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Abstract 

SARS-CoV-2 and its variants, with the Omicron subvariant XBB currently prevailing the global infections, continue 
to pose threats on public health worldwide. This non-segmented positive-stranded RNA virus encodes the multi-
functional nucleocapsid protein (N) that plays key roles in viral infection, replication, genome packaging and bud-
ding. N protein consists of two structural domains, NTD and CTD, and three intrinsically disordered regions (IDRs) 
including the  NIDR, the serine/arginine rich motif  (SRIDR), and the  CIDR. Previous studies revealed functions of N protein 
in RNA binding, oligomerization, and liquid–liquid phase separation (LLPS), however, characterizations of individual 
domains and their dissected contributions to N protein functions remain incomplete. In particular, little is known 
about N protein assembly that may play essential roles in viral replication and genome packing. Here, we present a 
modular approach to dissect functional roles of individual domains in SARS-CoV-2 N protein that reveals inhibitory 
or augmented modulations of protein assembly and LLPS in the presence of viral RNAs. Intriguingly, full-length N 
protein  (NFL) assembles into ring-like architecture whereas the truncated  SRIDR-CTD-CIDR  (N182-419) promotes filamen-
tous assembly. Moreover, LLPS droplets of  NFL and  N182-419 are significantly enlarged in the presence of viral RNAs, and 
we observed filamentous structures in the  N182-419 droplets using correlative light and electron microscopy (CLEM), 
suggesting that the formation of LLPS droplets may promote higher-order assembly of N protein for transcription, 
replication and packaging. Together this study expands our understanding of the multiple functions of N protein in 
SARS-CoV-2.
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Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) continues to evolve as it spreads around 
the world, with the Omicron subvariant XBB currently 
dominating the global infections[1]. SARS-CoV-2 is a 
non-segmented positive-stranded RNA virus with strong 
infectivity and high lethality [2]. The genome of SARS-
CoV-2 is almost 30,000 nucleotides (nts), which encodes 
16 non-structural proteins (nsp1-nsp16) and 4 structural 
proteins (Spike, S; Envelope, E; Membrane, M; Nucle-
ocapsid, N) [3–6]. The N protein is located near the 3’ 
end of the genome and is one of the most abundant viral 
proteins [7]. The N protein assembles into nucleocapsids 
to wrap and protect the viral genomes. The structural 
proteins S, E and M form the envelopes of SARS-CoV-2 
virus particles that wrap the nucleocapsids [8, 9].

N is a multifunctional protein that involves in the 
virus life cycle and cell response to protect the viral 
genome and regulate the host immune system during 
virion packaging, as well as participation in the replica-
tion and synthesis of genomic RNAs [10–14]. N consists 
of two structural domains, the N-terminal RNA binding 
domain (NTD) and the C-terminal dimerization domain 
(CTD), which are incorporated into three intrinsic disor-
dered regions (IDRs) at the N-terminus of NTD  (NIDR), 
between the NTD and CTD with the serine/arginine 
rich motif  (SRIDR), and at the C-terminus of CTD  (CIDR) 
(Fig. 1a). The sequences of N and the structures of NTD 
and CTD are highly conserved among SARS-CoV-2 and 

other β-coronaviruses (CoV), such as SARS-CoV, MERS-
CoV and HCoV-OC43 [3, 15]. The NTD has a unique 
RNA binding pocket, whereas the CTD dimerizes in 
solution and occasionally forms tetramers in the presence 
of  CIDR [16–18]. Small molecules designed to target NTD 
and CTD binding sites could inhibit RNA binding and 
oligomerization of N, thereby decreasing the virus repli-
cation [15]. N is also highly immunogenic due to its high 
abundancy and interference with host immune systems 
during viral infections [19–23], suggesting N as a poten-
tial target for diagnosis and biotherapy development.

Filamentous nucleocapsid-like structures in β-CoV 
including SARS-CoV and SARS-CoV-2 characterized by 
cryo-electron microscopy (cryo-EM) and cryo-electron 
tomography (cryo-ET) have been previously reported 
[24–30], recent cryo-ET analyses of SARS-CoV-2 virions 
in  situ revealed low-resolution globular-shaped ribonu-
cleoprotein (RNP) complexes [31–35]. In the meantime, 
recent studies on SARS-CoV-2 N protein revealed liq-
uid–liquid phase separation (LLPS) in the presence of 
SARS-CoV-2 viral RNAs [29, 36–43]. The  SRIDR contains 
a SR-rich motif that may facilitate multimerization of N 
and transcription-regulating sequence (TRS)-dependent 
LLPS [44, 45], indicating that LLPS formation could initi-
ate nucleocapsid-like assembly that is essential for tran-
scription, replication and virion packaging.

Here, we present a modular approach to investigate 
functions of individual domains of SARS-CoV-2 N in 
protein assembly and LLPS. Recombinant expression 

Fig. 1 Modular SARS-CoV-2 N constructs. a Cartoon illustration of modular N constructs. b SDS-PAGE analysis of purified modular N constructs
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and purification of the full-length N protein  (NFL) from 
Escherichia coli (E. coli) revealed ring-like assembly in 
the presence or absence of cellular RNAs. Intriguingly, 
the  SRIDR-CTD-CIDR  (N182-419) construct with the trun-
cated  NIDR-NTD showed filamentous assembly. Further 
truncations of either IDR resulted in ring-like assembly, 
indicating that both  SRIDR and  CIDR adjacent to CTD are 
indispensible for filament formation, whereas  NIDR-NTD 
might be inhibitory to filamentous assembly. The higher-
order structures, including ring-like and filamentous 
assembly, were recapitulated in  vitro when the N con-
structs were incubated with previously proposed pack-
aging signals (PS) including 5’ UTR (nts 1–478) [46, 47], 
PS100 (nts 691–789) [48], PS576 (nts 19,786–20,361) [48, 
49], PS9 (nts 20,080–21,171 that partially encodes nsp15-
16) [50], or PS97 (nts 29,027–29,129) [48, 51]  regions 
of the SARS-CoV-2 genome, whereas 3’ UTR could not 
facilitate protein assembly, validating that these regions 
likely contain viral assembly and packaging signals. In 
addition to previous studies that extensively character-
ized the  NFL for LLPS, we further characterized these 
modular constructs of N for LLPS and observed signifi-
cantly enlarged droplets containing cylindrical filaments 
for  SRIDR-CTD-CIDR in the presence of SARS-CoV-2 
5’ UTR, suggesting that formation of LLPS droplets 
may favor the higher-order assembly of N essential for 
viral RNA synthesis and virion packaging. Together our 
results provide modular functions of individual domains 
of N that further complete our understanding of the 
multi-functional N protein, which may aid novel diagno-
sis and antiviral development against SARS-CoV-2.

Results
Modular characterizations of SARS‑CoV‑2 N constructs 
in higher‑order assembly with cellular and viral RNAs
We designed a modular approach with domain trunca-
tions on N-terminus and C-terminus, resulting in eight 
different modular constructs of N (Fig.  1). Recombi-
nant expression in E. coli and purification of the  NFL 
under physiological relevant salt (150 mM NaCl) or high 
salt (2  M NaCl) conditions resulted in the peak elution 
volumes (PEVs) of the first peak (p1) as 9.89  mL and 
11.06 mL in gel filtration chromatography (Fig. 2a), sug-
gesting possible formations of higher-order assembly. 
Absorbance measurement showed the existence of cellu-
lar nucleic acid under 150 mM NaCl condition, whereas 
minimal nucleic acid was detected after gel filtration in 
the presence of 2  M NaCl, which was typically used to 
remove nonspecifically bound cellular nucleic acids and 
to induce salt bridge interactions that are frequently 
observed in protein assembly interfaces [37, 52, 53]. Neg-
ative staining revealed heterogeneous ring-like assembly 
of N under physiological relevant salt condition with the 

diameter ranging from 20–35  nm (Fig.  2a-b, black p1), 
which led to the low-resolution three-dimensional (3D) 
reconstruction of a representative ring-like structure 
(Fig. 2c).

We generated eight additional truncated constructs 
consisted of different modular domains to further char-
acterize their functions in higher-order assembly (Fig. 1). 
Although all truncated constructs could form higher-
order structures to some extent under 2 M NaCl condi-
tion (Figs.  2 and 3), indicative of the universal effect of 
salt on protein assembly [54, 55], only those constructs 
that contained CTD but not NTD formed higher-order 
assembly in the presence of RNAs under physiological 
relevant salt condition (Fig.  4), consistent with previous 
studies that CTD domain of N was prone to oligomeri-
zation [30, 55–57]. The ring-like assembly no longer 
existed when an additional NTD domain were included, 
yielding constructs  N45-419 and  N45-364, indicating that 
NTD played an inhibitory role in higher-order N assem-
bly (Fig. 4d-e). The fact that inclusion of  NIDR domain in 
 NFL facilitated ring-like assembly suggested the presence 
of  NIDR domain reduced the inhibitory effect of NTD in 
higher-order N assembly (Fig. 2a).

N182‑419 forms filamentous assembly
Previous studies observed filamentous nucleocapsid-
like assembly of N in β-CoV including SARS-CoV and 
SARS-CoV-2 [24–30], whereas recent cryo-ET analyses 
of SARS-CoV-2 virions in  situ revealed low-resolution 
globular-shaped viral RNPs [31–35], suggesting that the 
filamentous form of RNP might only exist in the pro-
cess of RNA synthesis and the beginning of genome 
packaging to protect the viral genome. Intriguingly, we 
observed flexible filamentous assembly of  N182-419 under 
both high and physiological relevant salt conditions 
with helix width ranging from 10–30  nm that generally 
matched the diameter of the previous ring-like assembly 
(Fig.  2d-e), yielding a low-resolution 3D reconstruction 
of the representative filament with an averaged diameter 
of 20  nm (Fig.  2f ). The fact that only  N182-419 construct 
assembled into filaments suggests that the  NIDR and NTD 
domains might have inhibitory effects, whereas  SRIDR 
and  CIDR have displayed augmented effects on filamen-
tous assembly.

SARS‑CoV‑2 packaging signals induce filamentous 
assembly in vitro
Previous studies demonstrated that the SARS-CoV-2 5’ 
UTR, PS100, PS576, PS9 and PS97 regions on the viral 
genome could facilitate N protein assembly that are 
essential for viral ribonucleoprotein formation, virion 
packaging and viral replication [46, 50, 58]. In order 
to evaluate the impacts of viral RNAs on N protein 
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Fig. 2 SARS-CoV-2  NFL and  N182-419 protein assembly under physiological relevant conditions. a The PEVs of SARS-CoV-2  NFL protein under 
physiological relevant salt condition with retained cellular RNAs (black) and high salt condition with removed cellular RNAs (blue) by gel filtration 
chromatography and the corresponding representative negative stain micrographs. Scale bars, 100 nm. b Diameter distribution of  NFL protein 
ring-like particles. c 2D averages and 3D reconstruction of  NFL negative stain data. Scale bar, 20 nm. d The PEVs of SARS-CoV-2  N182-419 protein 
under physiological relevant salt condition with retained cellular RNAs (black) and high salt condition with removed cellular RNAs (blue) by gel 
filtration chromatography and the corresponding representative negative stain micrographs. Scale bars, 100 nm. e Diameter distribution of  N182-419 
filamentous nucleocapsid-like particles. f 2D averages and 3D reconstruction of  N182-419 negative stain data. Scale bar, 20 nm
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assembly, we first obtained the dimeric  NFL and  N182-419 
by buffer exchanging from high salt to low salt (20 mM 
NaCl) to disrupt existing protein assembly (Fig.  5). The 
absence of nucleic acids was confirmed by absorbance 
measurement and SDS-PAGE detection (Supplementary 
Fig. 1). Either 5’ UTR, PS100, PS576, PS9, PS97 or 3’ UTR 
of SARS-CoV-2 were folded in the presence of 10  mM 
 Mg2+ before incubation with the dimeric N constructs 
under physiological relevant salt condition (150  mM 

NaCl) with a ratio of RNA to protein as 1:100, which 
is determined according to an estimated average ratio 
of RNA to protein based on previous structural infor-
mation of N-RNA complexes of single-stranded RNA 
(ssRNA) viruses [59], since the full-length SARS-CoV-2 
N-RNA complex is not resolved. Gel filtration chroma-
tography revealed large shift of the PEVs of different N 
constructs from ~ 20  mL to prior to 10  mL in the pres-
ence of different viral RNAs (Fig.  5). The presence of 

Fig. 3 The assembly of different N constructs under 2 M NaCl high salt condition. a‑g The gel filtration chromatography profiles and representative 
negative staining images with ring-like structures of (a)  N45-419, (b)  N45-364, (c)  N45-246, (d)  N45-181, (e)  N182-364, (f )  N247-419 and (g)  N247-364 under 2 M 
NaCl condition with cellular RNAs removed. Scale bars, 100 nm. h‑i Diameter distributions of (h)  N45-419,  N45-364,  N45-246,  N45-181 and (i)  N182-364, 
 N247-419,  N247-364 ring-like assembly showed variable sizes. White arrows indicate ring-like structures
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Fig. 4 The assembly of different N constructs under 150 mM NaCl physiological relevant salt condition. a‑g The gel filtration chromatography 
profiles and representative negative staining images with ring-like structures of (a)  N182-364, (b)  N247-419, (c)  N247-364, and without ring-like structures 
of (d)  N45-419, (e)  N45-364, (f)  N45-246 and (g)  N45-181 under 150 mM NaCl condition with cellular RNAs. Scale bars, 100 nm. White arrows indicate 
ring-like structures

(See figure on next page.)
Fig. 5 NFL and  N182-419 assembly in the presence of SARS-CoV-2 RNAs in vitro. a‑b The dimeric  NFL (a) and  N182-419 (b) without cellular RNAs were 
obtained by buffer exchange from 2 M NaCl high salt condition to 20 mM NaCl extremely low salt condition (red), then incubated under 150 mM 
NaCl physiological relevant salt condition in the presence of SARS-CoV-2 5’ UTR (yellow), 3’ UTR (green), PS9 (purple), PS576 (magenta), PS100 (cyan), 
PS97 (brown), 2 M NaCl high salt condition (blue) or 150 mM NaCl physiological relevant salt condition (black) with representative negative staining 
images under each condition. Scale bars, 100 nm. White arrows indicate filamentous structures
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Fig. 5 (See legend on previous page.)
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viral RNAs were confirmed by absorbance measure-
ment. While the  NFL could assemble into short filaments, 
 N182-419 could assemble back to long filaments in the 
presence of PS, but not 3’ UTR, validating that PS could 
facilitate N assembly. Electrophoresis mobility shift assay 
(EMSA) suggested that all PS bind to  NFL and  N182-419 
constructs (Supplementary Fig. 1), indicating that higher-
order assembly might be facilitated by direct binding of 
PS to N proteins. We also tested if we could recapitulate 
the N protein assembly in vitro by incubations of the N 
constructs under different salt conditions without viral 
RNAs. Although we have not observed any N assem-
bly under physiological relevant salt condition (150 mM 
NaCl), under high salt condition (2  M NaCl) the  NFL 
showed some ring-like assembly whereas  N182-419 showed 
filamentous assembly as expected, confirming that the N 
assemblies we observed could reversibly disassemble into 
dimeric N constructs.

N and  N182‑419 constructs form variable phase separated 
droplets that could be enlarged by SARS‑CoV‑2 5’ UTR 
SARS-CoV-2 N protein undergoes LLPS to form par-
tially ordered gel-like condensates for RNA compaction 
that could potentially facilitate viral RNA synthesis and 
genome packaging [29, 36–39, 41]. However, modular 
functions of individual domains of N in LLPS and the 
impacts of LLPS on N assembly remain underexplored. 

We found that all N constructs formed droplets of similar 
diameters in the presence or absence of 5’ UTR (Fig.  6, 
Supplementary Fig.  2), except that the droplets formed 
by  NFL and  N182-419 were significantly enlarged by add-
ing 5’ UTR RNA (Fig.  6a-c). We used correlative light 
and electron microscopy (CLEM) to correlate fluores-
cent droplets of  N182-419 and 5’ UTR under cryo-electron 
microscopy (cryo-EM), in which we observed curved fila-
mentous structures of roughly 20 nm diameter (Fig. 6d). 
This result suggests that the compact SARS-CoV-2 
RNA-N protein condensates formed by LLPS could be 
enlarged in order to facilitate N assembly for viral RNA 
synthesis and packaging.

Discussion
Many ssRNA viral nucleocapsids that form filamentous 
assembly were found to pack as ring-like assembly using 
X-ray crystallography or cryo-EM [60–62]. SARS-CoV-2 
N protein is highly conserved and abundant, and previ-
ous studies also suggested that N might assemble into 
filaments to protect viral RNA during transcription, rep-
lication, and packaging [24–30].

In this study, we first observed formation of ring-like 
structures in  NFL that suggest helical assembly of the 
nucleocapsid in ssRNA viruses [60, 63]. Subsequently, we 
generated multiple modular constructs of SARS-CoV-2 N 
protein and uncovered the impact that individual domain 

Fig. 6 LLPS droplets formed by  NFL and  N182-419 could be enlarged by viral 5’ UTR that facilitates protein assembly. a  NFL and  N182-419 induced phase 
separation and formed droplets of variable sizes. Scale bars, 10 μm. b Viral 5’ UTR enlarged LLPS droplets formed by  NFL and  N182-419. Scale bars, 
10 μm. c Diameter analysis of ~ 1000 droplets of each construct revealed that droplets formed by  NFL and  N182-419 in the presence of 5’ UTR were 
significantly enlarged. d CLEM correlated fluorescent LLPS droplets formed by  N182-419 under cryo-EM, in which curved filamentous structures were 
observed (outlined by red dashed line). Scale bar, 20 nm. ****P < 0.0001 by two-tailed Student’s T-test
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has on protein assembly. Intriguingly,  N182-419 that con-
tains  SRIDR-CTD-CIDR domains could assemble into fila-
ments that may play essential roles as templates for viral 
transcriptions and replications: The  SRIDR domain could 
drive LLPS to suppress host immune system that is criti-
cal for viral genome packaging [41], and undergo phos-
phorylation that is critical for transcriptions [64]; The 
CTD domain could bind to RNA and oligomerize during 
packaging [30], and bind to nsp3 to play a crucial role in 
transcriptions [65]; The function of  CIDR domain is asso-
ciated with M that also affects viral packaging [41].

Several segments on the viral genomes of SARS-CoV 
and SARS-CoV-2 have been previously suggested as the 
packaging signals, including 5’ UTR, PS9, PS69, PS97, 
PS100 and PS576 [41, 47–49, 48]. Intriguigingly, the fila-
ment could be assembled in the presence of PS, whereas 
addition of 3’ UTR viral RNA would not result in fila-
ment formation. Multiple studies have shown that muta-
tions and repetitive structural motifs in 5’ UTR were 
critical for viral packaging in various coronaviruses [46, 
47, 66–69], whereas PS9 has been recently identified as 
the minimal packaging signal element for SARS-CoV-2 
virus-like particle [50].

All constructs that contained CTD formed either ring-
like or filamentous higher-order assembly that could be 
disrupted by inclusion of the NTD domain in the con-
structs under the physiological relevant salt condition 
that preserved cellular RNAs, which suggested that NTD 
could suppress higher-order N assembly. The fact that 
 NFL could still form ring-like structures indicated that 
inclusion of the  NIDR domain in  NFL could reduce the 
inhibitory effect of NTD against higher-order N assem-
bly. Previous study has reported that the N-terminus, 
 N1-209, could bind to the host factor cyclophilin A, which 
participates in replication cycle of coronaviruses and 

other viral assembly processes [70]. Since numerous pro-
teins from host cells have been suggested to interact with 
N [71, 72], it is possible that during viral transcriptions 
and replications in cells, additional viral and host factors 
may interact with NTD to completely diminish its inhibi-
tory role in higher-order N assembly so that filamentous 
nucleocapsids could be formed as templates for efficient 
viral transcription and replication. Future study of N 
assembly formations in human cells or cell lysates may 
shed light on the N-terminal functions.

LLPS has been suggested to condense viral proteins 
and RNAs for efficient packaging and replication [73–76]. 
SARS-COV-2 N protein has been previously reported to 
undergo LLPS [38]. Intriguingly, we noticed that addi-
tion of viral 5’ UTR to both  NFL and  N182-419 enlarged the 
droplet size with flexible filamentous structures observed 
in  N182-419 droplets under CLEM, indicating that larger 
space might facilitate higher-order N assembly. We pro-
pose a working model of N that undergoes LLPS to con-
densate with SARS-CoV-2 genomic RNA to facilitate 
RNP assembly (Fig. 7).

In conclusion, we have carried out a modular approach 
to characterize functions of individual domains of SARS-
CoV-2 N in protein assembly and LLPS. These findings 
further complete our understandings in N protein assem-
bly that may play essential role in RNA replication and 
packaging.

Materials and methods
Modular construct design and plasmid construction
The pET28a-SARS-CoV-2-NFL plasmid was kindly pro-
vided by Guangdong Laboratory Animal Testing Insti-
tute. To investigate the function of each domain of 
SARS-CoV-2 N in protein assembly and LLPS, a modu-
lar research approach was designed based on the feature 

Fig. 7 SARS-CoV-2 N protein assembly facilitated by phase separation. SARS-CoV-2 N protein participates in viral RNA transcription and replication, 
and forms nucleocapsid-like assembly to protect the viral RNA template during transcription. N protein also initiates viral genomic RNA packaging 
that eventually forms multiple globular ribonucleoprotein complexes. LLPS induced by N protein might enable the assembly processes
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that the N protein consists of two domains and three 
intrinsically disordered regions. Centering on the two 
domains, we truncated the intrinsic disordered regions 
at the N-terminus and C-terminus step by step, and con-
structed eight different N-modular mutants. The SARS-
CoV-2-N truncations (pET-28a-N45-419, pET-28a-N45-364, 
pET-28a-N45-246, pET-28a-N45-181, pET-28a-N182-419, 
pET-28a-N182-364, pET-28a-N247-419, pET-28a-N247-364) 
were amplified with pET28a-SARS-CoV-2-NFL as the 
template and cloned into the pET-28a vector between 
NdeI and XhoI by ClonExpress®  II one step cloning 
kit (Vazyme). The 5’ UTR, PS100, PS576, PS9, PS97 or 
3’ UTR were designed by combining a T7 RNA poly-
merase promoter sequence and the hepatitis δ virus 
ribozyme (HDV) sequence to produce uniform 5’ ends, 
in addition to the desired sequence from the full-length 
SARS-CoV-2 cDNA, which was a kind gift from Beijing 
Institute of Microbiology and Epidemiology. The com-
bined sequences were inserted into the pUC-19 vector 
between HindIII and NdeI restriction sites for RNA tran-
scription and purification.

Protein expression and purification
pET28a-SARS-CoV-2-NFL and the truncated pro-
tein plasmids (Supplementary Table  1) were individu-
ally transformed into Escherichia coli (E. coli) BL21 
(DE3) strain (Novagen). E. coli cells were cultured in 
Luria–Bertani (LB) medium at 37 ℃ with 50  mg/L 
kanamycin until the OD600  reached 0.6–0.8, then the 
bacteria were induced with 0.5  mM Isopropyl β-D-1-
thiogalactopyranoside (IPTG) at 18 ℃ for 15–18 h. Bac-
teria were collected by centrifugation, resuspended in 
buffer containing 20  mM Tris–HCl pH 8.0, 150  mM 
NaCl, 10  mM Imidazole, 5% Glycerol, 1  mM phenyl-
methylsulfonyl fluoride to retain the bacterial nucleic 
acids and lysed by Ultrasonic Cell Crushe. Cell extracts 
were centrifuged at 15,000 × g  for 40 min at 4 ℃. Super-
natants were purified with Ni–NTA (GE Healthcare), 
the target protein was washed with lysis buffer and then 
eluted with a buffer containing 20 mM Tris–HCl pH 8.0, 
150 mM NaCl, 300 mM imidazole. Eluted proteins were 
concentrated by centrifugal ultrafiltration, loaded onto 
a pre-equilibrated Superdex™ 200 Increase 10/300 GL 
column in an ÄKTA-purifier (GE Healthcare), eluted at 
a flow rate of 0.4 ml/min with the same buffer contain-
ing 20 mM Tris–HCl pH 8.0, 150 mM NaCl. Peak frac-
tions were analyzed by SDS-PAGE (15%, w/v) and stained 
with Coomassie brilliant blue R-250. The peak fractions 
of proteins retaining the bacterial nucleic acids were con-
centrated to 0.5  mg/ml for negative stain EM. Bacterial 
nucleic acids were removed under 2  M NaCl condition 
with the rest of the procedure unchanged in the above-
mentioned protein purification process.

The N protein assembly was disrupted by buffer 
exchange from 2 M NaCl high salt condition to 20 mM 
NaCl low salt condition as confirmed by gel filtration 
chromatography and SDS-PAGE analysis. Fractions were 
pooled together and concentrated by centrifugal ultrafil-
tration (Millipore). All sample concentrations were deter-
mined by  A280 (NanoDrop  OneC, Thermo Scientific). 
The storage protein samples were quick-frozen by liquid 
nitrogen then kept at-80 ℃ before use.

RNA preparation
The SARS-CoV-2 5’ UTR, PS9, PS576, PS100, PS97 and 
3’ UTR DNA templates in pUC-19 plasmid (Supplemen-
tary Table  1) were amplified by Qiagen MegaPrep kits. 
Linear dsDNA templates were acquired with the regular 
forward primer and 2’-O-methylated reverse primer to 
improve 3’ end homogeneity by PCR [77] (See Supple-
mentary Table  2 for primers). The resulting DNA tem-
plates were isolated by ethanol precipitation. In  vitro 
transcription of SARS-CoV-2 RNAs were carried out 
with 1.5–2 µg DNA templates, 4 mM NTPs and 1 U/µL 
RNase inhibitor in 1 × transcription buffer containing 
40  mM Tris–HCl (pH 7.9), 0.01% TritonX-100, 20  mM 
 MgCl2, 2  mM spermidine, 10  mM DTT, and incubated 
at 37 ℃ for 3 h. The transcription products were mixed 
with 2 × denaturing gel loading buffer containing 95% 
formamide, 0.025% SDS, 10  mM EDTA, 0.025% xylene 
cyanol, and 0.025% bromophenol blue, and loaded on an 
6–10% 29:1 acrylamide:bis, 7 M urea polyacrylamide gel. 
The gel was run at 300 V for 6 h, then stained for 5 min 
in SyBrGold (Invitrogen) and visualized by UV tran-
sillumination Molecular Imager (Biorad ChemiDoc™ 
XRS +). RNA ladder was purchased in Thermo Scientific 
(SM1833). To acquire SARS-CoV-2 RNAs for assem-
bly with N protein in vitro, RNAs were gel purified and 
visualized briefly with a 254-nm UV lamp, held far from 
the gel to minimize RNA damages [78]. Then the RNAs 
were eluted from the gel overnight in elution buffer 
containing 30  mM sodium acetate (pH 5.5) and 1  mM 
EDTA on an active vortexer at 4 ℃ overnight. The result-
ing gel slurry was then filtered through 0.45  μm filters 
(Minisart® Syringe Filter, Sartorius). The resulting RNAs 
were precipitated with isopropyl alcohol to remove urea 
and salts. The products were pelleted by centrifugation at 
15,000 × g for 1 h at 4 ℃, washed with 80% cold ethanol 
for three times and dried in a Speedvac, then resuspend 
the pellet in RNase-free water. RNA was quantified using 
a NanoDrop  OneC (Thermo Scientific) and kept at -80 ℃ 
before use.

RNA refolding
The 5’ UTR, PS9, PS576, PS100, PS97 and 3’ UTR RNAs 
were added to refolding buffer (10 mM Tris–HCl pH 7.4, 
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100 mM KCl). The RNA solution was heated at 90 ℃ for 
3 min, cooled to 25 ℃ for 10 min, then added  MgCl2 to 
a final concentration of 10  mM, followed by incubation 
at 50 ℃ for 30 min and 25 ℃ for 15 min. Refolded RNA 
samples were mixed with 5 × gel loading buffer contain-
ing 10% glycerol, 0.025% xylene cyanol, and 0.025% 
bromophenol blue, and loaded on an 6% 29:1 acrylamide: 
bis polyacrylamide gel. The gel was run at 110 V for 1.5 h, 
then stained for 5 min in SyBrGold (Invitrogen) and visu-
alized by UV transillumination Molecular Imager (Biorad 
ChemiDoc™ XRS +). The refolded RNAs were kept on ice 
before use.

N protein assembly in vitro
All dimeric N constructs were incubated with refolded 
viral 5’ UTR, PS9, PS576, PS100, PS97 or 3’ UTR with a 
protein to RNA molar ratio of 100:1, at 37 ℃ for 30 min in 
the assembly buffer containing 20 mM Tris–HCl pH 8.0, 
10 mM KCl, 140 mM NaCl, 1 mM  MgCl2. In the absence 
of viral RNAs, dimeric N constructs were incubated in 
buffer containing 20 mM Tris–HCl pH 8.0, 2 M NaCl to 
obtain assembly under high salt condition. The resulting 
assembly mixtures were loaded onto a pre-equilibrated 
Superdex™ 200 Increase 10/300 GL column in an ÄKTA-
purifier (GE Healthcare), eluted at a flow rate of 0.4 ml/
min with the buffer containing 20 mM Tris–HCl pH 8.0, 
10 mM KCl, 140 mM NaCl, 1 mM  MgCl2 in the presence 
of viral RNAs, and 20 mM Tris–HCl pH 8.0, 2 M NaCl in 
the absence of viral RNAs. Peak fractions were analyzed 
by SDS-PAGE (15%, w/v) and stained with Coomassie 
brilliant blue R-250. All fractions were concentrated to 
0.5 mg/ml for negative stain EM.

EMSA assay
The 9  pmol refolded SARS-CoV-2 5’ UTR, PS9, PS576, 
PS100 or PS97 binds to  NFL protein or  N182-419 (storage 
buffer: 20  mM Tris–HCl pH 8.0, 20  mM NaCl) by the 
ratio of 1:1, 1:2, 1:4, 1:8 in buffer 10  mM Tris–HCl pH 
7.4, 10 mM NaCl, 1 mM KCl, 10 mM  MgCl2. After incu-
bating at 37 ℃ for 30 min, SARS-CoV-2 5’ UTR, PS576, 
PS100 or PS97 detect with 6% native urea gel and PS9 
1% native agarose gel (1000nts RNA for native urea gel 
is too long, 6% native urea gel can’t be detected, but data 
not show), then stained for 5 min in SyBrGold (Invitro-
gen) and visualized by UV transillumination Molecular 
Imager (Biorad ChemiDoc™ XRS +).

Fluorescence labeling and LLPS assay
The dimeric N constructs with removed cellular nucleic 
acids were labeled by fluorescence dye Oregon-Green488 
(Invitrogen, 2,161,802) with a molar ratio 10:1 between 
protein and fluorescence dye in labeling buffer 50  mM 
NaPhosphate pH 7.0, 50  mM NaCl. The mixtures were 

incubated at 25 ℃ for 1 h. To remove the excess fluores-
cence dye, the resulting mixture was buffer-exchanged 
with labeling buffer using concentrator columns with 
10  kDa cutoff (Ultrafiltration Centrifugal Tube, Milli-
pore). The SARS-CoV-2 5’ UTR and 3’ UTR were labeled 
by fluorescence dye Cy3 (Lumiprobe, #41,070) following 
the Cy3 labelling protocol [79]. The labeled proteins and 
RNAs were quantified using a NanoDrop  OneC (Thermo 
Scientific).

Oregon-Green488 labeled N constructs were diluted to 
a final concentration of 25 μM in phase separation buffer 
(50 mM Tris–HCl pH 7.5, 100 mM NaCl) containing 10% 
PEG 3350, and RNAs were added with a protein to RNA 
molar ratio of 100:1. Then the mixture was incubated at 
room temperature for 5  min. A total of 10 μL solution 
was transferred onto the glass slide, and images were col-
lected using a Zeiss-Axio Observer 7 microscope.

CLEM imaging
A total of 3 μL of the LLPS sample containing  N182-419 and 
5’ UTR was applied onto glow-discharged (45 s) Quanti-
foil Au H2 finder (R 2/1) grids (Quantifoil Micro Tools 
GmbH, Germany). The grids were blotted with filter 
paper for 2.5 s in 100% humidity at 4 ℃ with no blotting 
offset and rapidly frozen in liquid ethane using a Vitrobot 
Mark IV (Thermo Fisher). The fluorescent images were 
collected by LEICA EM Cryo CLEM microscope and 
LAS X software at 60 × magnification.

Frozen grids were then loaded into a Titan Krios cryo-
electron microscope (Thermo Fisher) operated at 300 kV 
with a 50  μm condenser lens aperture and spot size 5. 
Micrographs were collected using EPU software (Version 
2.9.0.1519REL) under various magnifications.

Negative stain EM sample preparation and data collection
Three drops of 20 μL, 20 μL, and 60 μL 0.75% uranium 
formate (UF) stain solution were applied on the para-
film (Bemis). Then, 3 μL of sample was applied on the 
glow-discharged (40  s) 300-mesh-Cu grids (Quantifoil) 
coated with a continuous carbon film and waited 60 s to 
allow sample adsorption. The grid was blotted from the 
side with a piece of filter paper and washed with 4 μL 
of washing buffer. Excessive washing buffer was blotted 
with filter paper and the grid was stained in the first two 
drops of UF followed by blotting with filter paper. Sub-
sequently, the grid was stained in the third drop of UF 
for 40 s. Excessive UF was blotted and the grid was air-
dried and stored until imaging. The grid was placed on a 
side-entry holder and loaded into a JEM-1400 operated 
at 120  kV, condenser lens aperture 150  μm, spot size 1. 
Micrographs were collected using RADIUS software on 
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a Morada G3 direct electron camera under magnification 
of 120,000 × (corresponding to a calibrated sampling of 
3.23 Å per physical pixel).

Image processing and 3D reconstruction
The 99 negative stain images of  NFL assembly were sub-
jected to EMAN2 [80] for neural network particle pick-
ing. A total of 6,152 particles were extracted in Relion 3.1 
[81] with a box size of 140 pixels. After 2D classifications 
in cryoSPARC3.1 [82], 2,384 particles were subjected to 
one round of ab-initio reconstruction and heterogene-
ous refinement to remove poor-quality particles. The 
best class was selected for homogeneous refinement, and 
the map after homogeneous refinement was displayed in 
UCSF Chimera [83].

The 21 negative stain images of  N182-419 assembly were 
processed until 2D classification following the same pro-
tocol above with a box size of 320 pixels. After 2D clas-
sification, 14,761 particles were subjected to helical 
reconstruction in cryoSPARC3.1 to obtain a low-resolu-
tion 3D density map and displayed in UCSF Chimera.

Statistics and reproducibility
All the experiments were independently repeated for 
at least three times, and no inconsistent results were 
observed. Origin software and GraphPad Prism v.9.0.0 
was used to perform statistical analyses. To determine 
the partition coefficient of indicated groups, 3 micros-
copy images were randomly selected, and the diameter 
of particles or droplets was acquired with Image J. Data 
are presented as the mean ± S.D or ± S.E.M. The box bor-
ders in the boxplots and violin plots represent the upper 
and lower quartiles (25th and 75th percentiles), and the 
center line denotes the median. A standard two-tailed 
unpaired Student’s t-test was used for statistical analy-
sis of two groups; *p < 0.05, **p < 0.01, ****p < 0.0001, and 
p > 0.05 is considered as non-significant. All the data were 
reproducible, and details of replicates are described in 
the figure legends.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s43556- 023- 00129-z.

Additional file 1: Supplementary Fig 1. EMSA analysis of  NFL or  N182-419 
binding with SARS-CoV-2 5’ UTR, PS9, PS576, PS100 and PS97. SARS-CoV-2 
5’ UTR, PS9, PS576, PS100 or PS97 (9 pmol) and  NFL protein or  N182-419 were 
combined at a ratio of 1:1, 1:2, 1:4, 1:8. After incubation at 37°C for 30 min, 
detect with 6% or 1% Native PAGE gel. Supplementary Fig 2. LLPS analy-
sis of different N constructs in the presence and absence of viral 5’ UTR. 
a-b  N45-419,  N45-364,  N45-246,  N45-181,  N182-364,  N247-419 and  N247-364 undergo 
phase separation to form variable droplets (a) without SARS-CoV-2 5’ UTR 
and (b) with 5’ UTR colocalized in the droplets. Scale bars, 10 µm. Sup‑
plementary Table 1. RNA sequences used in this study. Supplementary 
Table 2. PCR primers used in this paper.
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