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Abstract 

Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). 
BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regula-
tion, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown 
to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, 
and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases 
by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic 
genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are 
already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs 
that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, inter-
action with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be 
addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful 
or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of 
efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
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Introduction
Bromodomains (BDs) are evolutionarily conserved 
protein modules consisting of ~ 110 amino acids each 
that exclusively recognize acetylated lysine (KAc) resi-
dues in histones and other proteins. These modules 
work as pivotal epigenetic mark “readers” [1, 2]. BDs 
are ubiquitous in eukaryotes with 61 types in humans, 
and are contained in 46 different BD-containing pro-
teins (BCPs) that can be classified into eight subtypes 
(Fig.  1a). Usually, BCPs are divided into bromodo-
main and extra-terminal (BET) and non-BET families 
according to the number of BDs, domain architecture 
and homology (Fig.  1b). More  specifically, the BET 
family comprises two BDs, while the non-BET mem-
ber contains one to six conventional or atypical BDs. 
The BET family in mammals comprises BRD2, BRD3, 
BRD4, and the testis-specific BRDT [3–5], while the 
non-BET family includes histone acetyl-transferases 
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Fig. 1 Classification of BD and BCPs. a Phylogenetic tree of the human BD family. Eight subgroups are shown in different colors and numbered with 
roman numerals. The number of inhibitors reported is indicated by the different sizes of red dots. b Domain organization of representative BCPs. The 
major functions of BCPs are bolded and BD is shown in light blue
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(HATs, such as p300/CBP-associated factor (PCAF), 
general control of amino acid synthesis protein 5-like 
2 (GCN5L2), and E1A-binding protein p300 (EP300, 
p300)) [6–9], histone methyl-transferases (such as ash1 
(absent, small,or homeotic)-like (ASH1L), myeloid/
lymphoid or mixed lineage leukemia protein (MLL)) 
[10, 11], ATP-dependent chromatin remodeling com-
plexes (such as bromodomain adjacent to zinc finger 
domain 1B (BAZ1B)) [12], helicases (such as SWI/SNF-
related matrix-associated actin-dependent regulator of 
chromatin a2(SMARCA2)) [13], transcriptional coac-
tivators (such as tripartite motif-containing proteins 
(TRIMs)) [14], nuclear-scaffolding proteins (such as 
polybromo 1(PB1)) [15], among others.

Structurally, Filippakopoulos et al. uncovered the com-
prehensive structural features of human BCPs and identi-
fied the KAc-specific recognition sites of these proteins, 
using 33 crystal structures and 4 nuclear magnetic reso-
nance (NMR) models [16]. Despite considerable variation 
in sequence, BDs share a relatively conserved fold com-
prising four left-handed anti-parallel α helices (αZ, αA, 
αB, αC) linked by two hydrophobic loop regions (ZA and 
BC loops). As expected, these components constitute the 
pocket responsible for recognizing histone acetylation 
motifs. Co-crystal structures data indicate KAc is rec-
ognized by a central hydrophobic cavity, in which KAc 
is immobilized to an asparagine residue upon hydrogen 
bonding [16] (Fig.  2b). Similarly, the vast majority of 

Fig. 2 The relationship between BCPs and disease, BD structure, and inhibitor classification. a Association of BCPs with the development of diseases 
(cancer and inflammation). b The 3D structure of BRD4 BD1 and the details of the interactions of pocket with an acetylated histone peptide ligand 
(H4K8acK12ac) in the recognition. The complex structure is derived from RCSB PDB: 3UW9. c BCPs inhibitors can be divided into two categories: BET 
and non-BET inhibitors, with BET inhibitors further subdivided into pan-BET, BRD4-selective, BD1/BD2-selective, bivalent, dual-target inhibitors and 
PROTACs, and the reported non-BET inhibitors further subdivided into CBP/p300, PCAF/GCN5, TAF1, BRD7/9, BRPF and ATAD2 inhibitors



Page 4 of 38Pan et al. Molecular Biomedicine            (2023) 4:13 

small molecule BDs inhibitors bind directly to the protein 
module by forming hydrogen bonds with the conserved 
asparagine residue, mimicking the binding mode of 
KAc. Examples of small molecule BDs inhibitors include 
( +)-JQ1, I-BET762, I-BET151 and RVX-208 [17–20]. In 
parallel, non-KAc mimetic molecules can bind the mod-
ule without forming a canonical hydrogen bond with the 
asparagine residue – for instance MS7972 and ZL0590, 
which are relatively weak inhibitors.

Biologically, quite a few evidences support that BCPs 
are involved with/in transcriptional regulation, chroma-
tin remodeling, DNA damage repair, cell cycle regulation, 
cellular proliferation, oncogenesis, and inflammatory. 
Broad biological functions suggest that targeting these 
proteins may be an effective therapeutic strategy for can-
cer, inflammation, and the central nervous system (CNS) 
diseases [5, 21–23]. In a variety of types of malignant 
tumors, there is a consistent over-expression of mul-
tiple BCPs genes on which tumors depend, including 
BRD2, BRD4, ATAD2, KAT2A, etc. [24–26]. The above 
genes have been identified as oncogenes, and their over-
expression is highly correlated with aggressive cancer 
progression and poor prognosis. BRD4 is necessary for 
the proliferation and survival of various tumors (ovarian 
cancer, leukemia, multiple myeloma). It interacts with 
the positive transcription elongation factor b (P-TEFb) 
complex composed of cyclinT1/cyclin dependent kinase 
9 (CDK9) heterodimer and recruits transcription fac-
tors such as MYC, p53, and TWIST, thereby stimulating 
RNA polymerase II-dependent transcription and ulti-
mately promoting gene expression and cell cycle progres-
sion [27]. BRD4 inhibition is confirmed as an effective 
therapeutic strategy for the treatment of malignancies 
characterized by pathological activation of c-MYC [28, 
29]. In addition, genes encoding BCPs often undergo 
chromosomal translocations and generate fusions. For 
example, BRD4 fusion with the nuclear protein in tes-
tis (NUT) gene expresses the BRD4-NUT oncoprotein, 
which plays an important role in the growth mainte-
nance and differentiation block of the lethal malignancy 
NUT midline carcinoma (NMC) [30]. Moreover, other 
fusions involving BCPs genes, such as EP300 fusion 
with ZNF384, ASH1L fusion with C1ORF61, SMARCA4 
fusion with CARM1, MLL fusion with AF4, AF9, or AF10 
are also found in tumors such as hematological malig-
nancies, breast cancers, glioblastomas, driving tumor 
progression [29]. Furthermore, in the course of past 
studies on BCPs scientists have found that BCPs are also 
implicated in inflammatory responses. By recognizing 
and binding acetylated lysines of RelA (p65), BRD4 not 
only enhances NF-κB transcriptional activation but also 
facilitates P-TEFb-dependent transcription of a panel 
of pro-inflammatory NF-κB target genes. Disruption 

of the interaction between BRD4 and NF-κB reduces 
the expression of pro-inflammatory cytokines and 
chemokines such as interleukin-1β (IL-1β), IL-6, IL-12α, 
and CXCL9, resulting in anti-inflammatory effects [31, 
32]. Similarly, modulation of NF-κB-dominated inflam-
matory pathways by inhibition of BCPs provides benefits 
in the CNS diseases, such as reducing infarct volume, 
promoting recovery of brain function and preventing 
secondary damage [33] (Fig.  2a). There are robust data 
linking BCPs to cancer, inflammation and other diseases. 
Pharmacological inhibition of these proteins has shown 
promising and effective therapeutic effects in a variety of 
conditions, particularly in the treatment of cancer and 
inflammatory diseases. In the past decade, the develop-
ment of BCPs inhibitors represented by ( +)-JQ1, has 
achieved milestones [34–37], with numerous inhibitors 
successfully developed and currently under clinical tri-
als, such as Molibresib, Birabresib, CPI-0610, PLX51107, 
RVX-208, and CCS1477 (Tab. 1).

The mechanism of action of the currently developed 
drugs targeting BCPs is mainly to inhibit the interaction 
of BCPs with KAc and to down-regulate the protein con-
tent of BCPs. Therefore, we focused on a detailed review 
of the research and advance of inhibitors and degraders 
targeting BCPs. According to the classification of BCPs, 
we described the BET family and non-BET family drugs 
one by one in this paper. The review covered the history 
of drug development, structural features, biological activ-
ities, interactions with target proteins and the current 
status of clinical applications, highlighting the molecu-
lar structures and biological activities. We concluded 
the review by discussing the potential effective measures 
to develop efficient, selective and less toxic inhibitors of 
BCPs, suggesting effective strategies to overcome resist-
ance, and describing the current challenges facing inhibi-
tors of BCPs.

The BCPs inhibitors
Building on the close and rich correlation between BCPs 
and disease and the proof that interfering with BCPs-
KAc binding is an effective therapeutic strategy, there has 
been a wave of development of BCPs inhibitors in aca-
demia and industry with dazzling results [38]. Conven-
tionally, inhibitors can be categorized into two groups: 
BET inhibitors and non-BET inhibitors (Fig.  2c). Avail-
able data suggest that BET inhibitors are well-developed 
and very diverse, compared to non-BET ones, which 
are relatively few and still under development. Based on 
their selectivity and mechanism of action, BET inhibi-
tors can be further subdivided into pan-BET inhibitors, 
BRD4-selective inhibitors, BD1/BD2-selective inhibitors, 
bivalent inhibitors, dual-target inhibitors and PROTACs, 
while non-BET inhibitors can be sub-grouped into CBP/
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Table 1 BCPs inhibitors in clinical trials

Drug Interventions Phase Conditions NCT Number Status

Molibresib combination with entinostat I lymphoma, solid tumors NCT03925428 withdrawn

combination with cisplatin/etoposide I/II NUT Carcinoma NCT04116359 withdrawn

combination with fulvestrant I neoplasms NCT02964507 completed

monotherapy I NMC NCT01587703 completed

crossover assignment (rifampin/itraconazole) I neoplasms NCT02706535 completed

monotherapy NMC NCT03702036 no longer available

combinationwith androgen deprivation therapy I CRPC NCT03150056 terminated

combination with trametinib II solid tumors NCT03266159 withdrawn

monotherapy II neoplasms NCT01943851 completed

Birabresib monotherapy I AML, DLBCL NCT02698189 terminated-limited efficacy

monotherapy I NMC, TNBC, NSCLC, CRPC NCT02698176 Terminated-limited efficacy

monotherapy I NMC, TNBC, NSCLC, CRPC NCT02259114 completed

monotherapy I AML, DLBCL, ALL, MM NCT01713582 completed

monotherapy II GBM NCT02296476 terminated

combination with vidaza I/II AML NCT02303782 withdrawn

CPI-0610 monotherapy I MM NCT02157636 completed

monotherapy I lymphoma NCT01949883 completed

monotherapy I advanced malignancies NCT05391022 recruiting

combination with ruxolitinib I/II myelofibrosis NCT02158858 active, not recruiting

monotherapy II MPNST NCT02986919 withdrawn

combination with ruxolitinib III myelofibrosis NCT04603495 recruiting

PLX51107 monotherapy I/II GVHD NCT04910152 recruiting

combination with azacitidine I AML, MDS NCT04022785 recruiting

monotherapy I advanced malignancies NCT02683395 terminated

ODM-207 monotherapy I/II solid tumors NCT03035591 completed

29 monotherapy I/II advanced malignancies NCT02431260 terminated-PK variability

monotherapy metastatic RCC NCT03896815 no longer available

CC-90010 monotherapy I astrocytoma, glioblastoma NCT04047303 active, not recruiting

monotherapy I NHL, solid tumors NCT03220347 active, not recruiting

combination with temozolomide I glioblastoma NCT04324840 recruiting

combination with BMS-986158 I pediatric cancer NCT03936465 recruiting

BMS-986158 monotherapy or combination therapy I/II myelofibrosis NCT04817007 recruiting

monotherapy or combination therapy I/II advanced tumors NCT02419417 completed

combination therapy I/II MM NCT05372354 recruiting

ABBV-075 monotherapy or combination with venetoclax I cancers NCT02391480 completed

monotherapy or combination therapy I myelofibrosis NCT04480086 active, not recruiting

BI 894,999 monotherapy I advanced malignancies NCT02516553 completed

RVX208 monotherapy I/II fabry disease NCT03228940 unknown

monotherapy I/II dyslipidemia, atherosclerosis NCT00768274 completed

monotherapy II atherosclerosis, CAD NCT01058018 completed

monotherapy II CAD, dyslipidemia NCT01423188 completed

monotherapy II diabetes NCT01728467 completed

combination with rosuvastatin/atorvastatin II dyslipidemia, CAD NCT01863225 terminated

combination with atorvastatin/ rosuvastatin III diabetes, CAD NCT02586155 completed

ABBV-744 monotherapy I AML NCT03360006 terminated

monotherapy or combination therapy I myelofibrosis NCT04454658 recruiting

AZD5153 monotherapy or combination with olaparib I solid tumors NCT03205176 completed

combination with acalabrutinib I NHL NCT03527147 completed

CCS1477 monotherapy or combination therapy II advanced tumours NCT03568656 recruiting

monotherapy or combination therapy I/II haematological malignancy NCT04068597 recruiting

Sourced from https:// clini caltr ials. gov/ (March 2023)
Abbreviations used in the table: ALL Acute lymphoblastic leukemia, AML Acute myeloid leukemia, CAD Coronary artery disease, CRPC Castration-resistant prostate 
cancer, DLBCL Diffuse large B-cell lymphoma, GBM Glioblastoma multiforme, GVHD Graft versus host disease, MDS Myelodysplastic syndrome, MM Multiple myeloma, 
MPNST Malignant Peripheral Nerve Sheath Tumors, NHL Non-Hodgkin’s lymphoma, NMC NUT midline Carcinoma, NSCLC Non-small cell lung cancer, RCC  Renal cell 
carcinoma, SCLC Small cell lung cancer, TNBC Triple negative breast cancer

https://clinicaltrials.gov/
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p300, PCAF/GCN5, TAF1, BRD7/9, BRPF and ATAD2 
inhibitors. We will discuss specific classes of BET and 
non-BET inhibitors in the sections below.

BET inhibitors
Pan‑BET inhibitors
Thienotriazolodiazepines or triazolodiazepines
Back in 1996, the Mitsubishi Tanabe Pharma Corpora-
tion of Japan described in a patent a class of thienotria-
zolodiazepine-based compounds that could be used for 
the treatment and prevention of inflammatory bowel 
diseases (IBD, such as ulcerative colitis and Crohn’s dis-
ease). These compounds acted on cellular adhesion, and 
their high safety profile was verified in animal studies 
[39]. Further elaboration by the company showed that 
thienotriazolodiazepine compounds inhibited costimu-
latory signal from CD28 on T cells and had a positive 
effect in preventing rejection of organ transplantation, 
autoimmune diseases, and allergic reactions [40]. Nota-
bly in the 2009 patent report on anti-tumor agents, 
compounds containing thienotriazolodiazepine inhib-
ited the binding of acetylated histone to BCPs, effec-
tively shrinking or killing cancer cells in mammals [41]. 
Benefiting from the long-standing and extensive clini-
cal application basis of anti-anxiety and sedative drugs 
(e.g., alprazolam and triazolam) containing a benzodi-
azepine (BZD) skeleton, thienotriazolodiazepines have 
well-established druggability, including high safety, low 
toxicity, high bioavailability and synthetic  accessibility 
[42]. Also, the favorable inhibitory activity of thieno-
triazolodiazepines against BCPs makes them ideal  scaf-
folds for the construction of specific inhibitors. Inspired 
by the well-characterized pharmacology of these small 
molecules using the thienotriazolodiazepine as the 
core scaffold, Filippakopoulos and co-workers synthe-
sized a novel thieno-triazolo-1,4-diazepine ( +)-JQ1 
(1) equipped with tert-butanol esters in high yields via 
a seven-step  total  synthesis [17] (Fig.  3a). As indicated 
by differential scanning fluorimetry (DSF) test data, 
compound 1 exhibited highly selective inhibitory activ-
ity against the BET family with temperature shifts from 
4.2℃ (BRDT(1)) to 10.1 ℃ (BRD4(1)) and  Kd values from 
49 nM (BRD4(1)) to 190 nM (BRDT(1)), while the shifts 
or  Kd were hardly detectable for non-BET proteins. How-
ever, unlike its enantiomer, (-)-JQ1 (2) did not interact 
with BDs. Further experiments showed that compound 
1 could competitively inhibit the binding of Histone H4 
peptide characterized by four acetylation modifications 
to BRD4, reaching an  IC50 of 33 nM for BD1 and 77 nM 
for BD2. The co-crystal structure indicated that com-
pound 1 fitted nicely into the KAc pocket of BRD4, while 
there was a key hydrogen bond between the triazole ring 
and asparagine (Asn140 in BD1, Asn429 in BD2). In the 

ZA and BC loops, the formation of hydrophobic interac-
tions with conserved residues also serves to stabilize the 
complex (Supplementary Fig.  1a). On the other hand, 
the collision of compound 2 with residues Leu92 and 
Leu94 in the spatial structure provides an explanation 
for its lack of biological activity. Displacing BRD4 from 
nuclear chromatin, compound 1 was shown to effectively 
cause nuclear protein in testis (NUT) midline carcinoma 
(NMC) regression and improve the overall survival, 
accompanied by induction of squamous differentia-
tion, proliferation inhibition, and apoptosis activation. 
In multiple myeloma (MM), compound 1 could effec-
tively down-regulate MYC transcription due to its BET 
inhibitory activity, contributing to an anti-proliferative 
effect in a time- and dose-dependent manner. As a first-
in-class selective BET inhibitor, compound 1 is currently 
employed in therapeutic research for various diseases, 
including cancers, inflammation diseases, diabetes, and 
HIV infection [43–47]. Unfortunately, due to its short 
half-life, compound 1 is only widely used as a tool drug 
or chemical probe.

Meanwhile, another triazolodiazepine I-BET762 
(molibresib, I-BET or GSK525762A, compound 4), was 
developed by the Medicines Research Centre of Glaxo-
SmithKline (GSK), as a potent BET inhibitor (Fig.  3a). 
Compound 4 is derived from the BZD GW841819X 
(3), which was originally used as an apolipoprotein A1 
(ApoA1) enhancer  (EC50 = 440 nM) [48]. Screened from 
a structure–activity relationship (SAR) optimization aim-
ing at improving the physicochemical properties and 
pharmacokinetic (PK) parameters, compound 4 shows 
high affinities toward different BET proteins, thus being 
considered a pan-BET inhibitor [49]. As a highly selec-
tive BET inhibitor, compound 4 not only has no inhibi-
tion towards non-BET family, but also has no binding 
activity to non-BCPs. Similar to compound 1, compound 
4 is located in the KAc recognition pocket and its tria-
zole moiety forms hydrogen bonds with the conserved 
Asn140 and Tyr97 (Supplementary Fig.  1b). Data  from 
the  literature demonstrates that compound 4 has a high 
affinity  (Kd = 50.5 − 61.3  nM) and potent inhibitory 
capacity  (IC50 = 32.5 − 42.5 nM) for BET. This compound 
can selectively down-regulate a variety of lipopolysac-
charide (LPS)-induced inflammatory genes and sup-
press the expression of IL-6, IL-1β, IL-12α, interferon 
beta 1 (IFN-β1) and chemokine (C-X-C motif ) ligand 9 
(CXCL9), which are pivotal cytokines and chemokines 
in the inflammatory response [18, 49]. In subsequent 
reports, inhibitor 4 has been utilized as an anti-tumor 
compound, especially in hematological malignancies and 
NMC. Indeed, several clinical trials (mainly phase I-II) 
have been performed to ascertain toxicity, and ideal dose 
while an expansion study has investigated the safety, PK/
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Fig. 3 Chemical structures of pan-BET inhibitors. a triazolodiazepine pan-BET inhibitors 1 − 10. b Dimethylisoxazole pan-BET inhibitors 11 − 33. The 
key scaffolds are highlighted in red and activity test methods are bolded. FRET, fluorescence resonance energy transfer; TR-FRET, time-resolved FRET. 
FA/FP, fluorescent anisotropy/fluorescence polarization; HTRF, homogeneous time-resolved fluorescence
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pharmacodynamics (PD), and clinical therapeutic  effect 
of compound 4 in subjects with hematological malignan-
cies and solid tumors. The successful development of the 
first two triazolodiazepine inhibitors has inspired scien-
tists to identify other BET inhibitors, resulting in numer-
ous novel molecules have been developed successively.

Birabresib (also called OTX015 or MK8628, compound 
5), is derived from the replacement of the tert-butanol 
group by the 4-hydroxyphenyl group at the C6 of com-
pound 1 (Fig. 3a). Compound 5 retains the triazolodiaz-
epine as its core skeleton. It was initially discovered in a 
screening for anti-cell adhesion activity and subsequently 
used as an inhibitor of BET binding to acetylated histones 
 (IC50 = 92 − 112 nM), capable of potent anti-tumor pro-
liferative ability with a  GI50 of 60 nM to 200 nM for hema-
tological malignancies. Compound 5 shows remarkable 
inhibitory activity against BET in  vitro, and excellent 
anti-tumor activity against a variety of solid tumors and 
hematological malignancies in vivo, including breast can-
cer, nasopharyngeal carcinoma, lung cancer, NMC, glio-
blastoma, neuroblastoma, acute myeloid  leukaemia, and 
lymphoma [50–52]. Multiple Phase I clinical trials were 
conducted to investigate the safety, efficacy, and recom-
mended dose of compound 5. These studies have shown 
that the most common side effects are fatigue, gastro-
intestinal disorders, hyperbilirubinemia and reversible 
thrombocytopenia [53, 54].

Emerging evidence suggests that BET inhibitors can 
effectively regulate the expression of disease-associated 
genes, including MYC, BCL2 and NFκB, by interfering 
with the interaction between BET and chromatin acetyl-
lysine tails. Constellation Pharmaceuticals described a 
novel selective BET inhibitor CPI-0610 (8) with isoxa-
zoloazepin (regarded as an atypical triazolodiazepine) 
as the scaffold (Fig.  3a). In their early research, the 
active fragment aminoisoxazole 6  (IC50 = 20  μM) was 
obtained by DSF screening and was shown to form two 
hydrogen bonds with Asn140 and one water-mediated 
hydrogen bond with Tyr97 [55]. To fill the hydropho-
bic region of the binding pocket to optimize compound 
activity, a range of compounds was then prepared by 
fusing fragment 6 with a seven-membered  heterocy-
cle (7). A systematic SAR study showed that the opti-
mal compound 8 exhibited considerable BET inhibitory 
activity (TR-FRET,  IC50 = 40  nM for BRD4; AlphaLisa 
Assay,  IC50 = 18 − 220  nM for BET) and metabolic 
stability, illustrating that combined hydrogen bond-
ing and hydrophobic interactions are critical for activ-
ity optimization in such compounds [56]. Compound 
8 was identified as a candidate for clinical trials due to 
its ability to suppress tumor growth and down-regulate 
MYC substantially in vivo, as well as its acceptable drug 
toxicity [56, 57]. Several clinical trials were conducted 

to establish its efficacy, safety and toxicity profile in 
patients with lymphoma, MM, myelofibrosis, and 
advanced malignancies [58].

Given the emerging attention on the role of BET in the 
central nervous system (NCS) pathology, BET inhibi-
tors that can cross the blood–brain barrier (BBB) are 
of special interest [59] (Fig.  3a). Changning Wang et  al. 
introduced different lengths of fluorinated alkyl and 
fluorinated polyethylene glycol side chains into com-
pound 1 at the C6 position to prepare a series of novel 
BET inhibitors displaying moderate to potent inhibitory 
activity with an  IC50 of 0.028 to 50.2 μM, that might be 
used as potential positron emission tomography (PET) 
radiotracer [60]. Among them, compounds 9 and 10 
were selected as candidates for further studies. Molecular 
docking indicates that both can occupy the KAc binding 
pocket, while 4-chlorophenyl forms hydrophobic inter-
actions with the “WPF shelf” (Trp81, Pro82, and Phe83) 
and the fluor substituted side chain forms hydrogen 
bonds with Asn140 and Tyr97 deep inside the pocket. 
Compound 10 was shown to exhibit a highly selective 
binding activity to BET family proteins, a reasonable BBB 
penetration and metabolic stability. After being labeled 
with 18F, PET evaluation shows that [18F] 9 and [18F] 10 
are able to effectively penetrate the BBB with a maximum 
standardized uptake values of 1.7 and 2, respectively. 
Therefore, this study provides an exploitable tool ([18F] 
10) to investigate the distribution of BET in the brain 
and unveils new strategies for the development of PET 
radiotracer.

Dimethylisoxazoles
In 2011, Heightman et  al. found that N-methyl pyrroli-
dinone (NMP, 11), a colorless transparent oily solvent, 
demonstrated weak inhibitory activity against BRD2 
and BRD4 with an  IC50 of 8.9 and 6.0  mM respectively 
[61] (Fig. 3b). Further activity studies revealed that com-
mercially available compound 12 exhibited a relatively 
stronger potency against BRD2(1)  (IC50 ≈3  μM) and 
BRD4(1)  (IC50 ≈7  μM). Determination of its co-crystal 
structure confirmed that its dimethylisoxazole fragment 
mimicked KAc and lay in the binding pocket rather than 
the quinazolinone [62]. Considerable effort was devoted 
to the mono- or di-substituted modification of 5-dime-
thyl-4-phenylisoxazole scaffolds to overcome its suscep-
tibility to oxidation and to explore the interaction with 
the binding pocket. Among these molecules, compound 
13 showed considerable selectivity for BET over non-
BET proteins (CREBBP, PCAF, and PB1) and inhibitory 
activity against BRD2(1) and BRD4(1) with an  IC50 of 
1.6 and 4.8 μM respectively. Contemporary, GSK identi-
fied a second class of ApoA1 up-regulators (compounds 
14 and 15) characterized by a 3,5-dimethylisoxazole (or 
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isoxazoloquinoline) that bound strongly to BDs. Replac-
ing the acid at the 3-position of quinoline with a carboxa-
mide group and introducing methoxy at the 6-position 
(16) improved the physicochemical properties and BET 
inhibitory activity of these compounds. Cyclization of the 
4-position secondary amine with the 3-position carboxa-
mide to obtain azolidinones imposed restrictions on rota-
tion, thereby weakening the inhibition of CYP450 by 
these compounds (17 and 18) [63, 64]. The introduction 
of pyridin-2-ylmethyl (IBET-151, or GSK1210151A, 19) 
led to a reduced CYP liability and higher potency. In pre-
clinical models, compound 19 could reduce the produc-
tion of pro-inflammatory cytokine IL-6 induced by LPS, 
avoiding LPS-induced mortality in mice. Evaluation of 
the effectiveness of the treatment showed that compound 
19 has excellent efficacy against a panel of leukemic cell 
lines bearing diverse MLL fusions [20]. Mechanistically, 
compound 19 was shown to promote cell cycle arrest 
and apoptosis through displacing BRD3/4, polymerase-
associated factor complex (PAFc), and super elongation 
complex (SEC) from chromatin, culminating in the sup-
pression of important oncogenes (including BCL2, MYC 
and CDK6). Indeed, 19 exhibits promising therapeutic 
effects in mouse models of leukemia. Overall, this indi-
cates that displacing bromodomian proteins from chro-
matin may be a valuable epigenetic treatment strategy.

Since the activity of 19 in whole blood assays was not 
very gratifying, different structural modification strate-
gies were used to enhance the non-cellular potency or 
reduce the bias between cellular and non-cellular assays 
in vitro, as well as to lower its CYP activity. GSK reported 
a new molecule derived from 19 by replacement of the 
pyridine with ether at the imidazoquinolinone 1-posi-
tion and introducing a 4-tetrahydropyranyl at the 2-posi-
tion, namely I-BET282 (20) [65] (Fig. 3b). As a pan-BET 
inhibitor, compound 20 can selectively bind to all BET 
bromodomains with high affinity  (pIC50 = 6.4 − 7.7 and 
 Kd = 8.1 − 140  nM). The nitrogen and oxygen atoms of 
indimethylisoxazole respectively bind to the Tyr97 and 
Asn140 in the pocket, through a conventional or water-
mediated hydrogen bond. The branched-chain meth-
oxypropan-2-yl can bind into the “WPF shelf” region 
and form a hydrophobic interaction with Leu92, while 
the tetrahydro-2H-pyran withdraws from the channel 
formed by Trp81 and Leu92 (Supplementary Fig.  1c). 
As a result, compound 20 and the bromodomain of 
BRD4 complement each other perfectly. In preclinical 
tests using three different animal models, compound 20 
demonstrates moderate to low clearance and acceptable 
oral bioavailability, as well as I-BET282E (the mesylate 
salt form of 20) shows significant arthritis therapeutic 
efficacy in Wistar rats. Although I-BET282E progressed 
into phase I clinical trial to evaluate its safety, PK/PD, and 

preliminary clinical activity in subjects with advanced 
or recurrent solid tumors (NCT02630251), the trial was 
ultimately terminated in 2017 due to the development of 
I-BET762(compound 4) and a better understanding of its 
risk–benefit profile.

PLX51107 (21) is characterized by a dimethylisoxa-
zole but with distinct structural skeleton (Fig.  3b). It is 
obtained through a scaffold-based and crystallography-
guided design strategy [66]. Differently from other BET 
inhibitors, in addition to forming hydrophobic interac-
tions with the protein, the benzoic acid in the structure 
of 21 also forms a salt bridge with Lys91 while crossing 
the ZA loop. The identification of salt bridges suggests 
that additional binding may be allowed in the ZA loop 
to promote shape complementation between the inhibi-
tor and BRD4. Compound 21 displays nanomolar bind-
ing potency for BET family with a  Kd of 1.6 − 120  nM 
and shows a preference for BD1 over BD2. Compound 
21 has a significant anti-proliferative activity in pri-
mary Chronic lymphocytic leukemia (CLL) cells stimu-
lated by CpG in a dose-dependent manner. In distinct 
in  vivo models, 21 exhibits significant anti-hematolog-
ical tumor activity, notably reducing leukemia cells and 
spleen size. A preliminary clinical phase Ib/IIa trial in 
eight patients with refractory and relapsed malignancies 
show a stable disease after administration of compound 
21 (NCT04022785). Common adverse reactions include 
fatigue and gastrointestinal reactions, and increases in 
bilirubin and INR. Another clinical trials using PLX51107 
are currently recruiting volunteers to evaluate its efficacy 
in patients with steroid-refractory graft versus host dis-
ease (NCT04910152).

Structurally related to 19, ODM-207 (22) is also a 
potent pan-BET inhibitor (Fig.  3b). Multiple preclini-
cal animal studies have shown that 22 exerts anti-cancer 
activity against prostate cancer, leukemia, and breast can-
cer. The results of a recent phase I trial of compound 22 
shows that although the dose increase to 2 mg/kg is safe, 
the therapeutic window is narrow [67]. The main adverse 
reactions are thrombocytopenia and digestive tract dis-
comfort, while platelet counts usually recover after ces-
sation. GSK developed a new series of phenylisoxazole 
sulfonamides BET inhibitors via fragment-based drug 
discovery (FBDD) [68]. Compounds 23 and 24 exhibit 
sub-micromolar to micromolar levels of BET inhibitory 
activity, but unfortunately with the fatal drawback of 
poor solubility (< 1 or 5 μg/ml when pH = 7). To improve 
solubility, compounds 25 and 26 were yielded by remov-
ing the methyl group at the o-position of the sulfona-
mide on the phenyl ring and introducing polar branched 
chains (Fig.  3b). As expected, the solubility was greatly 
enhanced (540 and 210  μg/ml for 25 and 26 respec-
tively) by these structural modifications, and there was 
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only a relatively slight loss of activity. Later, Breckenridge 
et  al. developed a cyclopropyl benzimidazole 27 on the 
basis of compound 23 via lead optimization, which had 
superior cell potency and protein inhibition [69]. Further 
optimization to obtain GS-626510 (28) with an increased 
inhibitory activity against BET, higher permeability, and 
stability.

Since the conserved dimethylisoxazole can effectively 
maintain the interaction with BD to ensure pharmaco-
logical activity, this opens up the possibility of molecu-
lar diversity. INCB054329 (29) shows inhibitory activity 
at low  nanomolar  concentrations against the binding of 
BET to acetylated histone H4. In cellular assays 29 inhib-
its the expression of c-MYC, the growth of lymphoma, 
myeloma, and AML cell lines, and sensitizes cells to the 
growth inhibition, DNA damage, and apoptosis induced 
by olaparib. Oral administration of 29 is also effective in 
inhibiting tumor growth in various in vivo hematological 
tumor models. Because of the short half-life and high PK 
variability in the phase I trial, the evaluation of 29 was 
terminated. Perhaps additional follow-up dose optimiza-
tion of compound 29 and improved screening strategies 
can benefit patients [70].

Wang et  al. reported a  series of new BET inhibitors 
containing γ-carboline (Fig.  3b). By analyzing the co-
crystal structure of compound 19 and BRD4(1), they 
developed a new γ-carboline-containing BET inhibitor 
RX-37 (30), with Ki ranging from 3.2 to 24.7  nM and 
high selectivity for BET [71]. After further optimization, 
HJB97 (31) with the same scaffold was obtained, which 
exhibited a favorable binding affinity to BRD2, BRD3, and 
BRD4 (Ki < 1 nM), superior to that of compounds 1 and 
5. Later, compound 31 was implemented in the design of 
PROTACs for targeted degradation of BET [72]. To solve 
the problem that compound 30 was difficult to synthe-
size on a large scale, an alternative tricyclic skeleton was 
employed to CD161 (32) [73]. With excellent growth 
inhibition in AL and breast cancer cell lines, compound 
32 has also been confirmed as an orally available candi-
date demonstrating exceptional PK profile and tumor 
suppression ability in  vivo. Furthermore, in an attempt 
to obtain a single crystal structure, they removed the 
restricted rotation via structural modification, resulting 
in the acquisition of compound CF53 (33). Compound 
33 effectively inhibited the growth of triple-negative 
breast carcinoma and AL cells, and was identified as a 
potent, orally available, and clinically valuable drug can-
didate [74].

Tetrahydroquinolines
The tetrahydroquinoline (THQ) scaffold is frequently 
associated with drug discovery, GSK employed it to 
assemble a series of ApoA1 up-regulators that were 

subsequently revealed to function as potent BET inhibi-
tors [75] (Fig. 4a). Initially, compound 34 was picked out 
by high-throughput screening (HTS) and was shown 
capable of up-regulating ApoA1 several-fold at 10  μM. 
The optimization of the molecule was carried out by 
introducing p-(piperidin-1-methyl)phenyl at the 6-posi-
tion to obtain compound 35, which showed significantly 
improved activity and solubility. In addition to being 
an ApoA1 activator, compound 35 is also a potent BET 
inhibitor with an average  pIC50 of 6.4. However, com-
pound 35 exhibits moderate inhibitory activity against 
each CYP450 isoforms with a minimum  IC50 value of 
only 3  μM. Therefore, investigators performed addi-
tional structural optimization to attenuate its effect on 
CYP450 and yielded compounds 36 and I-BET726 (37). 
Since the two shared very similar properties, only com-
pound 37 was selected for further studies. In subsequent 
binding and selectivity tests, compound 37 showed high 
activity and specificity against the BET family proteins. 
The N1-acetyl group of the inhibitor was shown to form 
a hydrogen bond with the conserved Asn140 in BRD4 
(Asn156 in BRD2) (Supplementary Fig.  1d). Impor-
tantly, compound 37 no longer exhibited the worrisome 
CYP450 inhibitory potency  (IC50 > 10  μM). Moreover, 
37 exhibited favourable PK properties in different pre-
clinical models, including low to moderate clearance, 
apparent volume of distribution, bioavailability, and long 
half-life. In the LPS-stimulated sepsis model, compound 
37 was shown effective in improving the survival rate 
of mice after intravenous injection. Down-regulation of 
MYCN and BCL2 expression suggests that 37 is also a 
potential BET inhibitor relevant for neuroblastoma treat-
ment [76]. Via Free-Wilson analysis, GSK identified a 
novel THQ molecule I-BET567 (38), with a bias to bind 
eight bromodomains of BET relative to non-BET pro-
teins (Ki = 5.6 − 41  nM). Due to its improved solubility 
(> 600  μg/mL), permeability, PK, and efficacy, the orally 
administrable compound 38 is an ideal candidate worthy 
of further investigation [77].

PFI-1 (39) is derived from the 3,4-dihydro-3-methyl-
2(1H)-quinazolinone fragment and achieves a good bal-
ance between pharmacological activity and lipophilicity 
[78] (Fig.  4a). As a selective chemical probe, compound 
39 shows a preference for BET family proteins, with Tm 
shifts of 2.1 − 6.5 °C. It moderately inhibits IL-6 produc-
tion induced by LPS  (EC50 = 1.89  μM). Another orally 
available, and reversible BET inhibitor, CC-90010 (40), 
was developed in recent years to inhibit tumor growth 
either alone or in combination (specific data not pub-
lished). Phase I clinical trial results show that compound 
40, when administrated alone, shows favorable anti-
tumor effects in patients with advanced solid tumors or 
refractory/relapsed non-Hodgkin lymphoma [79, 80]. 
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Fig. 4 Chemical structures of pan-BET and BRD4-selective inhibitors. a THQ pan-BET inhibitors 34 − 45. b other BET inhibitors 46 − 61. c 
BRD4-selective inhibitors 62 − 67. The key scaffolds are highlighted in red and activity test methods are bolded. ITC, isothermal titration calorimetry
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Compounds 41 − 45 are BET inhibitors with the THQ 
template disclosed in the patent literature, while only the 
inhibitory activity against BRD4 (BD1  IC50 < 0.1  μM) is 
documented [81].

Other pan‑BET inhibitors
Other structurally diverse BET inhibitors come from 
Bristol-Myers  Squibb (BMS), Yale Cancer Center, 
AbbVie, and Boehringer-Ingelheim show promising 
pharmacologic activity (Fig. 4b). Both BMS-986158 (46) 
and NHWD-870 (47) are BET inhibitors structurally 
characterized by a triazole coupling tricyclic with strong 
anti-tumor effects in NCI-H211 and MDA-MB231 cell 
lines [82, 83]. The respective  IC50 of 46 in NCI-H211 
and MDA-MB231 are 6.6 nM and 5 nM, while those of 
47 are 2 nM and 1.6 nM. ABBV-075 (48), a selective BET 
inhibitor developed by AbbVie, has progressed to phase 
I clinical trials and demonstrated superior anti-tumor 
activity in solid tumors and hematological malignancies 
through multiple mechanisms, including blocking G1 
phase, promoting apoptosis, and disrupting the tumor 
micro-environment [84]. Further optimization resulted 
in ABBV-774 (49) which shows a significant prefer-
ence for BD2 and a greater than 290-fold selectivity over 
BD1. Compound 49 displays potent activity in prostate 
cancer models, with relatively mild thrombocytopenia 
and gastrointestinal toxicity. These notable optimiza-
tions corroborate that the development of BD2-selective 
inhibitors may be a feasible strategy to develop safe and 
effective anti-cancer drugs [85, 86]. BI 894,999 (50), a 
member of triazolopyrazines disclosed by Boehringer-
Ingelheim, is a highly selective BET inhibitor with a Kd 
of 0.49 − 1.6  nM. Monotherapy or combination with 
other drugs showed that compound 50 exerts promis-
ing anti-AML efficacy in vitro and in vivo [87, 88]. Pro-
fessor Günther employed 4-acyl pyrroles to mimic the 
KAc and screened XD14 (51) as a candidate inhibitor 
[89]. Compound 51 can selectively bind to BET at sub-
micromolar levels (except BRDT) and inhibit the growth 
of leukemia cells. Y06036 (52) and Y06137 (53), structur-
ally characterized by benzo[d]isoxazole, exhibit potent 
binding activity to BET proteins (for BRD4, Kd = 82 nM 
and 81  nM respectively) and high selectivity over non-
BET ones [90]. As new chemotype lead compounds, they 
effectively inhibit the growth of prostate cancer cells 
with the expression AR and MYC being suppressed, and 
show excellent therapeutic activity in castration-resistant 
prostate cancer (CRPC) mouse xenograft models. Very 
recently, the 4-phenylquinazoline 54 was described as a 
potential candidate for the treatment of cardiac fibrosis 
[91]. Moreover, several inhibitors with distinct struc-
tures (55 − 61) and  IC50 values at the nanomolar level 
have also been reported in patents, showing potential 

anti-proliferative activity against a variety of cancer cells 
[92].

BRD4‑selective inhibitors
Among BET family proteins, BRD4 is the most studied 
subtype and a promising drug target. However, the lack 
of selectivity of most pan-BET inhibitors for individual 
BET members has led to ambiguity in the perception of 
the exact mechanism of action of these chemicals and 
unanticipated adverse drug reactions. Therefore, the 
development of BRD4-selective inhibitors is urgently 
needed (Fig.  4c). CPI-203 (62), structurally featured by 
triazolodiazepine, exhibits favorable inhibitory activity 
against BRD4, MYC, and IL-6 with  IC50 values of 37 nM, 
99 nM, and 30 nM, respectively. Combined with lenalido-
mide, compound 62 demonstrated synergistic anti-tumor 
effects in inducing cell death and apoptosis, which may 
benefit patients with mantle cell lymphoma (MCL) resist-
ant to proteasome inhibitors [93, 94]. Through structure-
based drug design, Zhou et  al. discovered two selective 
BRD4 inhibitors, namely ZL0420 (63) and ZL0454 (64). 
Both show strong potency against BRD4, with  IC50 val-
ues rangeing from 27 to 49 nM. In addition, they display 
a 30 − 120-fold BRD4 selectivity over BRD2, 3, and T, as 
well as a > 200-fold over non-BET family proteins. In a 
model of poly(I:C)-induced acute airway inflammation, 
compounds 63 and 64 could impede neutrophils accu-
mulation without any apparent side effect [95]. In previ-
ous years, our laboratory also developed a selective BRD4 
inhibitor, FL-411 (65), with  IC50 values of 0.47  μM and 
0.93 μM against BD1 and BD2 respectively [96]. We elu-
cidated the relationship between the conformation and 
orientation of conserved residues (Gln85 and Pro82) and 
selectivity (Supplementary Fig.  1e). Compound 65 was 
shown to induce autophagy in tumor cells via the BRD4-
AMPK-mTOR-ULK pathway and exhibits a striking anti-
tumor activity in breast cancer xenograft models and 
zebrafish in  vivo. Interestingly, a PET radiotracer  [11C]
MS417 (67), developed based on MS417 (66), similar to 
[18F] 10, can be used to assess the distribution and bio-
logical function of BET proteins in humans [97].

BD‑selective inhibitors
Although milestones have been achieved in the devel-
opment of pan-BET inhibitors, and several drug candi-
dates have progressed to clinical studies, their lagging, 
ambiguous mechanisms of action also raise concerns 
that perhaps clinical trials are running ahead of science 
[98]. Dawson et  al. revealed that BD1 is implicated in 
steady-state gene expression, while both BD1 and BD2 
are required in the rapid increase of gene expression 
stimulated by inflammation [99]. Further studies suggest 
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that specific inhibition of BD1 can achieve similar anti-
cancer efficacy as that of pan-BET inhibitors, whereas 
BD2 inhibitors show efficacy primarily in inflamma-
tory and immune diseases. Even though the highly con-
served sequence of BD1 and BD2 at the KAc recognition 
site makes it difficult to develop BD-selective inhibitors, 
the few non-conserved amino acid residues (e.g. Gln85, 
Ile146, Lys141 and Asp144 in BRD4-BD1 correspond to 
Lys378, Val439, Pro434 and His437 in BD2.) open the 
possibility of designing and exploiting selective inhibitors 
[38, 99, 100]. Accordingly, the development of new-gen-
eration inhibitors is focused on molecules that selectively 
bind to individual domains. Currently, several BD inhibi-
tors, represented by RVX-208 and ABBV-744, have been 
successfully developed and are currently under clinical 
trials [101, 102].

BD1‑selective inhibitors
GSK778 (68), yielded by introducing an additional pyr-
rolidine to compound 19 (Fig.  5), is a highly selective 
BD1 inhibitor (BRD4(1),  IC50 = 41  nM) with a 143-fold 
selectivity over BD2. The nitrogen atom in pyrrolidine 
can form water-mediated hydrogen bonds with Asp144 
(replaced with His433 in BRD2(2)) and Asp145, which 
may be responsible for its selectivity for BD1 (Fig. 5a-b). 
With the ability to efficiently displace chromatin-bound 
BRD4, compound 68 is considered to have the potential 
to be an alternative to pan-BET inhibitors in tumor ther-
apy [99]. Also discovered by GSK, GSK789 (69, Fig. 5d) 
is 1000-fold more selective towards BD1 compared to 
BD2 [103]. Its X-ray structure suggests that furan is per-
fectly complementary to the hydrophobic cavity formed 
by Trp81, Phe82, and Leu92 in BRD4(1), while the C3′-
amide of compound 69 conflicts spatially with His437 
in BRD4(2) (Fig. 5c). Unsurprisingly, compound 69 pos-
sesses anti-proliferative and anti-inflammatory activities 
comparable to those of compound 4.

Zhou’s team has focused on the development of BD1-
selective inhibitors (Fig. 5d), and successively developed 
structurally diverse inhibitors including MS436 (70), 
Olinone (71) and MS402 (72) [104–106]. Compound 
70 employs diazobenzene as its structural skeleton 
and can bind efficiently to BRD4(1)  (Ki = 30 − 50  nM), 
with approximately tenfold selectivity for BD1 over 
BD2. High-resolution crystal structure data suggest 
that several critical water-mediated hydrogen bonds 
(e.g. between diazo and Pro82, amino and Asn140, sul-
fonamide and Lys91) are responsible for the selectivity 
toward BD1. In murine macrophages, compound 70 was 
shown to block nitric oxide production and IL-6 expres-
sion in a dose-dependent manner by interfering with the 
NF-κB pathway without apparent toxicity [104]. Mean-
while, 71 was generated by derivatization on the basis of 

MS7972. Compound 71 displays potent binding affinity 
to BRD4(1) with a  Kd of 3.4  μM, whereas it shows only 
a weak affinity for BRD4(2)  (Kd > 300 μM). The BRD4(1)-
71 complex demonstrates that triheterocyclic has a 
good reciprocal compatibility with Trp81, Pro82, and 
Ile146, while the acetyl chain has an optimal length to be 
inserted into the hydrophobic cavity and mimic the acet-
ylated side chains of histones. However, in BRD4(2) the 
indole moiety collides with His437. Taken together, these 
may be the reasons contributing to the selectivity of com-
pound 71 toward BD1 [105]. MS402 (72) was discovered 
during further studies on BD1-selective inhibitors and 
exhibits significant binding ability to BD1  (Ki = 77  nM), 
ninefold higher than that of BD2. In BD1, compound 72 
is sandwiched between two hydrophobic regions, while 
the van der Waals force between cyclopentanone moiety 
and Ile146 and the hydrogen bond between the amide 
nitrogen and Gln85 contribute to the BD1 selectivity of 
this compound. Indeed, compound 72 can effectively 
block Th17 cell differentiation and offer a promising tar-
geted therapeutic strategy to treat IBD [106].

Coincidentally, another Zhou’s team of research-
ers has also conducted continuous research on BD1-
selective inhibitors and produced differently structured 
inhibitors (Fig. 5d). Compound ZL0580 (73) has a dis-
tinct structure and works as a selective BRD4(1) inhibi-
tor with more than sixfold selectivity over BRD4(2) 
[107, 108]. Molecular docking demonstrates that 73 can 
achieve a more stable binding to BD1 compared to that 
of BD2. In a suppression model, 73 was shown to inhibit 
activation in a dose-dependent manner. Furthermore, 
this compound can efficiently suppress induced and 
basal HIV transcription in microglial cells. Mechanistic 
studies indicate that 73 can inhibit Tat (a protein criti-
cal for replication) transactivation and transcriptional 
elongation, and lead to chromatin remodeling with a 
repressor being induced at the HIV promoter. These 
efforts evidence the benefit of regulating BRD4 for HIV 
treatment in the field of epigenetics and provide a new 
lead compound for HIV epigenetic silencing. Based on 
73, further structural optimization was performed to 
achieve ZL0590 (74) which shows a tenfold selectivity 
to BRD4(1) over BRD4(2). Unlike conventional inhibi-
tors that occupy the classical KAc recognition pocket, 
the allosteric binding of 74 is mainly located in the 
region enclosed by αB, αC, and THE BC loop [109]. The 
less conserved binding site and the great divergence in 
amino acid residues between BD1 and BD2 explain the 
selectivity of 74 toward BD1. Via oral administration, 
compound 74 was shown to suppress poly(I:C)-induced 
airway inflammation, attenuate inflammatory secre-
tion and block acute airway inflammation. In parallel, 
other compounds, namely ZL0513 (75) and ZL0516 
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(76), also show high affinity for BRD4(1) with an  IC50 of 
67 nM and 84 nM respectively [110]. Both compounds 
are approximately tenfold more selective toward BD1 
over BD2, mainly due to the formation of water-medi-
ated hydrogen bonds between the side chain hydroxyl 
group and the Asn93 residue (which is replaced by gly-
cine in BD2). Moreover, these two compounds signifi-
cantly improve airway inflammation of mice induced by 

poly(I:C) and show outstanding drug metabolism and 
pharmacokinetics (DMPK) properties.

Chen et  al. reported LT052 (77), a recognized highly 
selective BD1 inhibitor (Fig.  5d). This molecule effec-
tively alleviates acute gouty arthritis by regulating the 
BRD4/NF-κB/NLRP3 signaling pathway [111].  IC50 val-
ues from Alphascreen assay demonstrate that compound 
77 is 100-fold more selective toward BD1 over BD2, 

Fig. 5 BD1-selective inhibitors. a Crystal structure of GSK778 bound to BRD4 BD1(PDB ID: 6SWN). b Crystal structure of GSK778 bound to BRD2 BD2 
(PDB ID: 6SWO). c Crystal structure of GSK789 bound to BRD4 BD1 (PDB ID: 6Z7L). d Chemical structures of BD1-selective inhibitors 68 − 81. Key 
residues are highlighted with grey sticks, and ligands are blue. Hydrogen bonds and hydrophobic interactions are shown in red and orange dashed 
lines, respectively. The activity test methods are bolded and the selectivity is labeled
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thanks to the spatial mutual repulsion between the rigid 
methylimidazole of 77 and the H437 residue of BD2. In 
recent years, a series of BD1-selective inhibitors (78 – 81) 
with similar scaffolds have been reported by Pomerantz’s 
group [112–114]. All of them show a high preference for 
BD1 with selectivity ranging from tens to hundreds of 
times over BD2. Water-bridged hydrogen bonds and dis-
placement of structured waters in the pocket contribute 
to the BD1 selectivity of these compounds. These results 
provide novel chemotype leads for the study of selective 
BD1 inhibitors for the treatment of tumors and inflam-
mation, as well as function as a reference for follow-up 
structural design.

BD2‑selective inhibitors
RVX-208 (RVX000222 or apabetalone, 82, Fig.  6), the 
most studied selective inhibitor of BD2, was originally 
developed by Resverlogix Corporation for the treat-
ment of atherosclerosis-related diseases and is effective 
in increasing ApoA1 concentration. Subsequently, com-
pound 82 was identified by the Filippakopoulos’ team as 
a binding partner of BD2 with more than 20-fold selec-
tivity over BD1 [19, 115]. The characteristic His433 resi-
due in BRD2(2) flips into the KAc recognition pocket 
opposite the benzene ring, resulting in a tightening of 
the pocket that allows the inhibitor to fit more closely to 
the pocket, which may underlie its selectivity (Fig. 6a-b). 
Recently, results from a phase III clinical trial (BETon-
MACE study) of RVX-208 in subjects with high-risk type 
2 diabetes mellitus with coronary artery disease showed 
that 82 reduces risk of major adverse cardiovascular 
events (MACE) and hospitalization due to heart failure 
[116]. RVX-297 (83), a molecule structurally similar to 
82, is twice as selective for BD2 as 82, with more than 
50-fold selectivity towards BD2 over BD1 [117]. Impor-
tantly, compound 83 shows considerable therapeutic 
efficacy in preclinical models of acute inflammation and 
autoimmunity [118]. Another BD2-selective inhibitor 
advancing to clinical trials is 49, which is ultra-selec-
tive for BD2 [85, 86]. Crystal structures suggest that the 
amide of 49 stretches into the channel formed by His433, 
Tyr386 and Pro430 in BD2, which is not allowed in BD1. 
Furthermore, the Val435 of BD2 can accommodate the 
2,6-dimethylphenyl group without affecting binding, 
whereas the larger Ile162 in BD1 does not allow this to 
occur (Fig. 6c-d). For the treatment of AML, the efficacy 
of 49 is comparable to that of pan-BET inhibitors, and its 
therapeutic index remains to be improved [119]. A phase 
I clinical trial of 49 in subjects with relapsed or refractory 
AML was discontinued due to strategic reasons. Sur-
prisingly, both 82 and 49 exhibit COVID-19 therapeu-
tic potential by reducing ACE2 expression, suppressing 

SARS-CoV-2 replication, and/or binding stably to the 
 Mpro [120–122].

GSK has continuously reported a number of BD2-selec-
tive inhibitors (Fig. 6e), including tetrahydroquinoxaline 
[123], pyridinone [124], picolinamide [125], and dihy-
drobenzofuran [126, 127]. Amidopyrimidine GSK268 
(84) and tetrahydropyridine GSK340 (85) are potent 
pan-BET inhibitors with  IC50 values ranging from 32 to 
100 nM [123]. Both are BD2-selective inhibitors with an 
approximately 50-fold selectivity to BD2 over BD1. X-ray 
crystal structures indicate that 84 and 85 share a similar 
binding pattern to BRD2(2), in which the 6-substituent 
extends into the ZA channel to make a π interaction with 
Trp370, in addition to which 85 can form an extra hydro-
gen bond with His433. Both inhibitors are capable of per-
meabilizing cells and effectively inhibiting the release of 
monocyte chemattractant protein 1 (MCP-1) induced by 
LPS. Through HTS and exhaustive optimization, GSK046 
(iBET-BD2, 86) has drawn the attention of research-
ers. This compound exhibits extremely high selectivity 
to BD2 with a 1000-fold selectivity over BD1. Its excel-
lent selectivity and activity are owing to the extensive 
hydrophobic interaction of its 3-position benzyl sub-
stituent and 5-position cyclohexanol ring with His433 
and Pro430 in BRD2-BD2 [99, 128]. GSK620 (87) and 
GSK549 (88) were constructed based on 86 via a scaf-
fold hopping approach [124], and exhibit 200-fold and 
1000-fold selectivity to BD2 over BD1, respectively. With 
satisfactory PK properties, the two inhibitors reduce 
MCP-1 response in a dose-dependent manner, as well 
as serve as useful tools against inflammatory and auto-
immune diseases. To improve solubility, a series of mol-
ecules containing a picolinamide template were designed. 
Among them, GSK097 (89) achieves a perfect balance of 
activity, selectivity, and solubility [125]. This compound 
displays excellent inhibitory activity to BD2 with an  IC50 
of approximately 12 nM, as well as a 4000-fold selectiv-
ity over BD1 and > 1000  μg/mL solubility in fasted state 
simulated intestinal fluid (FaSSIF). As of today, GSK040 
(90) is the most selective BD2 inhibitor, with an astound-
ing 5000-fold selectivity for BD2 over BD1 [129]. The Co-
crystal structure suggests that 90 and BD2 are perfectly 
complementary in space, while the multiple interactions 
guarantee its high selectivity. Briefly, the reasons contrib-
uting to its ultra-high selectivity include the stacking of 
methyl amide with Leu381, Lys378-related interactions 
and water structure changes, bulk substituents of the 
α-carbon of glycine, and sandwiching His433 with the 
bis-aryl moiety. Dihydrobenzofurans GSK973 (91) [126]
and GSK852 (92) [127]are both BD2 selective inhibi-
tors, with more than 1000-fold selectivity over BD1. Both 
inhibitors exhibit not only exceptional MCP-1 inhibitory 
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Fig. 6 BD2-selective inhibitors. a Crystal structures of RVX-208 bound to BRD4 BD1(PDB ID: 4MR4). b Crystal structures of RVX-208 bound to BRD2 
BD2 (PDB ID: 4MR6). c Crystal structures of ABBV-744 bound to BRD2 BD1 (PDB ID: 6ONY). d Crystal structures of ABBV-744 bound to BRD2 BD2 (PDB 
ID: 6E6J). e Chemical structures of BD2-selective inhibitors 82 − 103. Key residues are highlighted with gray sticks, and ligands are blue. Hydrogen 
bonds are shown in red dashed lines. The activity test methods are bolded and the selectivity is labeled
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activity, but also good solubility and PK profiles. GSK737 
(93), GSK217 (94), GSK452 (95) are analogs of the above 
compounds (e.g. 86 and 88) obtained by replacing the 
acetamide moiety of the structure with a 1,2,3-triazole 
template [130]. This optimization strategy is designed to 
reduce the genotoxicity of inhibitors. Notably, all three 
compounds have favorable selectivity, potencies and 
pharmacokinetic profiles in rats. Among the later genera-
tion of GSK BD2 inhibitors, the furan GSK743 (96) and 
pyrazole GSK809 (97) exhibit outstanding solubility and 
over 1000-fold selectivity for BD2 [131]. With favorable 
physicochemical properties, excellent selectivity, syn-
thetic accessibility, and no obvious off-targets, the two 
compounds represent a new class of BD2 inhibitors that 
are more compatible with clinical needs.

Potter’s team successively developed the BD2-selective 
inhibitors SJ018 (98) and SJ432 (99), employing THQ as 
their scaffold [132] (Fig.  6e). Compound 99 was shown 
to effectively down-regulate MYC protein levels in neu-
roblastoma cell lines without rebound more effectively 
than compound 1. In pediatric neuroblastoma xeno-
graft models, 99 can slow tumor growth accompanied by 
reduced c-MYC, loss of BRD4 and increased HEXIM1, 
with no significant toxicity. Compound 99 demonstrates 
a 152-fold selectivity for BD2 versus BD1. Such selec-
tivity is associated with benzonitrile moiety, which can 
form π-π stacking with His433 and bind tightly to the 
pocket. These outcomes reaffirm that the development 
of highly BD-selective inhibitors is an efficacious strat-
egy to achieve high-efficiency, low-toxicity anti-tumor 
candidates.

Lead compounds BY27 (100) [133]and XY153 (101) 
[134] show a preference for BD2, both of which form 
water-mediated hydrogen bonds with His433. These 
two compounds exhibit potent anti-proliferative activity 
against MV4-11, providing a valuable reference for the 
development of candidates against AML. Impressively, 
Matzuk et  al. developed a series of BRDT(2) inhibitors 
via a DNA-encoded chemistry technology (DEC-Tec) 
platform [134]. Among these compounds, CDD-1102 
(102) and its truncated analog CDD-1302 (103) can 
potently inhibit BRDT(2) at nanomolar levels with well 
over 1000-fold selectivity over BRDT(1), creating a prac-
tical option for the development of non-hormonal male 
contraceptives.

In summary, specific interactions between Asn140 and 
Asp144 in BD1 and inhibitors lead to enhanced selectiv-
ity, while the selectivity of compounds for BD2 is depend-
ent on interactions with His433. Selective inhibition of 
BDs enables us to better understand the function and 
efficacy of each domain, as well as to circumvent unin-
tended toxicities, which is bound to be the focus of BET 
inhibitor development in the years to come.

Bivalent inhibitors
In recognition of the fact that BET contains two sepa-
rate BDs, studies have focused on the development of 
bivalent inhibitors to improve potency. MT1 (104) is the 
first bivalent BET inhibitor, consisting of a homodimer 
of compound 1 and a polyethylene glycol (PEG) spacer, 
with full structural symmetry [135] (Fig. 7). Mechanisti-
cally, compound 104 binds to two tandem BDs simulta-
neously in an intramolecular manner and each triazole 
moiety occupies the KAc pocket and forms a hydrogen 
bond with the conserved asparagine (Supplementary 
Fig.  1j). The inhibitory activity of 104 against BRD4(1) 
 (IC50 = 3.09  nM) is significantly greater than that of 1 
 (IC50 = 20.9  nM), while its cellular activity is more than 
100-fold stronger compared with that of compound 1. 
In vivo, compound 104 can dramatically reduce the leu-
kemic burden and improve overall survival at a dose of 
22.1  μmol/kg compared to 1 (44.2  μmol/kg). However, 
104 administered at a dose of 44.2  μmol/kg can induce 
weight loss in mice, which is indicative of drug toxicity.

Zhou’s group prepared a series of bivalent BET inhibi-
tors by linking two molecules of 1 homolog with spac-
ers (e.g. alkyl, PEG and benzene) of different lengths 
and rigidities [136] (Fig.  7). Among these inhibitors, 
MS645 (105), employing a 10-carbon alkyl as the linker, 
was shown to inhibit TNBC cell proliferation by effec-
tively interfering with BRD4 binding to the transcription 
enhancer or mediator. This work elucidates the impor-
tant relationship between linker length, composition, and 
rigidity of bivalent inhibitors on their pharmacological 
effectiveness and suggests a strategy for maximizing inhi-
bition of BRD4 activity for the management of rapidly 
growing solid tumors.

The asymmetrical compound AZD5153 (106) and the 
pseudosymmetrical compound 107 were developed by 
AstraZeneca via an androgen receptor downregulation 
program (Fig.  7). Both can simultaneously bind to BD1 
and BD2 in a single BET protein via an in cis binding 
mode. In mice bearing MV4-11 xenografts, compound 
106 can reduce the expression of c-MYC even at free 
plasma concentrations lower than 0.2 μM and lead to an 
almost complete tumor regression at a dose of 10 mg/kg. 
Compound 107 exhibits powerful cell-killing effects in 
MV4-11 and MM-1S cells  (pIC50 = 9.5), with an efficacy 
of three orders of magnitude higher in comparison to 
that of compound 4 [137–139].

To optimize the undesirable PK properties due to the 
long linker, bivalent inhibitors harboring hydrophilic 
2,5-dimethylpiperazine as the spacer were designed 
(Fig. 7). Orally available inhibitors 108 and N2817 (109) 
display excellent activity in  vitro and in  vivo [140, 141]. 
Compound 108 potently inhibits MV4-11 with an average 
 IC50 value of 0.77 nM, while it reduces tumor growth at 
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an oral dose of 0.6 mg/kg, outperforming compound 48 
at the same dose. Interestingly, inhibition of the incidental 
transcription initiation factor TFIID subunit 1 (TAF1) by 
109 contributes to its powerful anti-proliferative capacity, 
with  IC50 values ranging from 0.19 to 228 nM in a vari-
ety of solid tumor cell lines. Symmetrical compounds 110 
and 111, developed from non-selective isoquinolinone 
and diaminopyrimidine monovalent inhibitors, show 
superior selectivity and activity against BRDT over uni-
valent inhibitors. Overall, these findings suggest that the 
distinct plasticity of the BET bromodomain after inhibi-
tor-induced dimerization facilitates the selectivity of biva-
lent inhibitors within the BET family [142].

Collectively, these works highlight an intriguing 
design concept, namely the simultaneous targeting of 
two individual structural domains with a bifunctional 
small molecule, providing a promising prototype for the 
development of ligands for other multi-domain proteins. 
Although bivalent inhibitors exhibit superior BET bind-
ing and pharmacological effects than monovalent ones, 
the resulting deterioration in their physicochemical 

properties, metabolic instability, and increased toxicity 
should also be considered.

Dual‑target inhibitors
Combinations have emerged as a proven approach to 
maximize efficacy, with dual-target inhibitors gradually 
attracting significant interest among medicinal chem-
ists [38, 143]. Concurrent suppression of two individual 
targets often leads to synergistic effects and counteracts 
drug resistance. Additionally, the administration of dual-
target inhibitors can also reduce the dosage and improve 
patient compliance compared to the combined use of two 
separate drugs [143]. The co-inhibiting of BET and other 
targets has been considered a promising strategy to treat 
various types of cancers. These other targets include, 
but are not limited to histone deacetylases (HDACs), 
polo-like Kinase 1 (PLK1), phosphatidylinositol 3-kinase 
(PI3K), poly(ADP-ribose) polymerase 1 (PARP1), and 
CDKs.

Several reports have validated the concept of combined 
inhibition of BRD4 and HDAC as a synergistic therapy 

Fig. 7 Chemical structures of bivalent inhibitors 104 − 111. The activity test methods are bolded. The pharmacophore part is shown in red, and the 
linker is shown in green
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against tumors [144]. For instance, isohydroxamic acid 
derivatives of I-BET726 (DUAL946, 112), I-BET151 
(113), ( +)-JQ1(114), XD14(115) (Fig.  8a). Com-
pound 112, as expected, effectively inhibits BRD4 (BD1 
 IC50 = 50  nM) and HDACs  (IC50 = 0.25 − 35  μM) [145]. 
By down-regulating c-MYC expression and augment-
ing acetylation of histone H4, compound 112 was found 
to suppress the growth of NMC and AML cell lines, 
but regrettably no synergistic effect was observed com-
pared to the parent compound. Meanwhile compound 
113 exhibits submicromolar inhibitory activity against 
BRD4 and HDAC1, and slightly inferior anti-proliferative 
activity in K562 and MV4-11 in vitro when compared to 
that of compound 1. Docking models of 113 bound to 
BRD4(1) reveal that the 3,5-dimethylisoxazole is packed 
in the pocket by mimicking KAc, forming hydrogen and 
water-mediated hydrogen bonds with Asn140 and Tyr97, 
respectively. The benzoyl group of 113 enters the “WPF 
shelf” and the alkyl linker extends to the ZA channel. 
Besides, in HDAC1 the compound is immobilized at the 
binding site by stable chelation of hydroxamic acid with a 
zinc atom, forming hydrogen bonds with Tyr297, His131 
and His132, while the cap fragment interacts with the 
hydrophobic region of the protein surface [146]. Com-
pound 114 is a robust pan-BET/HDAC dual target inhib-
itor with  IC50 values ranging from 11 to 316 nM for BET 
and 21 to 192 nM for HDAC [147]. In terms of BET and 
HDAC inhibition, 114 achieves a favorable balance and 
shows acceptable metabolic stability. In a Capan-1 xeno-
graft model, intraperitoneal injection of 114 was shown 
to effectively reduce tumor growth in a dose-dependent 
manner, with a TGI value of 87.7% at a dose of 20  mg/
kg. Indeed, the activity of compound 114 was superior to 
that of 1 and SAHA administered alone or in combina-
tion. With low nanomolar activity against BET and mod-
erate submicromolar activity against HDAC, compound 
115 is the first XD14-based dual HDAC/BET inhibitor 
[148]. This compound demonstrates broad-spectrum 
anti-tumor activity in six different leukemia cell lines. 
Notably 115 is well-tolerated in a zebrafish model at con-
centrations lower than 50 μM. Our laboratory has devel-
oped a BRD4/HDAC dual inhibitor candidate, compound 
116 through a four-step strategy [149]. Compound 116 
can effectively inhibit BRD4 and HDAC and induce 
autophagic death in colorectal cancer cells. Inspiringly, 
116 can address the resistance issue of specific HDAC 
inhibitors by inhibiting the IL6-JAK-STAT signaling 
pathway. Selective HDAC/BRD4 dual inhibitor 117 binds 
more preferentially to BD2 relative to BD1(over 100-fold), 
and its anti-proliferative capacity against AML cell lines 
is superior to that of RVX-208 and SAHA [150]. Finally, 
the benzamide dual-target inhibitor TW09 (118) serves 
as a scaffold for the selective targeting of HDAC1, while 

compound 119 exerts anti-tumor synergistic effects 
[151–153].

Simultaneous inhibition of PLK1 and BRD4 is also 
an effective therapeutic strategy for diseases driven by 
these proteins. BI2536 (120) and fine-tuned derivatives 
121 − 123 demonstrate powerful inhibitory activity 
against PLK1 and BRD4 and anti-proliferative activity 
against hematological malignant cells [154–157] (Fig. 8b). 
Several Phase I and Phase II clinical trials of 120 for the 
treatment of patients with advanced solid tumors or 
hematological malignancies have been completed, con-
firming its efficacy and safety [154]. MYC gene expression 
is tightly regulated by PI3K and BRD4, therefore concom-
itant inhibition of PI3K and BRD4 blocks MYC expres-
sion and activation, leading to decreased tumor growth 
and metastasis. SF2523 (124) was initially reported as 
a potent pan-PI3K inhibitor, showing a high affinity 
towards BRD4 (Fig.  8c). Compound 124 administered 
alone was shown to significantly inhibit tumor growth 
in the Panc02 carcinoma model with equivalent efficacy 
and less toxicity compared to the combination of 1 and 
BKM120 [158–160]. Quercetin derivative LY294002 
(125) exhibits moderate inhibitory activity against PI3K 
and BET [161], while SF1126 (126) is a prodrug prepared 
by coupling 125 with an RGDS peptide. Compound 
126 alone or in combination with sorafenib can inhibit 
hepatocellular carcinoma (HCC) proliferation, induce 
apoptosis and cell cycle arrest, displace BRD4 from the 
MYC transcriptional start point, and inhibit HCC growth 
in  vivo by interfering with the PI3K/AKT/mTOR, and 
Ras/Raf/MAPK singling pathways. A phase I study sug-
gested 126 is well tolerated in patients suffering from 
advanced solid tumors and B-cell malignancies [162, 
163].

JAK2 inhibitor TG101209 (127) also exhibits potent 
BRD4 inhibitory activity with an  IC50 of 130 nM, which 
is attributable to the aminopyrimidine moiety that can 
form hydrogen bonds with Asn140 and Pro82, respec-
tively [143]. Other dual inhibitors (Fig.  8d), such as the 
BRD4/PARP1 inhibitor ADTL-BPI1901 (128) [164], the 
BRD4/EZH2 inhibitors YM458 (129) [165], the BRD4/
p300 inhibitor XP524 (130) [166], the BRD4/CK2 inhibi-
tor 131 [167], and the BRD4/CDK9 inhibitor 132 also 
achieve synergistic benefits and overcome tumor resist-
ance by simultaneously inhibiting two separate pathways 
implicated in the cancer [168].

PROTACs
Recently, proteolysis targeting chimeras (PROTACs) 
were described as an effective approach to induce pro-
tein degradation. PROTACs are typically designed as 
heterobifunctional molecules comprising a warhead that 
binds the protein of interest (POI), an anchor for the E3 
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Fig. 8 Dual inhibitors based on BRD4. a Chemical structures of BRD4/HDAC dual inhibitors 112 − 119. b Chemical structures of BRD4/PLK1 dual 
inhibitors 120 − 123. c Chemical structures of BRD4/PI3K dual inhibitors 124 − 126. d Chemical structures of other dual inhibitors based on BRD4 
127 − 132. The activity test methods are bolded
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ubiquitin ligase, and a spacer that tandemly links them 
[169, 170]. Owing to the growing clarity of the biologi-
cal function of BET proteins and the influx of inhibitors 
into clinical studies, PROTACs have also been applied to 
target BET proteins. dBET1 (133) was the first reported 
BET-targeting PROTAC, designed as compound 1 con-
jugated with thalidomide which can be anchored to cer-
eblon (CRBN) [171] (Fig. 9a). When MV4-11 cells were 
treated with 100 nM of compound 133 for 18 h, endog-
enous BRD4 decreased by 85%. Similarly, compound 
133 treatment for 18  h resulted in BRD4 depletion in 
SUM149 cells with an  EC50 value of 430 nM. Compared 
with 1, compound 133 induces more apoptosis and exerts 
a more pronounced anti-proliferative activity in MV4-11 
cells, highlighting that degrading the entire BET protein 
is perhaps more promising than inhibiting individual 
BDs, facilitating the development of PROTACs. Another 
CRBN-based PROTAC, ARV-825 (134) (Fig.  9a), was 
derived from compound 5 and employed PEG as the 
linker, enabling the complete degradation of BRD4 in 
Burkitt’s lymphoma (BL) cells with a 50% of maximum 
degradation  (DC50) < 1  nM. Compound 134 inhibits 
BRD4 activity and down-regulates c-MYC protein level, 
displaying superior apoptosis induction and prolifera-
tion suppression than small molecule inhibitors [172]. 
dBET6 (135) is a highly cell-permeable PROTAC with a 
slightly higher BRD4 binding affinity  (IC50 = 14 nM) than 
133, and was shown to significantly improve the sur-
vival of mice bearing T cell acute lymphoblastic leuke-
mia (T-ALL) at the dose of 7.5 mg/kg [173]. Compounds 
dBET23 (136), dBET57 (137), and ZXH-3–26 (138) 
demonstrated that the binding of ligases to substrates is 
plastic and can adjust their conformation according to 
the length and the attachment site of the linker, while 
the plasticity of inter-protein contacts provides a basis 
for the development of highly selective PROTACs [174]. 
Wang’s laboratory reported two distinct types of CRBN-
based PROTACs BETd-246 (139) [175], BETd-260 (140) 
[72] and QCA570 (141) [176] (Fig.  9a), which built on 
their previously described BET inhibitors compound 31 
and QCA276. After treating TNBC cell lines with 139 
at 30 − 100  nM for 1  h, it was shown that BRD2, 3 and 
4 were abrogated. In parallel, compound 140, a further 
optimized degrader, was shown to dramatically reduce 
BRD4 level at 30 pM and to inhibit RS4-11 with an  IC50 
value of 51  pM. Admirably, after much effort, research-
ers discovered the extremely powerful degrader 141, 
which could effectively degrade BRD3 and BRD4 in 
MV4-11 and RS4-11 cell lines at concentrations as low as 
10 nM. In addition, 141 exhibits picomolar-level inhibi-
tory vigor against MV4-11 with an  IC50 of 8.3 pM, mak-
ing it the most powerful BET-targeting PROTAC by far. 
These compounds underline the capacity of PROTACs to 

inhibit target proteins to a greater extent than their par-
ent compounds, at least as evidenced by in vitro assays.

Compounds 142 − 148 are von Hippel-Landau (VHL) 
E3 ligase-based degraders (Fig. 9b). ARV771 (142) treat-
ment of 22Rv1 cells causes remarkable degradation of 
BRD2, 3 and 4  (DC50 < 5 nM), accompanied by depletion 
of c-MYC  (IC50 < 1  nM). The activity of this compound 
is greater than 10 and 100-fold higher than that of com-
pounds 1 and 5, respectively. In addition to a more pro-
nounced apoptotic effect than their parental inhibitors 
and a comparable anti-tumor effect in  vivo, compound 
142 also down-regulates full-length AR. This finding pro-
vides valuable advances for the development of CRPC 
therapeutics [177].

In Ciulli’s works, MZ1 (143) was prepared by teth-
ering compound 1 (for BD recruitment) and VHL-1(a 
VHL ligand) together with a PEG linker [178] (Fig. 9b). 
Compound 143 is a relatively BRD4-selective degrader 
and was shown to deplete more than 90% of this BET 
protein in HeLa cells at concentrations as low as 1 μM. 
Following this, researchers illustrated the crystal struc-
ture of the MZ1-BRD4(2)-VHL ternary complex and 
redesigned a highly selective BRD4 degrader AT1 (144) 
that could effectively degrade BRD4 at 1 − 3  μM rela-
tive to the ignorable activity against BRD2 and BRD3 
[179]. To clarify the relationship between BET inhibitor 
activity and degrader efficacy, they developed several 
BET degraders, namely MZP-61 (145), MZP-54 (146) 
and MZP-55 (147) with 37 as the parental compound 
[180] (Fig. 9b). Their data showed that these 37-based 
degraders did not display higher degradation perfor-
mance and, on the contrary, were less effective than 
the JQ1-based degraders. These results suggest that a 
more potent inhibitor is not a prerequisite to generate 
a superior PROTAC, underscoring the significance of 
the formation of a stable ternary complex. Inspired by 
the crystal structure of the MZ1-BRD4(2)-VHL ternary 
complex and aiming to enhance targeted degradation, 
they recently developed the trivalent PROTAC SIM1 
(148) on the foundation of 143 [181]. Compound 148 
exhibits enhanced and longer-lasting BET degradation 
benefits compared to those of 143, with  DC50 values 
ranging from 0.7 to 3.3  nM, a more significant BET 
down-regulation and c-MYC repression in BET-sen-
sitive 22Rv1 cells. As with the bivalent BET inhibitors 
described above, 148 binds to BD1 and BD2 in a cis 
manner, forming a complex with VHL and BET (BD1 
and BD2) in a 1:1:1 ratio. Unexpectedly, despite such 
large bulk, compound 148 shows remarkable bioavail-
ability and stability in mice.

Differing from occupancy-driven inhibitors, PROTACs 
provide multiple advantages such as high efficiency, low 
toxicity, small dose delivery, and improved drug resistance. 
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However, the accompanying low permeability and bio-
availability also pose new challenges. Currently, only two 
E3 ubiquitin ligases (CRBN and VHL) have been impli-
cated in the proof-of-concept of BET-targeting PROTACs. 

Designing PROTACs tailored to the tumor-specific, highly 
expressed POIs and E3 ligases to minimize off-target 
effects is a longstanding challenge and the foundation for 
providing tangible therapeutic benefits.

Fig. 9 PROTACs. a Chemical structures of CRBN-based PROTACs 133 − 141. b Chemical structures of VHL-based PROTACs 142 − 148. The warheads 
are shown in red, the anchors in purple, and the spacers in green. The activity test methods are bolded
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Non‑BET inhibitors
Motivated by the growing sophistication of BET func-
tional studies and inhibitors development, several schol-
ars have manifested an ever-increasing enthusiasm to 
characterize non-BET inhibitors. Scores of non-BET BD 
ligands have been designed as chemical probes or inhibi-
tors to elucidate unclear biological functions and to facil-
itate drug discovery [182, 183].

CBP/p300 inhibitors
Outside of the BET family, CBP/p300 are the most well-
studied BCPs, with a high degree of biological homology. 
In recent years, small molecule inhibitors of CBP/p300, 
particularly represented by dimethylisoxazoles, were dra-
matically developed (Fig. 10c). Structural Genomics Con-
sortium (SGC) characterized the compound SGC-CBP30 
(149) in 2014 after a sequence of structural optimiza-
tion, which exhibits potent affinity and selectivity (CBP 
 Kd = 26  nM, p300  Kd = 32  nM), being 40-fold and 250-
fold more selective for CBP over BRD4(1) and BRD4(2) 
respectively. Compound 149 was shown to effectively 
inhibit doxorubicin-induced p53 activity and IL-17A 
secretion by Th17 cells. In comparison to pan-BET inhib-
itors, 149 potentially has fewer side effects and a better 
safety profile [184, 185]. Conversion of benzimidazole 
to pyridopyrrole (PF-CBP2, 150) eliminates the water-
mediated hydrogen bond with BRD4 Pro82 and improves 
the selectivity and affinity for CBP [186]. Based on its 
selectivity (100-fold over BRD4) and effectiveness (CBP 
 IC50 = 0.17  μM), compound 150 may be employed as a 
lead compound for further drug development. CCS1477 
(151), found as a highly efficient, selective and orally 
available inhibitor, is the only CBP inhibitor to advance to 
clinical studies to date [187]. Two Phase I/IIa clinical tri-
als aiming to evaluate the safety, tolerability, PK and bio-
logical activity of 151 in patients with metastatic CRPC, 
advanced solid tumors (NCT03568656) and hematologi-
cal malignancies (NCT04068597) are scheduled to be 
completed in March 2024.

Zhang’s team has efficiently synthesized a series of 
CBP/p300 inhibitors with imidazo[1,2-a] pyridine as 
the scaffold in a two-step approach (Fig.  10c), provid-
ing synthetic convenience for rapid and comprehensive 
SAR studies. Among them, UMB298 (152) was shown 
to exhibit comparable biological activity and selectiv-
ity to the reported inhibitors, with a 72-fold selectivity 
toward CBP over BRD4 [188]. Constellation Pharmaceu-
ticals, in collaboration with Genentech Inc, found the hit 
compound 153 by fragment-based screening and fur-
ther optimized to afford CPI-637 (154) [189] (Fig.  10c). 
Co-crystal structure data reveal that 154 reproduces 
key interactions between 153 and CBP bromodomain, 
including the canonical/water-mediated hydrogen bonds 

formed by lactam with Asn1168 and Tyr1125 (Supple-
mentary Fig. 1f ). Compound 154 is more than 700-fold 
more selective for CBP than BET proteins and is able to 
effectively inhibit MYC expression  (EC50 = 0.60  μM). 
Almost simultaneously, the same group developed a 
new series of inhibitors characterized by a piperidino-
pyrazole, including GNE-272 (155) [190], GNE-781 
(156) [191], and GNE-207 (157) [192] (Fig.  10c). These 
compounds demonstrate potent inhibitory activity and 
extremely high selectivity towards CBP, with 156 being 
5425-fold more selective than BRD4(1). Different from 
the “LPF shelf” (Leu1109, Pro1110, and Phe1111) in CBP, 
the spatial prominence of Trp81 from the “WPF shelf” 
in BRD4 forces the rotation of THQ, resulting in the for-
mation of van der Waals interaction between the phenyl 
moiety and Leu92 and the exposure of N-methylpyrazole 
to the solvent. The spatially perfect complementarity 
of 156 and CBP maybe explain such ultra-high selec-
tivity (Fig.  10a-b). In  vivo, these compounds exhibited 
appreciable PK properties and significant AML growth 
inhibition.

By employing 1-(1H-indol-1-yl) ethanone as a scaffold, 
Xu and colleagues prepared a variety of innovative anti-
prostate cancer CBP/p300 inhibitors (Fig. 10c), of which 
the representative compounds are 158 to 161. Y08175 
(158) displays a twofold superior CBP binding than that 
of 149, with an  IC50 of 37 nM, however this compound 
was shown ineffective in cellular assays [193]. The methyl 
ester form 159 has improved cellular permeability, and 
significantly inhibited the growth of prostate cancer cell 
lines LNcap and 22Rv1. Replacing its backbone with 
a 1-(medium nitrogen-3-yl) ethanone yielded Y08197 
(160), which is also a highly selective and effective CBP/
p300 inhibitor capable of suppressing the expression of 
AR-regulated genes (PSA, KLK2 and TMPRSS2) and 
oncogenes (MYC and ERG) [194]. This compound sig-
nificantly inhibits the growth, proliferation and migra-
tion of a variety of prostate cancer cell lines. Further 
optimization was performed to afford compound Y08284 
(161), which exhibits high selectivity for CBP/p300 with 
a significantly improved PK profile  (t1/2 21.23  min,  Clint 
81.87  mL/min/kg in human liver microsomes). In  vivo, 
oral administration of 40 mg/kg of 161 five times a week 
for 14 continuous days was shown to dramatically inhibit 
prostate cancer tumor growth, with a TGI of 88% [195]. 
Through in silico screening and crystal-based structure 
optimization, Luo’s lab developed inhibitors DC-CPin711 
(162) and DC-CPin734 (163) [196, 197] (Fig. 10c). Both 
inhibit the proliferation of various AML cell lines, espe-
cially MV4-11, with  IC50 values of 1.2 μM and 0.55 μM. 
The 4-acyl pyrrole derivative XDM6 (or XDM-CBP, 164) 
features a remarkable ligand efficiency and high selec-
tivity, being capable of inhibiting the proliferation of 
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Fig. 10 CBP/p300 and PCAF/GCN5 inhibitors. a Crystal structures of GEN-781 bound to CBP (PDB ID: 5W0E). b Crystal structures of GEN-781 bound 
to BRD4 BD1 (PDB ID: 5VZS). c Chemical structures of CBP/p300 inhibitors 149 − 165. d Chemical structures of PCAF/GCN5 inhibitors 166 − 170. 
Key residues are highlighted with gray sticks, and ligands are blue. Hydrogen bonds are shown in red dashed lines. The activity test methods are 
bolded
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numerous solid tumors and hematological malignancy 
cell lines, which confirms its feasibility and the poten-
tial of utilizing the 4-acyl pyrrole as a starting point for 
the development of non-BET inhibitors [198]. In addi-
tion, Christopher J et al. employed 156 as the warhead to 
engineer the CBP/p300 degrader dCBP-1 (165), capable 
of hijacking the ligase CRBN. Compound 165 can almost 
completely degrade CBP and p300 at a concentrations as 
low as 10 nM in a MM cell line (MM1S) [199].

PCAF/GCN5 inhibitors
Numerous reports have documented the necessity to 
develop inhibitors of PCAF/GCN5, which are impli-
cated in a variety of diseases, such as cancer, AIDS and 
inflammation. The BD of PCAF was confirmed to bind 
to acetylated K50 (K50Ac) and motivate Tat transactiva-
tion, ultimately leading to HIV transcription [200]. Zhou 
et  al. obtained the first small molecule inhibitor NP1 
(166,  IC50 = 1.6  μM) of PCAF via NMR screening [201] 
(Fig.  10d). Through selectively inhibiting BD in PCAF, 
166 is able to effectively block the binding of Tat-K50Ac 
and PCAF. Starting from a pyridazinone hit, GSK suc-
cessfully developed GSK4027 (167), a highly selective 
and efficient chemical probe for PCAF/GCN5 [202]. Sub-
sequently, 167 was employed as the ligand and tethered 
to thalidomide (Fig.  10d), affording a PCAF-targeting 
PROTAC, GSK983 (168, PCAF  DC50 = 1.5  nM, GCN5 
 DC50 = 3.0  nM). Compound 168 was shown capable 
of effectively attenuating LPS-induced stimulation of 
macrophages and dendritic cells and reducing produc-
tion of inflammatory cytokines [203]. In 2016, L-Moses 
(169,  Kd = 126  nM) was reported as a highly potent, 
selective and cell-active chemical probe derived from 
triazolopthalazine to target PCAF [204]. This compound 
169 shows good cell permeability and metabolic stabil-
ity in in vitro assays. The co-crystal structure of 169 with 
pfGCN5 (BD from Plasmodium falciparum, 64% homol-
ogy with PCAF BD) reveals that compound 169 is located 
in the KAc recognition pocket by forming a salt bridge 
with Glu1389, a π-π stacking with Trp1379/Tyr1442 and 
a water-mediated hydrogen bond with Asn1436 (Sup-
plementary Fig.  1g). This study provides an outstand-
ing basis for the design and development of subsequent 
PCAF inhibitors. Later, Yang et al. reported a novel and 
high selectivity PCAF inhibitor 170  (IC50 = 7  nM) with 
higher activity than 169  (IC50 = 36  nM, HTRF), which 
displayed favorable PK properties and cellular activity in 
HEK293T cells [205].

TAF1 inhibitors
Although the specific function of the two separate bro-
modomains BD1 and BD2 of transcription initiation 

factor TFIID subunit 1 (TAF1) remains ambiguous, they 
are recognized as potential targets for tumor therapy 
[206]. GNE-371 (171,  IC50 = 10  nM), a potent inhibitor 
of TAF1(2), was reported by Genentech and Constella-
tion (Fig. 11a). The 1-butenyl group on the pyrrolopyri-
done is the key moiety that can effectively improve the 
potency and selectivity of the compound by rearranging 
and stabilizing a conserved water network in the bind-
ing site [207]. It has been reported that a combination of 
TAF1 and BRD4 inhibitors offered synergistic anti-prolif-
erative effects in tumor cells. A target engagement assay 
confirmed that 171 was able to increase the sensitivity of 
H23 lung cancer cells to 171 even at concentrations as 
low as 100 nM, suggesting that 171 is an efficient chemi-
cal probe useful for the exploration of the biological 
function of TAF1(2). Bayer synthesized a series of benzo-
isoquinolinedione derivatives based on HTS to obtain a 
novel BRPF2/TAF1 dual-target inhibitor (Fig. 11a), Bay-
299 (172, TAF1(2)  IC50 = 8 nM, BRPF2  IC50 = 67 nM). In 
the BROMOscan panel and in  vitro studies, compound 
172 displayed high selectivity and favorable PK proper-
ties, which indicates that this compound is a promising 
chemical probe to study BRPF2 and TAF1(2). In a sepa-
rate report in 2021, compound 172 was shown capable 
of inducing MV4-11 and NB4 death in human AML cell 
lines via the RIKP1 signaling pathway, which reveals 
the potential of 172 to treat AML [208, 209]. Moreover, 
Schönbrunn et  al. recently reported that ATR kinase 
inhibitor AZD6738 (173, Fig.  11a), which has advanced 
to clinical trials, inhibited TAF1(2) at a submicromolar 
level and was a potent dual-target TAF1/ATR inhibi-
tor (TAF1(2)  IC50 = 427  nM, ATR  IC50 = 4  nM) [210]. 
Crystallographic and small-angle X-ray scattering stud-
ies reveals that when 173 binds with TAF1-T (contain-
ing BD1 and BD2), the morphology of TAF1-T changes 
from an open to a closed conformation. Therefore, com-
pound 173 can not only inhibit the recognition function 
of BDs, but also affects transcription by interfering with 
the proper assembly and localization of TFIID in the pre-
initiation complex. These findings provide new insights 
into the development of TAF1 inhibitors.

BRD7/9 inhibitors
Both BRD7 and BRD9 contain a unique BD, and the 
structural similarity and biological homology of the 
two individual BDs pose obstacles to the exploitation 
of selective inhibitors and chemical probes for BRD7 
or BRD9. I-BRD9 (174) was the first selective BRD9 
inhibitor discovered by GSK, with more than 700-fold 
and 200-fold selectivity over BET family proteins and 
BRD7, respectively [211] (Fig. 11b). With strong binding 
to BRD9  (pIC50 = 7.3), 10  μM of compound 174 mark-
edly down-regulates genes (CLEC1, DUSP6, FES, and 
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Fig. 11 TAF1, BRD7/9, and BRPF inhibitors. a Chemical structures of TAF1 inhibitors 171 − 173. b Chemical structures of BRD7/9 inhibitors 
174 − 180. c Chemical structures of BRPF inhibitors 181 − 187. The activity test methods are bolded
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SAMSN1) related to cancer and immune pathways. Fol-
lowing this, Genentech and Constellation Pharmaceu-
ticals developed a novel BRD9 inhibitor GNE-375 (175) 
based on a pyrrolopyridone core via structure-based 
drug design [212] (Fig.  11b). This compound fills the 
BRD9 with the 2-methoxy group occupying the acces-
sible pocket adjacent to the lipophilic shelf, which is not 
tolerated in BRD4. Compound 175 displays high potency 
against BRD9  (IC50 = 5  nM), but practically no activity 
against 236 cell lines. Unexpectedly, 175 kills > 60% of 
PC9 cells while in combination with erlotinib and can 
down-regulate the ALDH1A1 gene associated with drug 
resistance, suggesting its potential in addressing tumor 
resistance. Boehringer Ingelheim developed two potent 
BRD9 inhibitors BI-7273 (176) and BI-9564 (177) by 
fragment-based and virtual screening [213] (Fig.  11b). 
Data from the literature demonstrate that both inhibitors 
have high affinity and strong inhibitory activity against 
BRD9, with desirable PK properties such as moderate 
to high solubility, metabolic stability, permeability and 
no CYP450 inhibition. These properties are beneficial 
for the subsequent elucidation of the biological role of 
BRD9. LP99 (178), the first selective BRD7/9 inhibitor 
developed by Oxford, exhibits anti-inflammatory poten-
tial by inhibiting LPS-stimulated IL-6 secretion in human 
monocytic leukemia cells [214]. Another probe, TP-472 
(179), employed pyrrolo[1,2-a] pyrimidine as its struc-
tural skeleton (Fig. 11b), and showed high efficacy against 
BRD7/9. More recently, compound 179 was observed 
to inhibit melanoma cell growth in  vitro and in  vivo by 
down-regulating several extracellular matrix proteins and 
up-regulating pro-apoptotic genes [215]. Bradner et  al. 
designed the first BRD9-targeting PROTAC dBRD9 (180) 
by linking a selective BRD9 inhibitor to the CRBN ligand 
(pomalidomide) via a PEG linker [216] (Fig. 11b). Com-
pound 180 retains selective dimerization with BRD9, 
effectively inducing the degradation of BRD9 with-
out noticeable off-target activity on BRD4 or BRD7. In 
human leukemia cell lines, the anti-proliferative efficacy 
of 180 was 10 to 100 times that of its parental inhibitors 
(174 and 176). This finding underlines the feasibility of 
developing non-BET degraders and the critical role of 
dBRD9 as a tool to explore the BRD9 biology or as a lead 
compound against leukemia.

BRPF inhibitors
The multi-domain nature of bromodomain- and PHD 
finger-containing protein (BRPF), and the fact that they 
are usually located in protein complexes, lead to elu-
sive functions of their BDs. Thus, targeted and effi-
cient chemical probes against BRPF are needed. GSK 
reported compound 181, a selective BRPF1 probe on the 
basis of benzimidazolone [217] (Fig.  11c). Compound 

181 displays excellent binding activity towards BRPF1 
 (pIC50 = 7.1), exceeding BET and BRPF2/3 by 100 to 1000 
fold. Structurally, Phe714 (Ile146 in BRD4) and Pro658 
(Ser592 in BRPF2, Asn619 in BRPF3) residues in BRPF1 
contribute to the selectivity of the probe (Fig. 11c). Struc-
tural optimization was further performed to obtain 
GSK6853 (182), featuring enhanced selectivity and activ-
ity, which is a suitable probe for cellular and in vivo stud-
ies [218] (Supplementary Fig. 1h). Furthermore, SGC, in 
collaboration with several pharmaceutical and academic 
institutions, conducts ongoing R&D on BRPF inhibi-
tors and discovered compounds 183–186 [219–221] 
(Fig.  11c), including selective BRPF1 inhibitor PFI-4 
(183) and pan-BRPF inhibitors OF-1 (184), NI-57 (185) 
and NI-42 (186). For the first time, preliminary findings 
suggest that BRPF is significantly implicated in cancer 
(AML), inflammation, and osteoclastogenesis, laying a 
firm foundation for exploring the biological functions 
and druggability of BRPF. The 2,3-dioxo-quinoxaline 
derivative compound 187 exhibits micromolar level of 
inhibitory activity against BRPF1  (IC50 = 1.9  μM) [222]. 
In BRPF2 and BRD4, the absence of critical van der 
Waals contacts with Ser592 (Pro658 in BRPF1), the spa-
tial collision of the morpholine moiety with Trp81, and 
the smaller binding pocket resulted in the ineffectiveness 
of compound 187 for these two proteins.

ATAD2 inhibitors
Given the growing evidence that ATPase family AAA 
domain containing 2 (ATAD2) is implicated in various 
cancers and might be a marker of poor prognosis, chemi-
cal probes and inhibitors targeting this protein are gradu-
ally attracting the attention of investigators [223–226]. 
Starting with 3-methylquinolin-2(1H)-one, GSK devel-
oped micromolar inhibitors 188 and 189 based on the 
difference of binding pockets in the BD of ATAD2 and 
the specific acid cluster consisting of Asp1066, Asp1068, 
and Asp1071 [227] (Fig.  12a). Though the selectivity of 
these inhibitors is not satisfactory, the accessibility of 
ATAD2 inhibition with small molecules was evidenced. 
Further optimization yielded cell-permeable probe 190, 
with sub-100 nM potency and a 100-fold selectivity over 
BET [228]. Chemical probes GSK8814 (191) and 192 
were prepared using  CF2 as the bio-isostere of sulfone 
[229, 230]. The former is the first low nanomolar and cell-
permeable ATAD2 probe, while the latter uses tropane 
to restrict conformation. With the  CF2 moiety exhibiting 
favorable electrostatic complementarity to the Arg1077 
and “RVF shelf” (Arg1007, Val1008 and Phe1009) in 
ATAD2 (Supplementary Fig.  1i), both probes are highly 
selective. Recently, AZ13824374 (193) was discovered 
as a selective and potent ATAD2 inhibitor through HTS. 
This inhibitor was capable of reducing colony formation 
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Fig. 12 Other non-BET Inhibitors inhibitors. a Chemical structures of ATAD2 inhibitors 188 – 195. b Chemical structures of CECR2 inhibitors 196 
– 198. c Chemical structures of BAZ2A/B inhibitors 199 – 202. d Chemical structures of SMARCA2 /4 inhibitors 203–204. e PROTAC of TRIM24. The 
activity test methods are bolded
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in a range of breast cancer models [231]. Furthermore, 
BAY-850 (194) and AM879 (195) were uncovered via 
a DNA-encoded library and structure-based virtual 
screening, respectively [232, 233]. Compound 194 can 
trigger BD dimerization, thus blocking KAc binding, 
while compound 195 can selectively inhibit ATAD2 and 
effectively induce autophagy through the PI3K-AKT-
mTOR pathway in MDA-MB-231 cells.

Other non‑BET inhibitors
There are many non-BET inhibitors that have been reported, 
although their targeting BDs may have been initially regarded 
as having negligible likelihood of drug success.

As for cat eye syndrome critical region protein 2 (CECR2), 
NVS-CECR2-1 (196) was the first selective, potent and low-
solubility CECR2 probe, co-developed by SGC and Novartis 
[234]. Followed by probes GEN-886 (197) and GSK232 
(198), revealing the interaction mode with CECR2, their 
effects still need to be addressed [235, 236] (Fig. 12b).

BAZ2A/B was once considered unsuitable as a drug 
target due to the open and shallow binding site it pos-
sesses, until the chemical probe BAZ2-ICR (199) was 
discovered (Fig.  12c), which was typified by an internal 
π-stacking arrangement [237]. GSK2801 (200), a canoni-
cal acetyl lysine mimic, can displace BAZ2A from chro-
matin with appreciable PK properties [238]. Regrettably, 
after the discovery of active fragments 201 and 202 via in 
silico screening by Caflflisch et al. virtually no BAZ2A/B 
inhibitor has been reported [239].

For canonical family VIII bromodomains SMARCA2, 
SMARCA4 and PB1, both PF1-3 (203) and compound 
204 were termed as SMARCA/PB1 chemical probes 
(Fig.  12d), and were employed to identify the roles of 
such proteins in adipogenesis [240–242].

Although TRIM24 is involved in a variety of cancers, 
selective inhibition of BD alone may not provide dis-
ease therapeutic benefit due to its multi-domain [243–
246]. dTRIM24 (205) was the first selective PROTAC of 
TRIM24 depending on VHL [247] (Fig. 12e). Differential 
protein expression and cell cycle arrest resulting from 
TRIM24 depletion caused by 205 demonstrate the role of 
this enzyme in acute leukemias. This study suggests that 
degraders could also serve as powerful tools to probe the 
functions of candidate proteins, highlighting the advan-
tage of holistic degradation of multi-domain proteins 
over selective inhibition of a single domain. Accordingly, 
it will be necessary to guarantee the high selectivity of 
PROTACs to avoid bias due to off-target effects.

Perspective and conclusion
BCPs engage in histone modification, chromatin remod-
eling and transcription factors recruitment through 
recognition of KAc residues, while playing key roles in 

various physiological or pathological processes [5, 22, 
248]. Since BD is the specific recognition site for KAc, 
waves of small molecule inhibitors and degraders have 
been disclosed over the past decade, especially BET-
targeting inhibitors and PROTACs [34–37]. The current 
development of inhibitors is mainly done by simulating 
the mode of BD recognition KAc. Inhibitors fill the rec-
ognition pocket of KAc by forming hydrogen bonds with 
the conserved asparagine residue to produce biological 
effects. The strength of the interaction with residues and 
the degree of matching to the pocket determine the bio-
logical activity and selectivity of the inhibitors. Therefore, 
interactions with other amino acid residues are often 
constructed to enhance the activity of the drug, includ-
ing the formation of additional hydrogen bond with 
Tyr97 (I-BET762) and salt bridge with Lys91 (PLX51107). 
In addition, in order to improve the selectivity of the 
molecule for BD or protein, it is particularly impor-
tant to construct a unique interaction with the pocket, 
and a molecular shape that fits the pocket. For example, 
GSK778 forms a unique hydrogen bonding interaction 
with Asp144 to improve the selectivity of the molecule 
for BD1, RVX-208 is highly complementary to the pocket 
in shape to improve the selectivity for BD2, and the high 
fitness of GNE-781 to the “LPF shelf” makes it a highly 
selective CBP/p300 inhibitor. As co-crystal structures 
and SAR continue to accumulate, inhibitors are emerging 
with increasing druggable potential, and many have pro-
gressed to clinical trials. However, none were successfully 
approved for marketing so far, and plenty of challenges 
remain to be addressed. In particular, dose-limiting tox-
icity (DLT) due to pan-inhibition (pan-BET inhibitor) or 
off-targets is an essential factor in the failure of clinical 
trials. As mentioned earlier, the most common adverse 
effects include fatigue, gastrointestinal disorders (vom-
iting, diarrhea), hyperbilirubinemia, anemia and revers-
ible thrombocytopenia. Accordingly, the development 
of subsequent new generations of inhibitors mainly may 
focus on the identification of high-efficiency and highly 
selective small molecules (such as RVX-208 and ABBV-
744), rather than the original pan-inhibitors (( +)-JQ1, 
OTX015).

For BET inhibitor resistance, Wnt/β-catenin signal-
ing is a recognized alternative pathway to keep MYC 
unaltered or to rapidly restore MYC transcription, while 
hyperphosphorylated BRD4 owing to the reduction of 
protein phosphatase  2A (PP2A) activity also facilitates 
drug resistance through its stable binding to MED1 
[249–251]. Alternatively, phosphorylated BRD4, which is 
induced by IL6/IL8-JAK2 signaling, can maintain its sta-
bility by interacting with deubiquitinase UCHL3 [252], or 
by increasing conjugation to chromatin, thereby reduc-
ing binding to inhibitors. Activation of the AMPK/ULK1 
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pathway associated with the induction of pro-survival 
autophagy is also implicated in the resistance of leukemia 
stem cells (LSCs) to JQ1 [253]. A pharmacological combi-
nation approach is still an effective strategy to overcome 
tumor resistance [254–256], including BET inhibitors 
co-administered with Wnt/β-catenin inhibitors, BCL-
xL inhibitors (ABT-737), CK2 inhibitors (Silmitasertib) 
or JAK2 inhibitors (pacritinib). Additionally, integrat-
ing different pharmacophores into a single molecule to 
achieve multifunctional inhibitors is also a fashionable 
approach to drug combinations. For example, the BRD4/
CK2 dual-target inhibitor 131 exhibits favorable inhibi-
tory activity against the JQ1-resistant MDA-MB-231 cell 
line, while the BRD4/HDAC inhibitor 116 can counter-
act drug resistance in colorectal cancer cells by blocking 
the IL6-JAK-STAT pathway. Besides, for some tumors 
(e.g. malignant peripheral nerve sheath tumor), simulta-
neously inhibiting BET activity and reducing BET levels 
may lead to synthetic lethality. Thus, PROTACs therapy 
demonstrates its unique protein modulatory benefits.

The flourishing of BET inhibitors is paralleled by 
the widespread development and coverage of non-
BET family chemical probes or inhibitors. Numerous 
high-quality chemical probes have been discovered to 
facilitate the validation of protein functions, although 
sometimes the inhibition of a single domain does not 
trigger any biological effect in multi-domain proteins. 
For multi-domain proteins (such as p300/CBP, TRIM24, 
and SMARCA2A/2B), depleting the entire POI by effi-
cient and specific PROTACs is an alternative and useful 
approach to explore the sophisticated biological role of 
each protein. Although milestones have been achieved 
for non-BET proteins and their inhibitors, of which the 
first non-BET inhibitor CCS1477 has advanced to clinical 
trials, the physiological features of some non-BET pro-
teins remain obscure, and therefore the development of 
potent, selective, cell-permeable non-BET probes is still 
challenging.

Collectively, this paper provides a detailed review of 
the biology and inhibitors of BCPs, in which the study 
of typical BDs is relatively well-established, despite lim-
ited knowledge of atypical BDs (ASH1L, MLL, BRWD1, 
etc.). For BET inhibitors, the major challenge being 
faced is to improve clinical efficacy and minimize DLT. 
For non-BET inhibitors, the development of high-qual-
ity ligands to elucidate the physiological function and 
pharmacological potential of proteins remains a top pri-
ority. With the accumulation of knowledge on the struc-
ture, function and ligand binding mechanism of BCPs, 
as well as trial and error and optimization throughout 
the drug discovery process, novel BD-selective inhibi-
tors or degraders will eventually be used in clinical 
practice to treat cancerous and inflammatory diseases.
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