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Abstract 

In this study, we aim to develop and validate a radiomics model for pretreatment prediction of RPS6K expression in 
hepatocellular carcinoma (HCC) patients, thus helping clinical decision-making of mTOR-inhibitor (mTORi) therapy. 
We retrospectively enrolled 147 HCC patients, who underwent curative hepatic resection at First Affiliated Hospital 
Zhejiang University School of Medicine. RPS6K expression was determined with immunohistochemistry staining. 
Patients were randomly split into training or validation cohorts on a 7:3 ratio. Radiomics features were extracted 
from T2-weighted and diffusion-weighted images. Machine learning algorithms including multiple logistic regres-
sion (MLR), supporting vector machine (SVM), random forest (RF), and artificial neural network (ANN) were applied 
to construct the predictive model. A nomogram was further built to visualize the possibility of RPS6K expression. The 
area under the receiver operating characteristic (AUC) was used to evaluate the performance of diagnostic models. 
174 radiomics features were confirmed correlated with RPS6K expression. Amongst all built models, the ANN-based 
hybrid model exhibited best predictive ability with AUC of 0.887 and 0.826 in training and validation cohorts. ALB was 
identified as the key clinical index, and the nomogram displayed further improved ability with AUC of 0.917 and 0.845. 
In this study, we proved MRI-based radiomics model and nomogram can accurately predict RPS6K expression non-
invasively, thus providing help for clinical decision making for mTORi therapy.

Key points 

•	 RPS6K expression can reflect mTOR pathway on/off status, which is essential for mTOR inhibitor (mTORi) 
therapy. However, there is no non-invasive and accurate tool available for RPS6K expression in practice.

•	 Utilizing radiomics and machine learning algorithms, we explored and validated the feasibility of T2 phase- and 
DWI phase-derived high-dimension features for pretreatment prediction of RPS6K expression in HCC patients.
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Introduction
Liver cancer, particularly hepatocellular carcinoma 
(HCC), is responsible for a significant amount of cancer-
related mortality worldwide [1]. Despite advancements in 
surgical techniques and targeted therapies, the outlook 
for HCC patients remains bleak [2, 3]. However, recent 
research has highlighted the crucial role of molecular 
alterations and activation of specific oncogenic pathways 
in the development of liver cancer [4–7]. In this article, 
we discuss the significance of visualizing these key mol-
ecules and how it can aid in the precision management of 
liver cancer.

Early studies by Boyault S, et al. proposed a transcrip-
tomic signature that classified HCC into six subgroups 
based on gene expression patterns. Notably, specific acti-
vation of the Akt pathway was detected in G1 and G2 
HCCs, indicating the potential for Akt pathway-related 
therapy decisions [8]. The PI3K-Akt-mTOR signaling 
pathway is frequently activated in about 50% of HCCs 
[9–12]. Previous studies have demonstrated overexpres-
sion of the mTOR pathway in multinodular HCC and its 
correlation with increased post-liver transplantation (LT) 
HCC recurrence [13]. Villanueva et  al. [14] found that 
chromosomal gains in RICTOR and positive p-RPS6 are 
associated with HCC recurrence. Studies have shown 
promising results with the early combination of everoli-
mus and sorafenib in liver transplantation for HCC, 
confirming the potential of mTOR inhibitors (mTORi) 
for improving patient outcomes [15, 16]. However, the 
response to mTORi treatment varies widely in liver trans-
plantation for HCC, emphasizing the need for a reliable 
classifier for mTOR activation in HCCs. The ribosomal 
protein S6 kinase (RPS6K) is the downstream effector 
of mTOR signaling and is considered a molecular surro-
gate of mTOR activation [17]. The current pretreatment 
confirmation of RPS6K expression relied on immuno-
histochemistry staining (IHC) on fine-needle aspiration 
(FNA) extracted specimens. As an invasive approach, 
FNA may result in severe complications. In addition, the 
very limited sample volume cannot reflect the heteroge-
neous background of the whole tumor, thus the FNA is 
limited in practice.

Radiomics, generally known as the high-throughput 
and quantitative feature mining from medical images 
and subsequent analysis [18, 19], is becoming widely uti-
lized in cancer research, including tumor subtype diag-
nosis, gene/protein expression prediction, chemotherapy 
response evaluation, molecular phenotype classification 
and tumor microenvironment depiction [20–22].Based 

on the literature above, we thus hypothesized that: i) In 
HCCs, different expression levels of RPS6K were differ-
ently represented on pretreatment contrast-enhanced 
magnetic resonance imaging (CE-MRI) images in radi-
omics dimension; ii) both the expression level and 
expression difference of RPS6K in HCCs can be quantifi-
ably predicted based on the pretreatment CE-MRI.

Herein, starting from a retrospective way and with 
multiple machine learning algorithms applied, we devel-
oped and validated contrast-enhanced MRI (CE-MRI)-
based radiomics method for non-invasive and accurate 
prediction for RPS6K expression in HCC patients.

Results
Clinicopathological features of the study population
A total of 147 patients (male versus female: 126:21; mean 
age, 56.46 ± 10.85  years, ranging from 28 to 79  years) 
were enrolled. Among the included patients, 58 patients 
were determined as RPS6K-High group, while 89 were 
RPS6K-Low. As shown in Table 1, we found that tumor 
size, serum platelet, and serum albumin level were sig-
nificantly related to RPS6K expression.

The extraction of radiomics feature correlated with RPS6K 
expression
A total of 174 radiomics features were found significant 
(Mann–Whitney U tests, two-sides p < 0.05), including 
89 DWI and 85 T2 features in the training cohort. The 
optimal combination of complementary predictive fea-
tures was chosen with the mRMR algorithm. The top ten 
important features were shown in Supplementary Fig. 2a. 
Interestingly, T2 features possessed a higher impor-
tance value than DWI features according to the mRMR 
importance ranking. This is probably due to the higher 
resolution of T2 Phase, rendering a better reflection of 
the tumor texture. We also observed that wavelet-based 
features played an important role in model construction. 
These features, extracted after decomposition by undeci-
mated 3D wavelet transform, could further reflect the 
spatial heterogeneity at multiple scales within HCC.

Development of radiomics model for RPS6K expression
For the prediction model based on DWI features, 
the top-five mRMR-rank DWI features were selected 
through fivefold cross validation experiment, which 
were DWI_RLN_LLH, DWI_Strength_HHL, DWI_GLN_
LLL, DWI_contr, DWI_SZHGE. And the ANN-based 
model exhibited the best performance with an AUC of 
0.843 (95%CI: 0.765–0.920) for the training cohort and 
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0.717(95%CI: 0.559–0.843) for the validation cohort 
(Fig.  1a). For T2 phase features, the SVM-based model 
built with seven T2 features showed the best perfor-
mance both in the training and validation cohort (train-
ing cohort: 0.713, 95%CI:0.614–0.811, validation:0.802, 
95%CI: 0.653–0.908), as shown in Fig. 1b. The T2 features 
included T2_SZLGE, T2ZSN_HHH, T2_autoc, T2_ZSN_
HLL, T2_RLN_HLH, T2_cshad, T2_LGZE_HHH. For the 
multi-modality features, the ANN-based hybrid model 
displayed the best performance among four algorithms. 
This model was developed with six radiomics features, 
which were T2_SZLGE, DWI_RLN_LLH, T2ZSN_HHH, 
T2_autoc, T2_ZSN_HLL, DWI_Strength_HHL, displayed 
with an AUC of 0.887 (95%CI: 0.810–0.941) for the train-
ing cohort and 0.826 (95%CI: 0.680–0.925) for the vali-
dation cohort (Fig.  1c). The hybrid model presented a 
better performance than other two single phase-based 
models (Supplementary Fig.  2b). The detailed descrip-
tion of radiomics features was listed in Supplementary 
Table  1. The performance of three other hybrid mod-
els developed by various methods in validation cohort 
were as follows: SVM-based model with an AUC of 
0.790(95%CI:0.648–0.886), MLR-based model with an 
AUC of 0.790(95%CI:0.649–0.885), RF-based model with 
an AUC of 0.752(95%CI:0.596–0.861). The detailed per-
formance of the T2 model and DWI model developed by 
other machine learning algorithms were shown in Sup-
plementary Table 2.

Development of the predictive nomogram for RPS6K 
expression
Six clinical indices were selected (Mann–Whitney U or 
Chi-suqare test, two-sided p < 0.05), including tumor 
size, PLT, ALB, GGT, TB, and DB. The clinical model was 
constructed with multiple logistic regression algorithm, 
exhibiting the lowest AIC value of 141.4, and a mediocre 
diagnostic ability (training cohort: 0.727, 95% CI: 0.630–
0.824; validation cohort: 0.679, 95% CI: 0.515–0.842, 
Fig.  2a). Then we conducted the multivariable analysis 
founding that the model incorporating the ALB with 
RadScore displayed the lowest AIC (value = 73.8) score. 
Next, we explored the possibility to construct a nomo-
gram with ALB and RadScore, and the nomogram dem-
onstrated the best performance among all built models, 
with an AUC of 0.917 (95%CI: 0.847–0.962) in the train-
ing cohort and 0.845 (95%CI: 0.702–0.937) in the valida-
tion cohort, as shown in Fig. 2b-c. The calibration curves 
for the combination nomogram were shown in Fig. 3a. In 
both training and validation cohorts, non-significant sta-
tistic deviations (training cohort: p = 0.4983; validation 
cohort: p = 0.4473) were determined with the H–L test, 
indicating the goodness-of-fit of the models. The AUC 
comparison showed that the nomogram outperformed 

Table 1  Clinical characteristic of study population

Continuous variables are expressed as mean ± standard deviation

Categorical variables given are the number of patients unless indicated 
otherwise

HBV Hepatitis B virus, PLT Platelet, ALB Albumin, ALT Alanine aminotransferase, 
AST Aspartate aminotransferase, GGT​ Gamma-glutamyl transferase, FBG Fasting 
blood glucose, TB Total bilirubin, DB Direct bilirubin, IB Indirect bilirubin, AFP 
α-fetoprotein, CEA Carcinoembryonic antigen, CA19-9 Carbohydrate antigen 
19-9. The tumor size were calculated by chi-square method. PLT, ALB, GGT, TB 
and DB were calculated by Mann-Whitney U test

Characteristic RPS6K High(n = 58) RPS6K Low
(n = 89)

P-value

Age 0.784

   ≥ 50 43 69

   < 50 15 20

Gender 0.918

  Male 50 76

  Female 8 13

Differentiation 0.612

  Good 27 46

  Poor 31 42

Tumor size 0.020

   ≥ 5 cm 36 72

   < 5 cm 22 17

Tumor number 0.979

  Single 41 64

  Multiple 17 25

Microvascular invasion 0.292

  Yes 24 46

  No 34 43

Macrovascular invasion 0.996

  Yes 20 32

  No 38 57

Lymph node metastasis 0.067

  Yes 0 3

  No 58 86

Cirrhosis 0.098

  Yes 46 58

  No 12 31

HBV infection 0.623

  Yes 38 63

  No 20 26

PLT 150.5(99.25,188) 165(124,219) 0.030

ALB 39.85(35.325,42.475) 42.5(38.7,44.9)  < 0.001

ALT 29.5(20,42.25) 32(21,48) 0.0643

AST 33(24,53) 32(25,47) 0.0704

GGT​ 64.5(35.25,104.75) 83(47,163) 0.042

FBG 4.875(4.4375,5.785) 4.95(4.48,5.65) 0.470

TB 14(10,18) 14(11,16.5) 0.047

DB 5(3,8.675) 5(4,6) 0.035

IB 8(6,10.075) 9(7,10.2) 0.180

Serum AFP 45.1(6.25,737.175) 31.1(5.2,1905.9) 0.176

Serum CEA 2.5(1.75,3.75) 2.5(1.6,3.5) 0.509

Serum CA19-9 10(4.9,14.6) 8.7(4.7,16) 0.809
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Fig. 1  The performance of radiomics-based predictive models for RPS6K expression in the training set and the validation set: a DWI single-phase 
radiomics features; b T2 single-phase radiomics features; c Multi-modality Hybrid features
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Fig. 2  The clinical model and the nomogram for visualization of RPS6K expression in HCCs. a The performance of built clinical model is assessed 
with AUC; b The nomogram can help calculate and visualize RPS6K expression status; c The performance of built nomogram is assessed with AUC​
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Fig. 3  Performance comparison of built models and DCA analysis. a Calibration curve in the training and validation cohort. b The comparison of 
diagnostic ability of clinical model, radiomics model, and nomogram. c The clinical utility of the combined nomogram was evaluated by decision 
curve analysis (DCA). In the DCA analysis, the black dashed line indicated nomogram, and the red dashed line indicated hybrid radiomics models. In 
the comparison plot, the blue line indicated nomogram, the orange line indicated hybrid model, and the green line indicated clinical model
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the hybrid radiomics model and the clinical model 
(Fig.  3b). However, Delong-test showed that non-signif-
icance between the nomogram, clinical model, and radi-
omics model in both training and validation cohorts, 
indicating though the improvement was achieved, it was 
not significant. The clinical utility of the combined nom-
ogram was evaluated by decision curve. As the figure is 
shown in Fig. 3c, the combined nomogram (black lines) 
showed a more promising clinical utility than the hybrid 
radiomics model (red line).

Discussion
HCC is a highly heterogeneous entity with frequent 
molecular alteration. To the credit of the development 
of next-generation sequencing technology, the crucial 
role of molecular heterogeneity in hepatocarcinogenesis 
is becoming much more noted. Previous studies demon-
strated that the mTOR pathway was highly activated in 
HCC tissues, cirrhotic liver tissues from HCC patients, 
high-grade HCC, and poorer prognostic subtype [23–
25]. Under this background, researchers attempted to 
classify HCCs into different subtypes based on molecular 
mutation to guide clinical decision making, like G1-G6 
classification and S1-S3 classification. It has been noted 
that inhibition of the mTOR pathway could prevent HCC 
progression [26] and protect the liver from irradiation-
induced damage for those with recurrent HCC [27]. 
Evidence from clinical trials indicated that Sirolimus 
use could improve recurrence-free survival (RFS) and 
overall survival (OS) of LTx for HCC [28, 29]. As muta-
tion frequency of the mTOR pathway in HCC patients is 
about 50%, the mTORi therapy is not appropriate for all, 
and it’s necessary to identify the mutation status of the 
mTOR pathway in HCC patients before mTORi applica-
tion. However, current confirmation of mTOR pathway 
in HCCs relies on IHC staining of FNA-extracted speci-
mens or resected specimens on specific key molecules 
invloed in mTOR pathway, like pMTOR and RPS6K. As 
an invasive method, FNA can result in hemorrhage and 
abdominal tumor planting. For patients with large HCC, 
it can lead to tumor rupture and thus highly risky and 
inappropriate. In addition, considering the heterogene-
ity background, the limited specimen volume may not be 
enough, and the information can be misleading. In gen-
eral, there is no available method to get whole-scale het-
erogeneity of HCC. Therefore, it is important to develop 
a practical method that is non-invasive, accurate, and 
capable of reflecting the whole-scale heterogeneity of 
HCC.

The emergence of Radiomics provides the possibility 
to grasp the full-view heterogeneity of HCC in a non-
invasive and accurate way [30, 31]. It’s been proved that 
with radiomics features extracted, deciphering tumor 

characteristics from the macro-to-micro level is no 
longer a fairy tale [32]. After a comprehensive literature 
retrieval, we found there was no available radiomics-
based method to determine mTOR signaling activation 
status or mTOR pathway key molecule expression predic-
tion. Integrating artificial intelligence, i.e. machine learn-
ing and deep learning, it is promising to fill the exited 
gap between bench to clinical practice. Thus, we carried 
out this pilot study from a retrospective angle, integrat-
ing clinical parameters, CE-MRI radiomics features, 
and machine learning algorithms to develop the pre-
treatment classifier, guiding mTORi selection in HCCs 
management regarding different RPS6K expression level 
RPS6K expression and low expression from a radiomics 
perspective.

Of the six significant clinical indices, the combination 
of ALB, TB, and GGT was identified as the best indices. 
The clinical model achieved an AUC of 0.727 and 0.679 
in the training and validation cohort, respectively, which 
was only mediocre in our opinion. We next assessed the 
performance of radiomics-based methods. 174 features 
were significantly different between opposite RPS6K sta-
tuses. The mRMR-based importance ranking was applied 
to identify the most critical features of the single-phase 
(DWI/T2) and hybrid phases. To avoid the bias deriv-
ing from the single algorithm, we utilized MLR, SVM, 
RF, and ANN algorithms in model construction (shown 
in Supplementary Table  2). We compared the diagnos-
tic ability between the single phage (DWI/T2) radiomics 
model and the hybrid (DWI and T2) model. Both single-
phase (DWI/T2) radiomics models outperformed the 
clinical model, and the T2 feature-based model showed 
a slightly better performance than DWI feature-based 
model. The hybrid model, integrating both T2 and DWI 
features, displayed better diagnostic performance than 
single-phase features-derived models, achieving an AUC 
of 0.887 and 0.826 in the training and validation cohorts. 
We then questioned whether adding a clinical index 
could further improve the diagnostic ability. As expected, 
with the addition of ALB, the nomogram yielded much-
improved performance, with an AUC of 0.917 and 0.845 
in training and validation cohorts, respectively. All these 
results answered that the MRI-radiomics difference did 
exist between HCC patients of opposite RPS6K status 
and strongly demonstrated that MRI-based radiomics 
models could help clinical evaluation of RPS6K expres-
sion of HCC patients in a non-invasive and accurate fash-
ion, further providing pretreatment evidence for mTORi 
therapy.

Some limitations of this study should be noted. First, 
as this study was retrospective, potential selection bias 
might exist, thus hampering the results’ reproducibil-
ity and comparability. Second, the study consisted of a 
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relatively small research scale from a single center, which 
limited the universal value of the study results. To further 
improve the reliability of the results, the spatial univer-
sality, the clinical translational value, and a larger sample 
scale from independent medical centers were necessar-
ily required in further studies. During the nomogram 
model construction stage, we could further investigate 
the fusion model based on both radiomics features and 
clinical factors to enhance the accuracy of model and we 
could try to make our propose more interpretable.

In conclusion, with multiple machine learning algo-
rithms applied, we successfully developed and validated 
MRI-radiomics models, both single-phase and multi-
modality, and the nomogram for RPS6K expression in 
HCC patients in a non-invasive and accurate manner. 
Our research can provide informative clues for mTORi 
therapy management.

Materials and methods
Study population
The study retrospectively enrolled and evaluated patients 
diagnosed with liver mass and treated from January 2018 
to May 2019 in First Affiliated Hospital Zhejiang Univer-
sity School of Medicine (FAH-ZJU). The overall workflow 
of the proposed study was shown in Fig. 4. Based on the 
IHC score of RPS6K, enrolled patients were categorized 
into RPS6K high and low groups. For model construction 
and validation, patients were randomly divided into the 
training cohort (n = 104) and validation cohort (n = 43) 
on a ratio of 7:3.

The ethical approval of this study was obtained from 
the Human Research Ethics Committee (HREC) of FAH-
ZJU (No.2018768). Informed consent from patients 
was waived for the retrospective usage of their medical 
images, clinical information and biospecimen. All the 
identities information were recoded to protect patients’ 
privacy. The inclusion criteria were as follows: (1) com-
plete pre-surgery gadoxetic acid enhanced MRI (within 
two weeks); (2) paraffin-embedded surgical tumor bio-
specimen; (3) complete clinical information. The exclu-
sion criteria were as follows: (1) distal metastasis or 
concurrent malignancies; (2) unqualified MR images, i.e., 
broken, missing, or strongly affected by artificial crafts; 
(3) small tumor, i.e., tumor size smaller than 2 cm on the 
maximum diameter; (4) incomplete clinical information. 
The patient recruitment process and inclusion/exclusion 
criteria were shown in Supplementary Fig. 1.

Baseline clinical and histopathological characteris-
tics were as follows: age, gender, HBV infection status, 
serum liver-kidney function, serum tumor markers (AFP, 
CEA, CA19-9), liver cirrhosis, tumor maximum diam-
eter, tumor number, tumor differentiation grade, micro-
vascular invasion, lymph node metastasis, and distal 

metastasis. All biochemical blood tests were performed 
before surgery.

Immunohistochemistry staining
A tissue microarray containing 147 HCC samples. In 
brief, following histopathological examination, a single 
core with a 2.0-mm diameter was extracted from each 
sample and placed on a tissue array (Xinchao Company, 
Hangzhou). The IHC staining for RPS6K was conducted 
according to the manufacturer’s protocols (Cell Signaling 
Technology, Phospho-S6 Ribosomal Protein, Ser235/236, 
D57.2.2E). Protein expression levels were evaluated 
based on the staining intensity (scored as 0 points 
for pale, 1 point for mild, 2 points for moderate, and 3 
points for intense) and the percentage of positive cells 
relative to the total cells in each field (scored as 0 points 
for < 1%, 1 point for < 25%, 2 points for 25–50%, 3 points 
for 50–69%, and 4 points for ≥ 70%). Protein expression 
was expressed as the multiplied score, which was calcu-
lated as multiplied score = intensity of staining ∗ percentage ∗ 100% . The 
final score for each patient was determined based on the 
consensus of two pathologists, who were kept blinded to 
the clinicopathological information. The median value of 
the multiplied score was chosen as the cut-off value for 
RPS6K status grouping.

Image acquisition
The pretreatment MR images were obtained from 
the Picture Archiving and Communication Systems 
(PACS) of FAH-ZJU. All MR examination was carried 
out with GE SIGNA Architect 3.0  T. Patients fasted for 
4–6  h before the scan, which was performed after the 
injection of gadoxetic acid (0.025  mmol/kg, Consun 
GAPENSUANPU’AN ZHUSHEYE, 15 mL:7.04 g, Guang-
zhou Consun Pharmaceutical Co., Guangzhou, China) at 
a rate of 2 mL/s via an injector. Then 20 mL saline was 
injected at the same rate. The signal of HCC is lower than 
the normal liver, while in T2 phase, the signal of HCC is 
higher. In DWI phase, the signal of HCC is higher even 
when the lesion is too small to be diagnosed in other 
phases. From our previous experience, delineation of 
the HCC lesion is much easier and timesaving in T2 and 
DWI phases. Thus, T2 and DWI phase are selected for 
further radiomics research. The detailed information of 
DWI and T2 Phase were described in the Supplementary 
Materials.

Regions of interest segmentation
The open-source software ITK-SNAP (http://​www.​itksn​
ap.​orge) was utilized to perform the region of interest 
(ROI) contour [33], as shown in Fig. 5. ROIs were manu-
ally contoured by two senior radiologists specializing in 

http://www.itksnap.orge
http://www.itksnap.orge


Page 9 of 14Yang et al. Molecular Biomedicine            (2023) 4:22 	

Fig. 4  The overall workflow of the proposed study. The process includes four main steps: (1) Determination of RPS6K expression in HCCs based on 
IHC staining; (2) Delineation of ROI in studied MRI phases; (3) Extraction of radiomics features and further analysis; (4) Predictive models construction 
and evaluation
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Fig. 5  Typical IHC staining and delineation of the ROI on MRI of HCCs with different RPS6K expression. IHC staining based RPS6K expression (a, HCC 
with high RPS6K expression; d, HCC with low RPS6K expression). Undelineated and delineated image of contrast-enhanced T2-weighted imaging 
(b, high RPS6K expression; e, low RPS6K expression). Undelineated and delineated image of contrast-enhanced diffusion-weighted imaging (c, high 
RPS6K expression; f, low RPS6K expression)
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abdomen diagnosis on studied phases. A chief radiologist 
further performed a final check on all segmentation.

Radiomics feature extraction
Radiomics features were extracted from delineated 
tumor ROI on both phases. This process was conducted 
using an open source radiomics package in MATLAB 
2016a software (MathWorks, Natick, MA, USA). The 
toolkit could be found and installed form the Add-On 
Explorer of MATLAB or be achieved by an open source 
(https://​github.​com/​mvall​ieres/​radio​mics). All images 
were resampled to the same voxel size of 1× 1× 1mm3 
using the bicubic interpolation method. The intensity 
was discretized to the same range from 1 to 64 intensity 
values to decrease the difference among all image scans. 
547 radiomics features were extracted from each ROI 
from the 3D quantitative image feature pool, including 
7 shape features, 22 histogram features, 22 Gy-level co-
occurrence matrix (GLCM) features, 13  Gy-level run-
length matrix (GLRLM) features, 13  Gy-level size zone 
matrix (GLSZM) features, 5 neighborhood gray-tone dif-
ference matrix features, and 480 wavelet-based features. 
Two modalities of MR images were involved in this study, 
so a total of 1094 radiomics features were collected from 
each patient. To account for differences in scale between 
various features, all radiomics features were normalized 
to a Z-score by subtracting the mean and dividing by the 
standard deviation. The mean and standard deviation of 
each feature in the training cohort were used to normal-
ize the corresponding features in the validation cohort.

Radiomics features selection and construction
Due to the large number of extracted features, Mann–
Whitney U tests and Max-Relevance and Min-Redun-
dancy (mRMR) algorithm were used in the training 
cohort to perform the features dimension reduction and 
feature selection. First, features with a two-sided p-value 
less than 0.05 were kept. Second, the most relevant fea-
tures to the status of RPS6K expression and features 
that had minimum redundancy were retained, the spe-
cific number of radiomics features was determined by 
conducting a fivefold cross-validation experiment in the 
training cohort, and the number of features was set from 
three to ten. In the internal validation cohort, the optimal 
feature subset was identified based on the highest AUC 
value. Multiple logistic regression (MLR), support vec-
tor machine (SVM) with a gaussian kernel, random for-
est (RF), and artificial neural network (ANN) algorithms 
were utilized to construct the model and further com-
pared to determine which possessed the best ability in 
the validation cohort. The performance of different mod-
els (single-phase (DWI/T2) radiomics model and multi-
modality hybrid radiomics model) were further evaluated 

by AUC. 95% confident confidence interval (CI) was also 
recorded. The hybrid radiomics model calculated the 
radiomics score (RadScore) corresponding to the pre-
dicted value for each patient.

Construction of clinical model and combined nomogram 
model
We first built a clinical index-based model for the expres-
sion of RPS6K. To further evaluate the potential additive 
value of clinical factors, the selected clinical index and 
RadScore were used to construct a predictive nomo-
gram. We employed a two-step feature selection strategy 
to obtain the most relevant clinical factors, i.e., univari-
ate analysis and multivariable analysis approach. First, 
clinical factors used Mann–Whitney or chi-square test 
with a two-sided p-value less than 0.05 were selected. 
The backward search method, using Akaike Informa-
tion Criterion (AIC) score, was employed to determine 
the optimal combination of variables for model devel-
opment. This approach carefully evaluated the quality 
of the developed models, taking into consideration both 
the binomial deviance and the number of variables in the 
selection process [34]. Then, the combination with the 
lowest AIC score was chosen as the optimal combination 
for nomogram construction. The Delong-test method 
was used to evaluate the significance among different 
models [35]. Hosmer–Lemeshow (H–L) test was used to 
assess the goodness-of-fit of the nomogram. The calibra-
tion curve was applied to evaluate the performance of the 
nomogram. The degree of overlap between the calibra-
tion curve and the diagonal in the graph represented the 
predictive accuracy of the proposed nomogram. Decision 
curve (DCA) analysis was employed to assess the addi-
tive value of the clinical index. The threshold of pre-
dicted probability using the nomogram was plotted on 
the x-axis of the decision curve, while the y-axis showed 
the clinical decision net benefit for patients based on the 
classification result at that threshold. The decision curves 
for the treat-all scheme and the treat-none scheme were 
used as reference points in the DCA.

Statistical analysis
For continuous variables, Mann–Whitney U tests were 
employed, while chi-square tests were used for qualita-
tive variables. Radiomics features were all considered 
continuous variables, and twelve clinical factors (PLT, 
ALB, ALT, AST, GGT, FBG, TB, IB, serum AFP, serum 
CEA, and serum CA199) were also treated as continu-
ous variables. Age, gender, differentiation, tumor size, 
tumor number, microvascular invasion, and lymph node 
metastasis were considered discrete variables. Mann–
Whitney U tests were used for continuous variables, 
while chi-square tests were used for discrete variables. 

https://github.com/mvallieres/radiomics
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All statistical tests were two-sided, and a P-value less 
than 0.05 was considered statistically significant. Statisti-
cal analyses were performed using IBM SPSS Statistics 20 
and R software (version 3.4.1; http://​www.​Rproj​ect.​org). 
Nomograms and calibration tests were created using the 
"rms" package. The calibration process used a resam-
pling algorithm with 1000 random experiments and 50 
samples in each resampling experiment to evaluate the 
proposed model. The "generalhoslem" package was used 
to assess the goodness of fit of logistic models using the 
Hosmer–Lemeshow test. In this study, the risk was split 
into ten quantiles, and a false ordinal logistic regression 
model was set for calibration. The AUC analysis was con-
ducted using the "pROC" package, and DCA was per-
formed using the "dca.R" function. Hyperparameters for 
model construction were determined through a fivefold 
cross-validation test conducted using the training cohort.
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