 121]. Gene expres-
sion analysis confirmed that non-germinal center B-cell
(GCB) is the most common phenotype in PCNSL
patients [121-124]. PCNSL cases often carry muta-
tions that lead to activation of the NF-kB pathway,
such as activating mutations in MYD88, CDKN2A,
TNFAIP3 and CD79B, suggesting that activation of the
NEF-«kB pathway is a key driver of lymphangiogenesis
in PCNSL[123, 125-136]. Based on the co-occurrence
of the MYD88"?%" and CD79B mutations, PCNSL is
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genetically of the MCD/C5 subtype [123, 125-134].
Common genomic and transcriptional hallmarks of
PCNSL also include numerous BCR pathway related
gene mutations [137-143], TLR pathway related gene
mutations[135, 138, 139, 141-145], chromosomal trans-
locations [146-149], aberrant somatic hypermutation
[146, 150, 151].

Diagnosis

Patients with PCNSL typically emerge within weeks
with neurological symptoms, such as focal neurological
impairments (56—70%), altered mental state and behavior
(32-43%), signs of raised intracranial pressure (headache,
nausea, vomiting, optic papilledema; 32-33%), and sei-
zures (11-14%) [152, 153]. On medical imaging, PCNSL
usually appears as a uniformly enhancing mass, most
commonly as a single brain lesion (66%), with a supraten-
torial position (87%) and frontoparietal lobe involvement
(39%). Less frequently implicated are the eyes (15-25%),
CSF (7-42%), and spinal cord (15-25%) [152]. To sys-
tematically assess the extent of disease involvement,
the International PCNSL Collaborative Group suggests
baseline staging, which includes MRI of the brain and
spine, ophthalmologic evaluation, and CSF analysis [5].
In addition, a PET/CT and a bone marrow biopsy should
be performed to assess whether PCNSL involves the non-
central nervous system. The primary method for diag-
nosing PCNSL is a stereotactic biopsy. If there is a lot of
damage to the eye or there are tumor cells in the CSE, a
vitrectomy or CSF cytology may help confirm the diag-
nosis [152].

Treatments

High-dose methotrexate (HD-MTX) is the basis for the
treatment of PCNSL [154-163]. Current major contro-
versies in the treatment of PCNSL include the value and
timing of surgery, the optimum chemotherapy regimen,
the application of whole brain radiotherapy (WBRT), and
the requirement for intrathecal chemotherapy [152]. Due
to the high surgical risk posed by the broad and diffuse
infiltrative growth of PCNSL, stereotactic biopsy is often
employed to confirm the diagnosis. Surgical resection
may also increase the risk of irreversible neurological
damage [154].

Since the early 1980s, WBRT has been utilized to treat
newly diagnosed PCNSL. When combined with HD-
MTX, WBRT improved chemotherapeutic response and
prolonged PCNSL survival [164—168]. Nonetheless, neu-
rotoxicity has emerged as a significant factor influencing
the quality of patient survival [169, 170]. Patients who
received WBRT had considerably longer progression-
free survival (PFS) than those who did not, but there was
no significant improvement in the overall survival (OS)
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[169]. Clinical specialists are incredibly cautious when
administering WBRT to PCNSL patients, especially
to the elderlies, owing to the treatment’s poor survival
and significant neurotoxicity [169]. More alternative
therapeutic strategies, including reduced-dose WBRT
and local irradiation to the lesion to decrease neuro-
toxicity, are being evaluated in clinical trials in patients
with PCNSL. Rituximab, a monoclonal antibody against
B-cell surface antigen CD20, has been shown to enhance
the clinical outcomes of PCNSL patients significantly
[131, 163, 171-177]. Rituximab is currently used as an
induction regimen in PCNSL with common regimens
such as R-MVP (rituximab, methotrexate, procarbazine,
and vincristine), R-MT (rituximab, HD-MTX, and temo-
zolomide), Matrix (HD-MTX, cytarabine, thiotepa,
and rituximab), or R-MVBP (rituximab, methotrex-
ate, etoposide, carmustine, dexamethasone). Choos-
ing the most appropriate chemotherapy regimen for
PCNSL patients is a pressing challenge in clinical work.
Lastly, there is no agreement on whether chemotherapy
should be applied intracerebroventricularly. Even though
intrathecal chemotherapeutic agents may prolong expo-
sure to cytotoxic drugs in the CSF, they can also increase
neurotoxicity [178].

Several novel treatments have shown efficacy and over-
all good tolerance in PCNSL patients, such as ASCT
[179-188], BTK inhibitors [56, 189-198] and chimeric
antigen receptor T-cells (CAR-T) [199-201].

Prognostic markers for PCNSL

In the past few decades, the prognosis of PCNSL has
significantly improved due to the widespread use of HD-
MTX chemotherapy and consolidation therapy. However,
relapse remains common, with a 5-year survival rate of
only 30% to 40% [114, 154]. Currently, common prog-
nostic markers for PCNSL include basic characteristics,
subtypes, imaging findings, prognosis scoring systems,
clinical laboratory results, and biomolecules.

Utilization of basic patient characteristics as prognostic
markers

Basic characteristics of PCNSL patients

According to a study comprising 466 PCNSL patients
from 62 Japanese medical institutions, age > 60 years and
the Eastern Cooperative Oncology Group Performance
Status (ECOG PS) score>2 were found strongly related
to poor prognosis in PCNSL patients [202]. In a second
study, Niparuck et al. additionally confirmed that ECOG
PS score>1 may function as an independent predictor
of OS in multivariate analysis [203]. Furthermore, type
B symptoms, multifocal lesions, meningeal spread, and
higher lactate dehydrogenase (LDH) levels were linked to
a worse prognosis [202].
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Tumor localization

Patients with PCNSL have bad undesirable prognosis if
the tumors are located in the deep brain, including the
periventricular zone, basal ganglia, corpus callosum,
brainstem and/or cerebellum [204-208]. Multivariate
analysis of 101 newly diagnosed patients with PCNSL
showed that deep brain lesions were an independent risk
factor for PFS [204]. Another retrospective analysis of
the clinical data of 89 patients with intracranial PCNSL
by Ouyang et al. in 2020 showed that deep structural
invasion was the independent risk factor for intracra-
nial PCNSL [205]. Furthermore, patients with deep brain
involvement have a higher risk of mortality in the first
few months after diagnosis [208].

Mini-mental state examination

Mini-Mental State Examination (MMSE) is a tool for
screening neurocognitive disorders [209-212]. In low-
grade and high-grade gliomas, the MMSE score was
an independent predictor of PFS and OS [213, 214]. A
multicenter, phase III, and randomized trial examined
the predictive value of the MMSE in 199 patients with
PCNSL. All study subjects were adults with an ECOG
PS score of 0 to 3, normal immune function, and CD20
positivity. One hundred and fifty-three patients out
of 199 had MMSE scores at baseline. The MMSE score
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functioned as an independent predictor for OS and PFS
in multivariate analysis. To summarize, the MMSE score
is not only helpful in assessing the prognosis of patients
with PCNSL, but it also straightforward and easy to use,
making it useful in clinical practice [215].

Utilization of PCNSL cell of origin-based subtypes

as prognostic markers

The classical PCNSL subtype by immunohistochemistry is

based on the Hans algorithm, which is sorted by CD10, Bcl-

6, and MUM-1 expression. Double expressor lymphoma has

been utilized to classify PCNSL subtypes in recent years.
Figure 2 displays the classification criteria for the two

subtypes of PCNSL.

Hans algorithm

DLBLC can be classified as GCB and non-GCB subtype
according to Hans algorithm. The GCB subtype is associ-
ated with better prognosis in DLBCL [114]. Non-GCB was
the most common phenotype in PCNSL patients, account-
ing for 65.7-96.3% of cases [121, 123, 130, 203, 216-219].
Besides, PCNSL was more commonly categorized in the
non-GCB subgroup than DLBCL of peripheral nodal ori-
gin (p=0.020; 78% vs. 62%), which may be primarily attrib-
utable to the increased nuclear MUM-1, also known as
IRF-4, expression in PCNSL [220].

X YWY

Hans algorithm (Immunohistochemistry)

Surgery
CcD10 Biopsy BCL2 2 50-70%
/ \ and
> 400,
con hcLe Myc 2 40%
SN
N
Non-GCB MUM1
/ \ Non-double Double

expressor expressor
GCB Non-GCB lymphoma lymphoma

PCNSL patient

Double expressor lymphoma

Fig. 2 The classification criteria for the two subtypes of PCNSL. Left: Hans algorithm; Right: Double expressor lymphoma; +: Positive expression; -:

Negative expression. Abbreviations: GCB, Germinal center B-cell; PCNSL, Primary central nervous system lymphoma
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Hans algorithm may assist in determining the progno-
sis of PCNSL patients. In 2017, a study analyzed clinical,
neuroimaging, and immunohistochemistry data from
41 PCNSL patients, who mostly received methotrexate-
based chemotherapy-radiotherapy, to determine the
impact of potential prognostic markers on clinical out-
comes and the linkage between these markers. The GCB
subtype was associated with a trend toward improved
survival. However, neither OS nor PFS were statistically
significant (»p=0.139 and p=0.167, respectively) [218].
Another study included 43 patients with PCNSL, all
receiving HD-MTX-based regimens, WBRT, or both. The
OS of PCNSL was favorably linked with the GCB subtype
[203]. Besides, a study investigated specimens and clini-
cal data from 24 patients with biopsy-proven PCNSL and
found that after a median follow-up of 15 months, only
39% of patients with non-GCB type PCNSL were alive,
whereas all GCB type patients were alive. The median
survival time for non-GCB patients was 11 months, but
all GCB patients were still alive after a median follow-
up period of 22 months [221]. Mechanistically, aber-
rant expression of BCL2 [203] or phosphorylation of the
STAT3 protein [222] may contribute to the poor progno-
sis of PCNSL patients with non-GCB subtypes.

Although some investigations have shown no signifi-
cant survival differences between the two categories of
GCB and non-GCB [216, 219, 223], current studies tend
to suggest that the prognosis for PCNSL patients with the
GCB subtype of DLBCL is favorable.

Double expressor lymphoma

The identification of concurrent MYC and BCL2 (or
BCL6) deregulation, whether at a genomic or protein
level, has opened a new era of investigation within the
most common subtype of PCNSL. Double-hit lymphoma
(DHL), defined as a dual rearrangement of MYC and
BCL2 and/or BCL6 genes [224-227]. Double-expressor
lymphoma (DEL), defined as overexpression of c-MYC
and BCL2 proteins not related to underlying chromo-
somal rearrangements [224, 228-231]. Both DHL and
DEL are associated with a more aggressive clinical course
and a worse prognosis for DLBCL patients [232]. Com-
pared to DHL, DEL is more common in patients with
PCNSL[130, 233, 234]. Therefore, we focused on the
impact of DEL on the prognosis of PCNSL patients.

In a cohort of 48 individuals with newly diagnosed
PCNSL, Hatzl S et al. followed 48 patients with newly
diagnosed PCNSL for a median of 6.2 year. PCNSL
patients with DEL characteristics had a 5-year risk of
progression and/or death that was 13 times greater
than those without DEL characteristics. Moreover, add-
ing DEL in the International Prognostic Index (IPI)
increases the model’s prediction accuracy [235]. In 2022,
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a retrospective analysis was conducted on 82 patho-
logically proven, CD20-positive, PCNSL patients aged
71 or older who received therapeutic intervention in
Japan. DEL was present in 43/82 (52.4%) cases. Multi-
variate analysis of the median OS revealed that DEL was
the pathogenic risk factor [hazard ratio (HR)=3.163,
p=0.004] [236]. A meta-analysis also confirmed that
DEL was significantly associated with short median OS
(HR=1.23, p=0.001) [237].

Imaging data as a prognostic indicator for PCNSL
Temporalis muscle thickness and L3 lumbar skeletal muscle
index

Two muscle mass markers, temporalis muscle thickness
(TMT) and L3 lumbar-skeletal muscle index (L3-SMI),
were revealed to be independent predictors of PCNSL
outcome. TMT is measured by MRI, which was found
to be an independent predictor of OS in a study of 128
patients with primary PCNSL who had cranial MRI data
[238]. In another study, 43 PCNSL patients who received
first-line HD-MTX-based chemotherapy underwent brain
MRI, and whole-body CT scans within 30 days of begin-
ning treatment. Patients with low TMT levels had signifi-
cantly worse PFS (HR=4.40, p=0.003) and OS (HR=4.93,
p=0.002) than those with high TMT values [239].

The L3-SMI was calculated by first measuring the sur-
face area of the abdominal and paraspinal muscles con-
tained in the axial profile acquired at the third lumbar
vertebra and then dividing the surface area by the square
of the patient’s height. According to the COX multi-
variate analysis in the preceding study [239], patients
with low L3-SMI values had significantly shorter PFS
(HR=4.40, p=0.003) and OS (HR=3.16, p=0.034) than
those with high L3-SMI values.

Apparent diffusion coefficient

There are signs that a higher tumor cell density in diag-
nostic samples of PCNSL may have important prognostic
effects. Because cellular density is negatively correlated
with apparent diffusion coefficient (ADC) measurements
on diffusion-weighted MRI (DWI), ADC values may pre-
dict the clinical prognosis of PCNSL patients [240]. The
results suggest that lower ADC is associated with shorter
PFS [240-242] or OS [240, 241, 243].

ADC values also correlated with the efficacy of HD-
MTX-based chemotherapy regimens. A retrospective
study of 28 patients treated with HD-MTX-based chemo-
therapy shows that there was a substantial between com-
plete response (CR) and non-CR in terms of ADC_ ..,
and ADC;, percent. In addition, ADCsy percent beat
ADC,,can as the area under the ROC curve (AUC) was
greater for ADCg, compared to ADC,.,, (0.983 vs.
0.822) [242].
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In summary, ADC values predicts PFS, OS, and the
efficacy of HD-MTX in PCNSL patients.

Fluorodeoxyglucose-PET

Due to the high density of PCNSL tumor cells, quick glu-
cose metabolism and high FDG content in the tumor,
PCNSL demonstrates significant FDG uptake and can be
diagnosed with an excessive degree of sensitivity using
FDG-PET [244, 245]. FDG-PET can differentiate PCNSL
from other forms of brain cancer [246—-249]. In addition,
FDG-PET may be more sensitive than conventional phys-
ical staging in the diagnosis of PCNSL and may detect
the presence of additional concomitant systemic disor-
ders [245, 250, 251]. Thus, FDG-PET is a non-invasive
approach that may give verified prospective prognostic
information for patients with PCNSL.

Kawai et al. performed FDG-PET in 17 patients with
newly diagnosed PCNSL before treatment. FDG uptake
was assessed by showing the standardized uptake value
(SUV) of the tumor, showing the maximum uptake (SUV-
max). This study showed that patients in the low and
moderate uptake group (SUVmax<12) had significantly
better OS and PFS than those in the high uptake group
(SUVmax >12), and therefore pretreatment FDG uptake
could be used as a prognostic indicator for PCNSL [252].
Of note, Tateishi et al. found that NF-kB pathway acti-
vated RelA/p65-hexokinase 2, a rate limiting enzyme
for glycolytic pathway [125]. Since most PCNSL harbors
mutations in the MYD88 and CD79B, an upstream gene
of the NF-kB canonical pathway, these mutations may
contribute high uptake of FDG in PCNSL.

Prognosis scoring systems
For decades, five prognostic indexes have been proposed
to stratify the clinical evolution of PCNSL (Fig. 3). Table 2
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displays the detailed variables, hazard stratification, can-
cer types applied for the first time and disadvantages for
these five prognosic scoring systems.

International prognostic index

The IPI is a broadly acknowledged prognostic score that
may be used to differentiate between various risk catego-
ries of patients with DLBCL [253]. Twenty-five immu-
nocompetent adult patients with PCNSL were treated in
an early experiment with five cycles of HD-MTX-based
chemotherapy followed by cerebral irradiation. The
2-year OS was 0% for patients>60 years old with an IPI
of 3 or more, compared to 88% for patients <60 years
old with an IPI of 4 or less. The prognostic value of IPI in
PCNSL was proven in this study [254].

International extranodal lymphoma study group score

In 2003 Ferreri et al. proposed the International Extran-
odal Lymphoma Study Group (IELSG), a scoring sys-
tem based on clinical data of 378 PCNSL patients from
23 cancer centers in 5 countries from 1980 to 1999. The
mean follow-up period was 24 months. It was found that
age > 60 years, ECOG PS score>1, elevated LDH levels,
elevated CSF protein concentrations, and deep brain
involvement could be independent prognostic markers
for PCNSL. Based on the above findings, 105 evaluable
patients were analyzed, and an IELSG prognostic model
was developed, classifying adverse prognostic mark-
ers of 0-1, 2-3, and 4-5 as low, intermediate, and high-
risk groups with 2-year OS rates of 80%, 48%, and 15%,
respectively [206].

The prognosis model’s accuracy can be increased by
using the IELSG score in combination with additional
prognostic parameters. A stronger predictive relevance
can be seen, for instance, when the IELSG score is paired

Memorial Sloan-Kettering
Cancer Center score
2006

1
1
1
2020

Taipei Score

Fig. 3 The schematic plot of the progress for PCNSL prognostic scoring system. Abbreviations: PCNSL, Primary central nervous system lymphoma
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with the expression of programmed cell death ligand-1
(PD-1) on tumor-associated macrophages (IELSG-M).
For OS, the areas under the receiver operating charac-
teristic curves of IELSG-M were 0.844, which was higher
than the IELSG model (0.580) [255].

Nottingham/Barcelona prediction score

The Nottingham/Barcelona prediction score includes
three adverse prognostic variables, each with a value of 1.
OS was negatively correlated with the Nottingham/Bar-
celona prediction score. The median survival for the 77
PCNSL patients included in the study was 55, 41, 32, and
1 month, with scores of 0, 1, 2, and 3, respectively [256].

Memorial Sloan-Kettering cancer center score

Age and karnofsky performance score (KPS) were the
only two variables included in the Memorial Sloan-Ket-
tering Cancer Center score (MSKCC score), and they
were used to stratify participants into low-, intermedi-
ate-, and high-risk groups. The OS in PCNSL patients
was negatively correlated with the MSKCC prognostic
model score [207, 257, 258]. The largest study had 338
consecutive individuals with newly diagnosed PCNSL.
The median OS for the low-, intermediate- and high-
risk groups were 8.5, 3.2, and 1.1 years (p<0.001),
respectively. The median failure-free survival for the
low-, intermediate- and high-risk groups were 2, 1.8,
and 0.6 years (p <0.001) [257]. Notably, one study found
no significant difference in OS between the low- and
intermediate-risk groups based on the MSKCC score
[258]. Additional prognostic variables, such as lac-
tate dehydrogenase/lymphocyte ratio (LLR) [258] and
hemoglobin (Hb) [259], should be added to the MSKCC
model to improve it further.

Taipei score

The researchers discovered that the IELSG, Nottingham/
Barcelona, and MSKCC models are not sufficiently sat-
isfactory for differentiating PFS or OS in patients with
PCNSL. In order to construct a more accurate prognos-
tic model, the researchers recruited 101 newly diagnosed
PCNSL patients. Age>80 years, ECOG PS score>2,
and deep brain lesions were identified as independ-
ent adverse prognostic markers for PFS by multivariate
analysis. Researchers scored one point for each adverse
prognostic factor and developed a new predictive
model, the Taipei score, with four different risk catego-
ries (scores 0—3). In the training cohort, the Taipei score
distinguished between PFS and OS significantly, and the
score was verified in an external validation cohort. The
Taipei score is therefore expected to provide the classi-
fication of disease risk for PCNSL and improve clinical
decision-making [204].
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Utilization of routine hematological indicators

as prognostic indicators

Pre-treatment hematology is a routine test for all patients
and is a convenient way to predict the prognosis of
PCNSL. Hematologic indicators also can be used in com-
bination with prognosis scoring systems to improve pre-
dicted accuracy. Table 3 displays the findings of studies
utilizing conventional hematological clinical markers as
prognostic indicators.

Lymphocyte count

Lymphocyte count (ALC) has predictive relevance in
non-Hodgkin’s lymphoma [260, 263-265]. In 2016,
Korean researchers first discovered that pretreatment
ALC also could be an independent prognostic marker
in PCNSL patients. They analyzed 81 PCNSL patients
treated with HD-MTX and developed a new predictive
model based on ECOG PS score>1, age>50 years, and
the existence of decreased ALC, assigning 1 point to each
factor and categorizing patients into three risk groups:
low (0-1), intermediate (2), and high (3). Patients in the
low, moderate, and high-risk categories had 5-year sur-
vival rates of 74.3%, 21.7%, and 12.5%, respectively [260].
Because of the convenience and low cost of detecting
ALC, this model could be utilized as an objective and
reliable prognostic tool for PCNSL. Notably, the predic-
tive importance of ALC and this model needs be con-
firmed in a larger number of samples.

Neutrophil/lymphocyte ratio

Tumor cells release cytokines and chemokines to attract
immunological and inflammatory cells, which stimulate
tumor growth and survival [266-276]. A high neutro-
phil count may be a marker of inflammation, while a low
lymphocyte count may indicate a lack of host immunity
[277]. Hence, a high neutrophil/lymphocyte ratio (NLR)
before therapy may therefore be one of the negative prog-
nostic variables. Recently, high pre-treatment NLR has
been proven to be an independent marker of poor prog-
nosis in DLBCL [278, 279].

For PCNSL, high NLR was an independent prognos-
tic factor [258, 261, 262]. High NLR was significantly
associated with a worse PFS [261] and OS [258, 261] for
PCNSLs by univariate analysis. Due to the strong lym-
pho-toxic effects of steroids, the use of steroids prior to
chemotherapy in PCNSL patients may affect NLR [280].
In the recent study, 75 individuals who had received
chemoimmunotherapy were included. The study calcu-
lated NLR at three-time points: baseline (pre-steroid),
pre-chemoimmunotherapy (post-steroid) and post-
chemoimmunotherapy. The results suggest that OS was
longer with higher pre-chemoimmunotherapy (post-
steroid) NLR (dichotomized at NLR>4.0, HR=0.42,
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Table 3 Summary of studies investigating haematological clinical markers as prognostic factors

PMID Factor Retrospective Number of Treatment Median Age PFS oS
or Prospective patients/centers (range), year
involved
26918738 [260] ALC Retrospective  81/1 HD-MTX 59 (33-79) HR=3.1, p=0.001 HR=2.83, p=0.008
29088839 [261] NLR Retrospective  62/2 HD-MTX 63 (21-81) HR=228,p=0073 HR=2.36,p=0.102
34422649 [258] NLR Retrospective ~ 248/6 / 59 (21-86) / HR=1.634,p=0.023
33996552 [262] NLR Retrospective  60/1 HD-MTX 57 (18-79) HR=10.54,p=0.034 /
34422649 [258] LLR Retrospective ~ 248/6 / 59 (21-86) / HR=1.792, p=0.015
30867243 [259] Hemoglobin Retrospective  91/1 / 65 (58-73) / Cohort A:HR=2.7,
(anemia) p=0.0071;
Cohort B:HR=2.5,
p=0.001
33996552 [262] Hemoglobin Retrospective  60/1 HD-MTX 57 (18-79) HR=3.940,p=0.013 /
(anemia)
33996552 [262] LMR Retrospective  60/1 HD-MTX 57 (18-79) / HR=24.040,p=0.019
33996552 [262] Sl Retrospective  60/1 HD-MTX 57 (18-79) / HR=11.174, p=0.002
33996552 [262] TBIL Retrospective  60/1 HD-MTX 57 (18-79) HR=3.429,p=0.004 HR=5.245, p=0.002

ALC Lymphocyte count, EFS Event-free survival, Hb Hemoglobin, HD-MTX High-dose methotrexate, LLR Lactate dehydrogenase/lymphocyte ratio, LMR Lymphocyte/
monocyte ratio, NA Not mentioned, NLR Neutrophil/lymphocyte ratio, OS Overall survival, PFS Progression-free survival

95% CI: 0.21-0.83, p=0.01) [280]. It is hypothesized
that steroid therapy, when combined with NLR, can
successfully calibrate the PCNSL prognostic model and
increase the accuracy of NLR in determining patient
prognosis.

Lactate dehydrogenase/lymphocyte ratio

The lactate dehydrogenase/lymphocyte ratio (LLR) has
been shown to be an independent prognostic factor in
patients with extranodal natural killer/T-cell lymphoma
[281], DLBCL [282, 283] and metastatic renal cell car-
cinoma [284]. Clinical data from 248 patients with
PCNSL diagnosed at six cancer facilities in 4 countries
were analyzed from 2004 to 2019 to see if LLR could be
used as a promising predictive model for PCNSL. OS
was selected as the study’s endpoint. According to uni-
variate analysis, LLR values greater than 166.8 were sig-
nificantly related to a poorer OS. LLR was also shown
to be an independent prognostic parameter for poorer
OS by multivariate analysis. Notably, there was no sig-
nificant difference in OS between the low- and inter-
mediate-risk groups according to the MSKCC score;
however, LLR could be an independent prognostic indi-
cator for these patients [258].

Hemoglobin

Anemic individuals account for 30% to 90% of cancer
patients [285-288]; nevertheless, Hb measurement is
impacted by potentially confounding factors. The most
common confounding variable is the use of corticoster-
oids by a portion of PCNSL patients, which may influence

hemoglobin levels. Additionally, patients with tumors
frequently have one or more concurrent anemia-causing
causes, such as inflammatory anemia, chronic illness
anemia, or bleeding disorders. Hb was an independ-
ent prognostic factor for PCNSLs (HR=3.94, p=0.013)
[262]. In 2019, a retrospective study of 182 newly diag-
nosed PCNSL patients from a single medical center indi-
cated that anemia was significantly associated with poor
OS. Notably, combining Hb enhances MSKCC’s accuracy
in predicting PCNSL outcomes [259].

Systemic immune inflammatory index, lymphocyte/
monocyte ratio and total bilirubin

There is growing evidence that cancer-related inflamma-
tion can promote the growth, invasion, and metastasis
of cancer cells [289-299]. As a component of the innate
immune system, neutrophils are an indicator of ongoing
systemic inflammation. Additionally, neutrophils may
contribute to the suppression of lymphocyte function,
promote tumor immune escape and facilitate metastasis
[300]. Nevertheless, the predictive significance of periph-
eral blood markers indicative of systemic inflammation
and nutritional status in patients with PCNSL is uncer-
tain. Systemic immune inflammatory index (SII) is an
index of systemic inflammatory response calculated from
platelet countXneutrophil count/lymphocyte count.
A retrospective study analyzed 60 patients with HD-
MTX-based standard chemotherapy PCNSL diagnosed
from 2011 to 2020. Lymphocyte/monocyte ratio (LMR)
(HR=24.040, p=0.019), SII (HR=11.174, p=0.002)
and total bilirubin (TBIL) (HR=5.245, p=0.002) were
independently associated with OS in this multivariate
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analysis. The C-index of the MSKCC score increased
from 0.57 to 0.72 when SII and TBIL were added, indi-
cating that the addition of SII and TBIL improved the
ability of the MSKCC score to predict survival in PCNSL
patients treated with the HD-MTX regimen [262].

Biomolecules as prognostic indicators in PCNSL

miRNAs

MicroRNAs (miRNAs) are involved in every biological
process relevant to cancer, including cell proliferation,
differentiation, death, and metabolism [289-299]. Impor-
tantly, the biogenesis and activation of miRNAs are faster
with longer half-lives compared to mRNA and proteins,
which may make miRNAs more suitable for earlier detec-
tion [301-310].

One study examined the levels of circulating miRNAs
in PCNSL patients and found that miR-151a-5p and
miR-151b could significantly differ short-term from long-
term survival [311]. Mao et al. found that miR-21 was
significantly elevated in the serum of PCNSL patients
compared to other brain tumors and normal controls.
Kaplan—Meier survival curves shown higher expression
level of serum miR-21 was tightly associated with a poor
prognosis in both test and validation cohorts [312]. In
another trial assessing the efficacy of pemetrexed plus
rituximab as second-line treatment, higher blood miR-21
levels indicated shorter survival, with a PFS of 5.7 months
compared to 9.0 months when serum miR-21 levels were
lower [313]. miR-30d, miR-93, miR-181b [314], miR-101,
miR-548b, miR-554, and miR-1202 [315] have also been
reported to be promising as useful prognostic mark-
ers for PCNSL. Eight hundred and forty-seven miRNAs
expressed in 27 PCNSL specimens were analyzed using
microRNA microarrays by Takashima et al. Multivariate
analysis revealed that the combination consisting of miR-
30d, miR-93 and miR-181b was an independent factor for
poor OS in PCNSL [314]. In addition, Takashima et al.
detected 847 miRNAs in 40 PCNSL patients using micro-
RNA microarrays, containing 334 miRNAs associated
with cancer immune-related genes (associated with regu-
lation of type 1/2 T-helper (Th) cell status, T-reg cell sta-
tus and immune checkpoints status, respectively), using
four of these representative miRNAs (miR- 101, miR-
548b, miR-554, and miR-1202) combined with patient
clinical information to obtain a prediction formula, and
patients in the low group had better OS [315].

snRNAs

Small nuclear RNAs (snRNAs) are a subtype of short-
stranded non-coding RNA [316-318]. Existing research
on the prognostic and diagnostic significance of snRNAs
is still limited. Given that circulating U2 small ribonu-
cleic acid fragments (RNU2-1f) serve as novel blood
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biomarkers for pancreatic, colorectal, and lung malig-
nancies, the function of RNU2-1f in the CSF of PCNSL
patients was investigated [319]. Researchers collected
sequential CSF samples from nine PCNSL patients and
then used real-time PCR to evaluate RNU2-1f levels.
The results indicated that CSF RNU2-1f expression was
positively linked with disease development based on
serial measurements of RNU2-1f from nine patients with
varying disease stages. In addition, CSF RNU2-1f levels
appeared to correspond with MRI-measured tumor vol-
ume. The results presented above demonstrate that the
level of RNU2-1f in CSF is a viable biomarker for deter-
mining the prognosis of PCNSL [319].

MYC

MYC (also called ¢c-MYC in protein level) is one of the
most prominent prognostic factors in PCNSL and can
function at three levels: RNA, DNA, and protein. In
a retrospective analysis, Gomes Candido Reis D et al.
identified overexpression of MYC as a poor prognos-
tic indicator of PCNSL [47]. RNA was isolated from
35 formalin-fixed and paraffin-embedded (FFPE) tis-
sue samples. Following this, quantitative reverse tran-
scription-PCR was performed for MYC. Relative gene
expression of MYC>0.201 was linked with worse OS
(HR=6.117, p=0.003) and worse PFS (HR=3.960,
p=0.016). Another study found significant differences
between the Kaplan—Meier curves in the mutant and
wild-type groups, suggesting that somatic mutations
in MYC (HR=0.305, p=0.0012) at the DNA level were
associated with better overall survival (OS). These find-
ings indicate that somatic mutations occurring specifi-
cally in the MYC are potentially important diagnostic and
prognostic markers for PCNSL tumorigenesis and patient
survival [320]. Overexpression of c-MYC [218, 235, 321]
in protein level is also widely recognized to be associ-
ated with poor prognosis in PCNSL. To comprehensively
assess the predictive role of c-MYC protein expression
in PCNSL, Ge et al. conducted a meta-analysis [237].
Thirty-one studies involving 1739 patients were included
in this meta-analysis. C-MYC expression was signifi-
cantly associated with median OS and PFES. Subgroup
analysis revealed that c-MYC protein positive remained
a significant predictor of short median OS in studies with
45 participants, no WBRT, a quality scale score over 6,
and a positivity threshold set at 40% stratum.

BCL2 and BCL6

The prognostic role of BCL2 and BCL6 in PCNSL remains
controversial. Overexpression of BCL2 [235, 321], and/
or BCL6 [218, 321] is generally believed to be associated
with a poor prognosis in PCNSL. However, contradic-
tory findings have been reported regarding the predictive
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value of BCL2 [322] and/or BCL6 [219, 322] in predicting
survival in PCNSL patients.

The disparate outcomes of the research above may be
attributable to the small sample sizes of the trials and the
variety of patients’ treatment regimens. The meta-analy-
sis mentioned above also comprehensively assessed the
predictive role of BCL2 and BCL6 protein expression in
PCNSL [237]. BCL6 protein positivity is associated with
a favorable prognosis. There was no significant correla-
tion between BCL2 expression and OS or PFS, but BCL2
and c-MYC co-expression were significantly associated
with short median OS. As most of these included papers
are retrospective studies, the prognostic effect of BCL2 in
PCNSL needs further validation.

CD79B

Recurrent mutations in CD79B are characteristic of
PCNSL, and 69-83% of PCNSL patients were found to
have recurrent CD79B mutations by sequencing [57, 58].
Recurrent CD79B mutations were found in 69-83% of
PCNS L patients. The relationship between CD79B and
PCNSL prognosis is not yet clear. According to Zhou Y
et al.,, patients with lymphoma who harbored the CD79B
mutation had significantly worse PES than patients with
wild-type CD79B [58]. Another study presented the oppo-
site result. Another study with Hispanic PCNSL patients
revealed the opposite findings, demonstrating that CD79B
mutations were associated with improved 2-year PFS [323].

MYD88

MYDS88?P, is an important oncogene for lymphoma
[324-327]. With the advancement of high-throughput
molecular technologies, it has been found that muta-
tions in the MYD88"?°" gene are present in 55-88% of
patients with PCNSL [132, 328-331]. Moreover, the pro-
tein expression of MYD88 was significantly elevated in
PCNSL patients in comparison to individuals with lym-
phadenitis (70.18% vs. 15%) [58].

Hattori K et al. demonstrate for the first time that
MYDS88?5P mutation is independently associated with
shorter OS and PFS in PCNSL [329]. MYD88"**" muta-
tion is more prevalent in patients over 65 years old. The
Kaplan—Meier analysis revealed that MYD88?%° muta-
tion predicted shorter OS (11.5 months vs. 56.2 months,
p<0.04) in patients older than 65 years [330]. Besides,
Zhou Y et al. investigated tissue samples from 57 PCNSL
patients using immunohistochemistry and discovered
that a high level of MYD88 expression was an independ-
ent predictor of OS (HR=0.143, p=0.004) [58]. PCNSL
patients with high MYD88 expression had a shorter OS
than those with low expression (8 months vs. 31 months,
p=2.0x107%).
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However, a study suggested that MYD88"?>" mutation
is a favorable prognostic factor for PCNSL. MYD88-?55F
mutation status was available in 41 PCNSL patients with
non-GCB subtypes, 36 (88%) of whom were mutants. The
MYD88"?65P mutation was linked to better survival in the
multivariable model (HR=0.277; p=0.023) [328].

ATP binding cassette subfamily B member 1

ATP Binding Cassette Subfamily B Member 1 (ABCBI),
one of the key ABC transporters of the blood—brain
barrier (BBB), can be classified into two genotypes
with T (genotypes CT and TT) and without T (geno-
type CC) [332-334]. The rs1045642 is the most com-
mon of the ABCBI gene polymorphisms [335]. It
has been reported that the CC genotype of ABCBI
rs1045642 is related to MTX-induced mucositis [336]
and poorer event-free survival (EFS) [337] in hemato-
logical tumors. Wu et al. conducted a prospective study
of 91 patients with PCNSL enrolled at Huashan Hospi-
tal from 2006-2015. Multivariate analysis showed that
ABCBI rs1045642 was an independent risk factor for
PES and was associated with a higher risk of progres-
sion, suggesting that assessing the genetic variability of
patients provides another possible method to assess the
prognosis of PCNSL [335].

Ki-67

Ki-67 expression levels indicate the level of cell prolifera-
tion. Ki-67 (90% cutoff) was associated with shorter OS
(p=0.037) and PFS (p=0.039) in a cohort of 89 PCNSL
cases. However, in the multivariate analysis, Ki-67 failed
to predict prognosis [322]. In another study that included
45 patients with PCNSL, Ki-67 index >90% was an inde-
pendent predictor of poor OS prognosis in the entire
cohort as well as in the non-GCB tumor subtype (Ki-67
index=91.1%) [223].

p27

P27 is a cyclin-dependent kinase inhibitor that controls
the progression of the cell cycle from G1 to S phase [338].
Kunishio et al. employed immunohistochemistry to
examine p27 expression in 22 PCNSL patients. High p27
expression was found to be highly related to shorter OS,
implying that p27 might be used to predict the prognosis
of PCNSL patients [338].

Histone methylation abnormality

Numerous genetic alterations in cancer are associated
with chromatin and epigenetics, particularly histone-
modified proteins. Histone modifications have a cru-
cial role in both normal cell function and malignancy.
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Common modifications of histones include methyla-
tion, acetylation, ubiquitination, and phosphorylation
[339]. Histone modifications have a crucial role in malig-
nancy. Researchers immunohistochemically stained
FFPE samples from 87 PCNSL patients identified by
pathology. Patients with H3K4me3 hypomethylation and
H3K27me2 and H3K27me3 hypermethylation were more
likely to relapse. In both univariate and multivariate stud-
ies, these three variables were statistically related with a
short PFS and OS. It was shown that low methylation of
H3K4me3 and high methylation levels of H3K27me2 and
H3K27me3 may be linked to a poor prognosis in PCNSL
patients [340].

PD-1,PD-L1, and PD-L2

Expression levels of PD-1, PD-L1 and PD-L2 on PCNSL
tumor cells can be utilized to predict patient prognosis.
Takashima Y et al. performed RNA sequencing on sam-
ples from 31 PCNSL patients and found that changes
in the expression of PD-1 and PD-L2 transcripts enable
prognostic prediction in PCNSL. High PD-1 (PDCD1-
001: HR=3.3, p=0.012, PDCDI1-002: HR=9.3,
p=28.4E-05, and PDCD1-003: HR=2.6, p=0.032) and
PD-L2 (PDCD1LG2: HR=2.9, p=0.018) gene expres-
sion was associated with a shorter OS [341]. Cho et al.
analyzed the prognosis of 76 patients with PCNSL who
received an HD-MTX-based chemotherapy regimen
at the time of first diagnosis. The multivariate analy-
sis revealed that high PD-1 expression (70 cells/high
power field) was associated with a worse OS and a PFS
[342]. Analysis of PD-L1 expression in serum and FFPE
tissues of PCNSL patients revealed that the median
level of serum PD-L1 was greater than that of healthy
control patients; PD-L1 expression of positive tumor
cells in FFPE tissues was positively correlated with
serum PD-L1 level. Notably, the high serum PD-L1
group was more susceptible to recurrence than the low
serum PD-L1 group [343].

The tumor microenvironment, in addition to tumor
cells, influences PCNSL prognosis. Using immunohis-
tochemistry techniques, Furuse et al. evaluated intra-
tumoral and peritumoral tissues from 70 patients with
PCNSL. It was discovered that a greater proportion of
macrophages than tumor cells expressed PD-L1 and
PD-L2. PD-L1 expression on macrophages was linked
to biological factors (intratumoral macrophages: bet-
ter KPS, better MSKCC score, and peritumoral mac-
rophages: low proportion of LDH elevation) and a longer
OS correlation [344]. Another study also confirmed that
the increased number of PD-L1-expressing immune cells,
like tumor-infiltrating lymphocytes and tumor-associ-
ated macrophages, is associated with better disease-free
survival in PCNS-DLBCL [345].

Page 17 of 38

Ku80

Ku80 is a DNA repair protein connected with radiosen-
sitivity and plays a crucial role in multiple processes that
protect against ionizing radiation. In a study review-
ing 38 patients with PCNSL, Ku80 expression in tumor
tissue was found to be present in most PCNSL tissues
using immunohistochemistry. According to survival
analysis, patients with high Ku80 expression had signifi-
cantly shorter median survival times than patients with
low Ku80 expression (p=0.036). Intriguingly, although
Ku80 was connected with radiosensitivity, it was not sta-
tistically significant when comparing the OS of patients
treated with and without radiotherapy (»p=0.131). Con-
sequently, Ku80 is anticipated to be a prognostic predic-
tor for PCNSL [346]. Due to the small number of patients
described in this study (n=38), the conclusion that Ku80
cannot be used to predict radiotherapy efficacy requires
further validation.

CD105

CD105 is a receptor for transforming growth factor
(TGF)-betal and -beta3, and its interaction with TGF-
beta receptors I and/or II modulates TGEF- signaling
[347-353]. Furthermore, CD105 is a proliferation-associ-
ated hypoxia-inducible protein that is overexpressed on
proliferating endothelial cells engaged in tumor angio-
genesis but is low or not expressed in normal tissues’ vas-
cular endothelial cells [349].

The current study investigated the link between CD105
expression and PCNSL prognosis using immunostain-
ing for CD105. Intratumoral microvascular density
(IMVD) was measured in the hotspots and interfaces at
a magnification ofx200. When CD105 was utilized as
an angiogenesis marker, the lower-IMVD group had a
significantly greater survival rate than the higher-IMVD
group. The IMVD was larger in the hotspots than in the
interfaces in the group with CD105-immunostained vas-
culature. These findings revealed that PCNSL growth
depended on angiogenesis and that IMVD, measured by
an anti-CD105 monoclonal antibody, was a reliable prog-
nostic marker in PCNSLs [354].

Glucose transporter protein type 1

The process of glucose metabolism is crucial in can-
cer development [355-361]. MTX resistance in PCNSL
cells is possibly associated with altered aerobic glycoly-
sis [362]. According to a Korean study, PCNSL patients
expressed glucose transporter protein type 1 (GLUT1) in
tumor tissues, and patients with>20% GLUT1 positivity
in lymphoma cells had shorter OS and more rapid disease
progression [363]. GLUT-1 may affect the prognosis of
PCNSL patients by having an impact on the mean value
of fasting plasma glucose (FPQ) levels. The percentage
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of GLUT1-positive cells was higher in patients with
FPG>110 mg/dL (p=0.015), while high mean value
of FPG was a significant predictor for shorter survival
(p=0.036) [364]. The results of the current research sug-
gest that the expression level of GLUT1 is associated with
PCNSL prognosis.

PI3K/AKT/mTOR pathway-related proteins

Since the PI3BK/AKT/mTOR pathway is aberrantly active
in DLBCL and plays a role in the genesis and progression
of DLBCL [365-369], researchers have also investigated
its role in PCNSL. Zhang et al. found that the recurrence
rate of PCNSL in the phospho-mTOR-positive group was
64.5%, which was substantially greater than in the nega-
tive group. The Kaplan—Meier survival analysis revealed
shorter PFES in the phospho-mTOR and phospho-S6-posi-
tive groups, while PTEN loss was associated with a shorter
OS. According to Cox regression analysis, phospho-mTOR
expression was an independent predictor for shorter PFS.
The results reveal that the PI3K/AKT/mTOR pathway is
aberrantly active in PCNSL and linked with a poor prog-
nosis, which may foreshadow the development of novel
therapeutic targets and prognostic variables [365].

Interleukin-10

Interleukin-10 (IL-10) is a pleiotropic cytokine produced
by T helper-2 cells, monocytes, macrophages, and B lym-
phocytes [370-376]. IL-10 not only has broad-spectrum
anti-inflammatory effects but also promotes the expres-
sion of BCL-2 and protects malignant tumor cells from
apoptosis [377]. Since IL-10 appears to activate STAT3,
it contributes significantly to the development of PCNSL
[378]. Increased IL-10 levels in CSF indicated poor KPS
scores and reduced PFS or OS periods [377, 379, 380].
In a prospective study, CSF IL-10 levels were measured
in 66 intracranial tumors, 26 of which were PCNSL and
40 of which were other brain tumors. The PCNSL lev-
els were significantly higher than the other brain tumor
levels. The level of IL-10 in the CSF was reduced in all
patients after therapy but rose in most recurrence
patients. Higher levels of IL-10 in CSF were linked to a
shorter PFS [377]. The results suggest that IL-10 lev-
els in the CSF may be a sensitive biomarker for differ-
ential diagnosis, early relapse monitoring, prognosis
assessment, and evaluating the effectiveness of PCNSL.
High level of IL-10 in CSF increases TAMs filtration in
PCNSL, leading to shorter PFS (p=0.04) [381].

Apart from the aforementioned biomolecules, some
other biomolecules, such as PAX5 [320], FOXO1 [320]
and Mismatch repair protein MSH2 [218], have also
been found to be closely associated with the prognosis of
PCNSL. Table 4 presents the outcomes of investigations
utilizing biomolecules as PCNSL prognostic markers.
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Challenges and future perspectives

Currently, multiple prognostic markers are applied to
predict the prognosis of PCNSL patients (Fig. 4). Basic
PCNSL patient characteristics, imaging, treatments
and subtypes help determine PCNSL prognosis. How-
ever, the sensitivity, specificity, and survival benefit of
the predictors are usually unsatisfactory for routine
screening.

The prognosis scoring systems are commonly used in
clinical practice, and therefore receive the most atten-
tion. For IPI scoring, the classification of PCNSL ‘clinical
staging’ directly impacts on the patients’ scores. Some
researchers classified PSNCL as grade I-II (tumors all
located on the same side of the diaphragm), while other
researchers classified PCNSL as grade IV (diffuse or dis-
seminated involvement of one or more extra-lymphatic
organs). This difference in classification may affect the
accuracy of IPI scoring.

Nottingham/Barcelona prediction score, which is
modified form of the IPI score, and the Taipei score are
used less frequently. Therefore, the accuracy of assessing
the prognosis of PCNSL using the above scoring systems
needs large population validation.

Currently, the internationally recognized and more
widely used score for assessing PCNSL prognosis in clini-
cal practice are the MSKCC and the IELSG score. The
MSKCC prognostic model has a selection bias due to the
reason that the study population is usually from the same
institution [257].

IELSG score sometimes cannot be performed in
PCNSL patients due to the lack of CSF protein results.
Patients with PCNSL show occupying intracranial lesions
with perifocal edema, and are at risk of increased intrac-
ranial pressure and potential complications. Therefore,
lumbar puncture is not always performed in routine clin-
ical practice [207].

In addition, both the MSKCC and the IELSG score are
based on retrospective studies, and the treatment regi-
mens of most patients are based on HD-MTX. With the
advances in the clinical management of PCNSL, such as
the widespread use of MATRIix protocols, these models
may not always be applicable to today’s PCNSL treatment
paradigm.

In recent years, more prognostic studies are per-
formed based on laboratory hematological tests. Clini-
cally used hematological markers, such as ALC, LLR,
NLR and Hb are cost-effective, easily accessible, and to
some extent, can reflect patient treatment and progno-
sis. However, it should also be noted that they are not
as sensitive and specific for PCNSL. These indicators
are susceptible to tumor comorbidities and complica-
tions, such as anemia, cachexia, chronic inflammation,
and organ insufficiency.
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Ki67, MYC, BCL2, BCLS6, p27, H3K4,
H3K27, PD-1, PD-L1, PD-L2, Ku80,
CD105,MSH2, GLUT1, GIUT3, p-

mTOR, p-S6, PTEN, MYD88, and
IL-10.

Proteins

W CD79b, MYD88, and ABCB1

miRNAs, snRNAs, MYC,
PD-1, PD-L2

ALC, NLR, LLR, Hb,

| Routine hematologlcal
Sll, LMR and TBIL

clinical indicators

Prognostic markers for PCNSL

Fig.4 An overview of the prognostic factors currently utilized to predict PCNSL. Abbreviations: ABCB1, ATP Binding Cassette Subfamily B Member
1; ALC, Lymphocyte count; ECOG PS, The Eastern Cooperative Oncology Group Performance Status; GLUT, Glucose transporter protein type; H3K27,
Histone H3 lysine 27; H3K4, Histone H3 lysine 4; Hb, Hemoglobin; IELSG, International Extranodal Lymphoma Study Group; IL-10, Interleukin-10

IPI, International Prognostic Index; LLR, Lactate dehydrogenase/lymphocyte ratio; LMR, Lymphocyte/monocyte ratio; miRNA, MicroRNA; MSKCC,
Memorial Sloan-Kettering Cancer Center score; MYD88, Myeloid differentiation major response gene; NLR, Neutrophil/lymphocyte ratio; PD-1,
Programmed cell death-1; PD-L1, Programmed cell death-ligand1; PD-L2, Programmed death-ligand 2; SlI, Systemic immune inflammatory index;

snRNA, Small nuclear RNA; TBIL, Total bilirubin

C-MYC and BCL2 are two of the most studied proteins
as they are associated with the DEL subtype classifica-
tion of PCNSL. The DEL subtype can not only predict
the PCNSL prognosis alone, but can also be combined
with the IPI score to improve the prediction accuracy.
The significance of new prognostic markers (e.g., RNA,
DNA and proteins) in assessing PCNSL prognosis is
being investigated. The factors that currently have clear
prognostic significance for PCNSL include MYC, PD-1,
MyD88"F mutation, ki67, PD-1, c-MYC and IL-10 in
CSE. To date, the prognostic efficacy of most factors is
controversial. The role of some key factors in predicting
PCNSL prognosis is unclear, such as the proto-oncogene
serine/threonine (Ser/Thr) protein kinase 1 (PIM1), a
known target for somatic hypermutation mechanisms in
PCNSL [150, 320, 383].

Since the presented prognostic biomarkers or models
for PCNSL are still unsatisfactory; new effective prognos-
tic biomarkers and/or models are required to assist clini-
cians in determining the clinical progression of PCNSL
and achieving more accurate therapeutic stratification.

Firstly, combining traditional tests with existing
prognostic models can improve the accuracy of PCNSL
prognosis. For example, the MSKCC score combined
with LLR can effectively improve the accuracy of
prognostic assessment in low and intermediate-risk
groups [258]. Secondly, new body fluid biopsy tech-
niques (including circulating tumor DNA, circulating
tumor cells, cell-free RNA, tumor cultured platelets
and exosomes) should be considered to be included
in PCNSL prognostic models. The potential utility
of liquid biopsy for early detection and management
of cancer has emerged as a promising alternative way
over traditional tissue sampling methods [384]. Thirdly,
some prognostic genes, including somatic mutations,
copy number variants, fusion gene alterations, may
have an impact on PCNSL prognosis. Taking MYD88 as
an example, it can influence PCNSL prognosis through
both aberrant expression and mutations. Future stud-
ies require subgroup analysis based on marker vari-
ants. Moreover, almost all current prognostic studies
are retrospective. Prospective studies are needed to aid
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better stratification of PCNSL patients, and assessing
the technical robustness and reproducibility of the pro-
posed biomarkers by implementing stringent inclusion
and exclusion criteria, so that patient inconsistency
can be reduced. Besides, multicenter studies should
be conducted through international collaborations. To
improve the accuracy of study results, large-scale, for-
ward-looking studies are needed. Finally, some novel
factors have been found to express in specific PCNSL
populations. For sample, N-linked oligosaccharides
[385], PI3BK/AKT/mTOR [362] pathway and oxidative
stress [362] have been reported in relapsed or MTX-
resistant PCNSL patients. PCNSL prognostic models
should be developed in the future for EBV-positive,
HIV-positive and rituximab populations, as well as for
populations with alternative treatment methods (such
as BTK inhibitors, proteasome inhibitor [386], and
hematopoietic stem cell transplantation). However, due
to low prevalence of PCNSL, multicenter, large-scale
population and prospective studies of prognostic fac-
tors should require global collaboration.

With advances in testing technology and the devel-
opment of large-scale, multicenter, prospective and
international collaborative clinical studies, the tech-
nical challenges of testing PCNSL samples and the
problem of biased patient data selection have been grad-
ually overcome. New prognostic assessment models are
expected to enter the clinics to assist clinicians in their
decision-making.

Conclusion and prospect

In summary, the pathogenesis of extranodal lymphoma
involves a variety of mechanisms, including genetic alter-
ations, immune dysregulation and viral infection. Viral
infections are an important causative factor in extran-
odal lymphoma, including HP, EBV, HBV, HCV and
HIV [387]. The pathogenesis of extranodal lymphoma
of B-cell, T-cell and NK-cell origin varies widely. The
exact pathogenesis of extranodal lymphoma is still being
explored and is thought to be a complex interplay of envi-
ronmental and genetic factors.

Extranodal lymphoma differs from common diseases at
the site of origin or secondary lymphoma involving that
site, but its clinical presentation and imaging features
are often nonspecific. Therefore, a pathological biopsy
is required to confirm the diagnosis. The diagnostic pro-
cess involves evaluating the location, pathological type,
extent, stage, immunophenotype, molecular biology, and
patient-related factors of the disease. Tissue biopsy and
immunohistochemistry are most important in determin-
ing the specific subtype and cell origin. Staging and risk
stratification are crucial for designing an appropriate
treatment plan.

Page 26 of 38

The treatment approach depends on the stage and sub-
type of the disease. For localized disease, radiotherapy or
chemotherapy alone may be effective in some cases. How-
ever, for advanced or disseminated disease, a combination
of radiotherapy and chemotherapy is typically recom-
mended. Conventional chemotherapy alone has limited
success in relapsed/refractory cases. ASCT after achiev-
ing remission can benefit selected patients, while alloge-
neic transplantation is being explored for refractory cases.

Individualised treatment based on pathogenesis is
important in extranodal lymphoma. Clinical trials have
relatively focused on inhibitors targeting the PI3K/
Akt/mTOR, PD-1/PD-Ls, and BCR pathways, showing
promising results in relapsed/refractory extranodal lym-
phoma. In addition to specific pathway inhibitors, pan-
pathway inhibitors are also being extensively studied. For
example, MS-553, a protein kinase C (PKC) inhibitor,
can act on several classical signaling pathways, such as
the PI3K/Akt/mTOR pathway, the MEK/ERK pathway,
and the NF-kB pathway [388]. CTLA-4 inhibitors, DNA
methyltransferase inhibitors, chimeric antigen recep-
tor T-cell therapy are also being explored in relapsed/
refractory lymphomas, and there is hope for future use
in extranodal lymphomas as well [389].

In conclusion, a comprehensive approach combining
radiotherapy, chemotherapy, targeted therapy, immuno-
therapy, and transplantation offers the best chance for
successful management of extranodal lymphoma. Further
research is needed to better understand the underlying
mechanisms and optimize treatment strategies for this
complex disease.
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