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Abstract 

The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining 
immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly 
controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These fac-
tors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. 
Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing 
insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering 
the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research 
directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. 
First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide 
the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs 
through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through 
peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordi-
nate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immu-
notherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy 
that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved 
in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
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Introduction
Dendritic cells (DCs), as key outposts of the immune 
response, are crucial for maintaining the central and 
peripheral tolerance mechanisms under steady-state con-
ditions. Alternatively, under inflammatory conditions, 
danger signals from sites of infection or cancer promote 
the recruitment, activation, and maturation of DCs, 

ultimately leading to antigen-specific T cell responses 
[1, 2]. The migration of DCs towards lymph nodes and 
their upregulation of co-stimulatory molecules, such 
as CD40, CD80, and CD86, as well as secretion of mul-
tiple cytokines, including interferon (IFN)-α/β, inter-
leukin (IL)-10, and IL-12, are induced by danger signals 
[3, 4]. These events determine the activation and polari-
zation of T cells. Owing to their role in initiating T cell 
immunity, DCs have been identified as key regulators in 
guiding immunotherapy for autoimmune diseases and 
tumors [3, 5]. Existing evidence indicates that the pres-
ence of DCs or expression of DC-specific transcriptional 
signatures positively correlates with  CD8+ T cell infiltra-
tion in tumors and improved prognosis, while selective 
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depletion of DCs reduces the number of T cells in auto-
immune diseases and attenuates disease severity [6–9].

The biological functions and markers of DCs may 
vary considerably in different microenvironments; this 
increases the difficulty of classifying DCs. Currently, a 
uniform classification system is to divide DCs into con-
ventional DCs (cDCs), plasmacytoid DCs (pDCs), and 
monocyte-derived DCs (moDCs) based on their origin 
and differentiation pathways. Over the past two dec-
ades, research surrounding DCs has yielded extraor-
dinary insights into various aspects of biological and 
medical applications. Nonetheless, these advances have 
highlighted many fundamental unanswered questions 
surrounding the function and mechanisms of DCs. 
Addressing these questions can accelerate the transla-
tion of this acquired knowledge on DCs into correspond-
ing clinical applications. Therefore, the key aims of this 
review are to provide an overview of the molecular sig-
nals that control DC differentiation, antigen presentation, 
and immune regulation, and to highlight the potential 
applications of targeting DCs for immunotherapy. We 
also discuss the advancements in understanding how 
DCs crosstalk with other immune cells, as well as their 
role in shaping the tumor microenvironment. Overall, 
this review aims to comprehensively evaluate the signal-
ing pathways that are involved in DC biology and their 
potential implications in disease treatment.

Developmental and biological functions of DC 
subsets
In 1973, Steinman and Cohn described a type of stellate 
cell structure in mouse spleens and lymph nodes, and 
termed them DCs [10]; prior to which macrophages and 
B cells were considered the primary antigen-presenting 
cells (APCs) [11]. Their experiments over the next few 
years confirmed that DCs are far more potent as APCs 
in stimulating T cell responses than other cell types that 
express the major histocompatibility complex (MHC) 
and co-stimulatory molecules [12]. DCs are present in 
almost all tissues throughout the body and exhibit a high 
degree of heterogeneity. Different DC subpopulations are 
defined based on their development, anatomical location, 
and immunological characteristics.

Development and transcriptional regulation of DC subsets
DCs originate from common myeloid progenitors 
(CMPs). Their main types include cDCs, pDCs, and 
moDCs (Fig. 1). In certain inflammatory conditions, the 
transcription factor Nur77 is responsible for promoting 
the differentiation of CMP into monocytes, which sub-
sequently develop into moDCs [13, 14]. cDCs and pDCs 
are considered to have originated from a shared lineage 
of DC precursors known as common DC precursors 

(CDPs), which lack monocyte/macrophage differentia-
tion potential and also develop from CMPs [15]. CDPs 
are typically characterized by a lack of lineage markers 
 (LIN−) and are accompanied by the expression of Fms-
like tyrosine kinase 3 (FLT3), macrophage colony-stimu-
lating factor receptor (M-CSFR; also known as CD115), 
and receptor tyrosine kinase KIT (SCFR; also known as 
CD117) [16]. The transcription factor Zbtb46 is a specific 
marker for cDCs, which comprises two main subsets: the 
cDC1s and the more heterogeneous cDC2s [17].

cDC1 and cDC2 subsets
cDC1s and cDC2s play special roles in the immune acti-
vation of  CD8+ and  CD4+ T cells, respectively, through 
differential processing and presentation of antigens and 
the production of corresponding cytokines [18, 19]. In 
the bone marrow, upregulation of CD11c expression 
facilitates CDPs to further develop into pre-cDCs, which 
are excreted from the bone marrow via the blood and 
differentiated into cDC1 and cDC2 populations in tis-
sues [11, 20]. cDC1s develop from pre-DCs in an IRF8-
dependent manner, with cell surface expression of the 
chemokine receptor XCR1, C-type lectin–like receptor 
(CLEC9A), and CD205 [21–23]. In addition, Nfil3 and 
Id2 are essential for the differentiation of cDC1s. Selec-
tive deletion of cDC1s occurs in mice with Batf3, Nfil3, 
or Id2 knockout [4]. Interestingly, the effects of deletions 
in Batf3, Id2, or Nfil3 in mice can be repaired by ectopic 
expression of IRF8, suggesting that high expression of 
IRF8 is central to cDC1 development [24]. Similarly, the 
compensatory effects of other members of the BATF 
family maintain IRF8 expression under some inflam-
matory conditions, prompting to cDC1 production in 
 Batf3−/− mice [25].

Compared to cDC1s, cDC2s have a different transcrip-
tional profile and can be identified by the expression of 
SIRPα and CD11b, with the key transcription factor 
being IRF4 [11]. Although cDC2s are present in  IRF4−/− 
mice, their numbers are substantially reduced and they 
lose the ability to migrate peripherally to the lymph 
nodes [26, 27]. In addition, the KLF4 transcription factor 
and Notch2 receptor are essential for the development 
of cDC2s [28, 29]. cDC2s are further divided into several 
subsets based on their phenotype and function owing to 
their high heterogeneity. High expression of the endothe-
lial cell-selective adhesion molecule (ESAM) has been 
used to distinguish Notch2-dependent cDC2s  (ESAMhi 
cDC2s) [30].  ESAMhi cDC2s have a high value-added rate 
and high expression of MHCII compared to the  ESAMlo 
cDCs, which preferentially express monocyte-associ-
ated genes, including chemokine (Ccr2) receptors and 
lysozyme (Lyz1, Lyz2) [30]. Brown et al. defined the two 
subpopulations of cDCs: cDC2sA and cDC2sB, based 
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on the mutually exclusive expression of the transcription 
factors T-bet or RORγT  [31]. The cDC2sA population 
corresponds, at least in part, to the previously identified 
 ESAMhi cDC2s. cDC2sB has a phenotype similar to that 
of  ESAMlo cDC2s. T-bet+ cDC2sA are present through-
out lymphoid and non-lymphoid tissues, in contrast to 
 ESAMhi cells, which are found only in the spleen and 
mesenteric lymph nodes [32].

Human and mouse cDCs are thought to be relatively 
evolutionarily conserved. They are both derived from 
CDPs and comprise mainly two basic subtypes, cDC1s 
and cDC2s. Similar to mouse cDCs, the development of 
human cDC1s’ depends on Batf3 and IRF8 expression. 
Short hairpin RNA-mediated knockdown of Batf3 selec-
tively inhibits the development of human cDC1s in vitro 
[33]. Patients with IRF8 mutations were found to have 
defective helper T cell function, likely due to reduced 
CD11c-expressing DCs, and had reduced resistance to 
infections, including Mycobacterium infections [34]. 
Human cDC1s were further identified by the expression 
of CD141 and CADM1 in addition to the expression of 

the mouse cDC1s-specific markers XCR1 and CLEC9A. 
In contrast, human cDC2s are commonly identified 
by the expression of CD1c (BDCA1) and CLEC10A 
(CD301a), in addition to SIRPα [35]. In a recent study, 
single-cell RNA-sequencing analysis was used to classify 
human cDC2s into DC2 and DC3 and was validated by 
parallel observations in their murine cDC2s homologs, 
including  ESAMhi cDC2s and  ESAMlo cDC2s [36].

pDC subsets
pDCs are derived from CDPs and are consistently pro-
duced in the bone marrow. They, then, mature and 
migrate to the periphery, where they lose their prolifera-
tive ability and only survive for a short time [37]. How-
ever, a portion of pDCs may originate from the lymphoid 
lineage, as evidenced by the discovery of a population 
of  LIN−KIT+SCA1+CD34+FLT3+ cells that appear to 
be directly derived from lymphoid-primed multipotent 
progenitors; this population expresses high levels of 
Tcf4 with prominent pDC differentiation potential [38]. 
The pDCs possess elevated levels of Toll-like receptors 

Fig. 1 Mouse dendritic cell development and lineage. DCs are derived from CDP, which is derived from LMPPs differentiated from HSC in the 
bone marrow. Branching CMPs of LMPPs are driven by the transcription factor Nuf77 to differentiate into monocytes and then further differentiate 
into M-CSF-dependent macrophages or GM-CSF-dependent moDCs. High expression of PU.1 is associated with the specification of these two 
cell types. Zbtb46 expression in pre-cDC1s and pre-cDC2s is a specific marker for the specification of cDCs. cDC2 subsets express high levels of 
IRF4, whereas pDCs and cDC1 express high levels of IRF8. Id2 is a suppressor of Tcf4, impairing Tcf4-driven pDCs specification and promoting 
cDC1s specification. HSC, hematopoietic stem cell; LMPP, lymphoid- primed multipotent progenitors; CLP, common lymphoid progenitors; GMP, 
granulocyte–macrophage progenitors; cMoP, common monocyte progenitors; IRF8, interferon regulatory factor 8; BATF, basic leucine zipper 
ATF-like transcription factor; SIRPα, signal regulatory protein alpha
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(TLRs) that are capable of sensing endosomal nucleic 
acids, such as TLR7 and TLR9 [39, 40]. These receptors 
enable pDCs to recognize viral single-stranded RNA and 
unmethylated CpG motif-containing DNA [41]. FLT3 
and its ligand (FLT3L) play crucial roles in the develop-
ment of pDCs [42]. FLT3L drives spontaneous differ-
entiation of pDCs and lineage bifurcation of pDCs and 
cDCs through the activation of signal transducer and 
transcription 3 (STAT3) and mammalian target of rapa-
mycin (mTOR) [43]. Subsequent specification of pDCs 
requires the involvement of E protein transcription factor 
TCF4 (E2-2), which is a key factor in the identification of 
pCDs in mice and humans. [44]. Id2, a repressor of E2-2, 
may disrupt the E2-2-driven transcriptional program of 
pDCs, directing cell differentiation towards cDC1s [16]. 
Thus, Id2 is essentially absent in pDCs and relatively 
highly expressed in cDC1s. The numbers of pDCs are 
increased in  Id2-/- mice. Overexpression of Id2 or de-
repression of Id2 caused by the loss of the transcriptional 
repressor ZEB2 results in impaired development of pDCs 
and enhanced development of cDC1s [45–47]. In conclu-
sion, these studies reveal a complex regulatory network 
for the development of pDCs and highlight the close rela-
tionship between the genetic mechanisms involved in the 
specification of cDCs and pDCs.

moDC subsets
In mice, two subsets of CMP-derived mononu-
clear phagocytes exist:  CCR2−CX3Cr1hi  LY6C− and 
 CCR2+CX3Cr1loLY6C+CD62L+; the latter is a precur-
sor to moDCs [48]. In contrast to the steady state, cDC2s 
express moDC-specific markers such as Ly6C, CD64, and 
MAR1 in the inflammatory microenvironment, which 
makes the identification of moDCs challenging [49]. 
To address this, Guilliams et  al. compiled the available 
gene expression data for DCs and macrophage subsets. 
The findings showed that the expression of Fc receptors 
for IgG (FcγRs) is highly selective in humans and mice 
[50]. Specifically, moDCs highly express most activating 
and inhibitory FcγRs, while cDCs and pDCs predomi-
nantly express inhibitory FcγRIIB [50]. Of note,  LY6C+ 
monocytes can differentiate into  iNOS+ microbicidal 
macrophages in addition to CCR2-dependent moDCs 
[51, 52]. Menezes et al. suggested that PU.1 is critical in 
regulating the polarization of  Ly6C+ monocytes and that 
high levels of PU.1 can selectively promote GM-CSF-
dependent moDC production and downregulate the pro-
duction of  iNOS+ macrophages [53]. Furthermore, the 
aryl hydrocarbon receptor AHR serves as a molecular 
switch that plays a role in determining the fate of mono-
cytes. In the presence of macrophage colony-stimulating 
factor (M-CSF), monocytes preferably differentiate into 
macrophages, whereas in the presence of IL-4 and TNF-α 

together with AHR ligands, they tend to differentiate 
into moDCs [54]. Overall, inflammatory monocytes have 
multiple fates, and the precise conditions in the micro-
environment that drive the differentiation of monocytes 
towards moDCs rather than macrophages, as well as the 
specific molecular coordinators involved, remain to be 
further defined.

Antigen uptake and presentation by DC cells
In the previous section, the development and origin 
of the cDC, pDC, and moDC subsets were discussed. 
However, why these cells constitute the DC population 
is unclear. All of these cells bridge natural and adaptive 
immunity, including sensing the tissue environment, 
processing and presenting antigens, and promoting T 
cell responses, even though the pDC and moDC subsets 
are far less capable of initiating T cell responses com-
pared to cDCs. Resting state DCs, are considered imma-
ture and must undergo an intricate and rigorous series 
of antigen-acquisition processes prior to activation and 
maturation[55]. Mature DCs exhibit reduced phagocy-
tosis, increased antigen presentation and migration, and 
upregulated expression of various co-stimulatory mol-
ecules including CD40, CD70, and CD86, as well as MHC 
class I and class II molecules [40, 56].

Molecular players in antigen recognition and internalization
Interaction of pattern recognition receptors (PRRs) 
with pathogen-associated molecular patterns (PAMPs) 
or damage-associated molecular patterns is a prereq-
uisite for initiating immune responses in DCs. In mice 
and humans, the PRR families include TLRs, retinoic 
acid-inducible gene-I-like receptors (RLRs), nucleotide 
oligomerization domain (NOD)-like receptors (NLRs), 
C-type lectin receptors (CLRs), and range of intracellular 
DNA sensors [57–59]. High expression of TLR3, which 
senses viral dsRNA, is conserved in human and mouse 
cDC1s. TLR3 specifically initiates the efficient cDC1-
mediated clearance of infected cells by  CD8+ T cells 
[11, 60, 61]. Although the generation of a robust type I 
IFN response in cDC1s is biased towards TLR3, TLR9 
activation is equally able to regulate Myd88-IRF7 signal-
ing in cDC1s via NCoR1, inducing a moderate antiviral 
response [62, 63]. Additionally, mouse cDC1s express 
TLR11 and TLR13, whereas human cDC1s highly express 
TLR8[14, 64, 65]. Unlike cDC1s, cDC2s rapidly accu-
mulate in mesenteric lymph nodes in a TLR5-depend-
ent manner after soluble flagellin immunization [66]. 
cDC2s also express TLR2, TLR4, and TLR7 for sensing 
bacterial and viral associated PAMPs [36, 67]. The pDC-
mediated antiviral response is largely dependent on the 
activation of TLR9 signaling and subsequent Myd88-
IRF7 signaling[68]. In addition, TLR7 is responsible for 
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the induction of inflammatory signaling following SARS-
CoV-2 infection in a stem cell–based human pDC model 
[69]. Meanwhile, endosomal TLRs are responsible for ini-
tiating the initial steps in the generation of type I IFN in 
pDCs, whereas RLRs contribute to the latter stages of the 
IFN response [58, 70].

RLRs are constitutively expressed in cDCs and are 
the primary molecules used by cDCs to sense foreign 
nucleic acids [71]. As cytoplasmic sensors of viral RNA, 
RLRs interact with an adaptor protein (MAVS) upon 
activation, thereby triggering a signaling cascade that 
includes the secretion of inflammatory cytokines and 
chemokines [72, 73]. The calcium-dependent carbohy-
drate recognition domain in CLRs recognizes glycans 
in the fungal cell wall and is central to the body’s resist-
ance to fungal infections [74]. CLR activation recruits 
Syk to initiate downstream signaling, leading to the 
production of ROS and activation of the NF-κB path-
way mediated by the CARD9/Bcl-10/MALT1 complex 
[75, 76]. Expression of one CLR members, DNGR-1 
(encoded by CLEC9A), is largely restricted to cDC1s, 
which promote phagosome rupture and cross-presen-
tation of dead cell-associated antigens via the DNGR-1 
pathway [77, 78]. When annexin A2, a protein com-
monly found in individuals with nasopharyngeal car-
cinoma, interacts with CLRs, an immunosuppressive 
response and release of IL-10 from DCs can be trig-
gered [79].

Increasing evidence indicates that different members of 
the PRRs family can counteract pathogens by interacting 
with each other or attenuating excessive inflammation by 
mutual antagonism [80, 81]. Kim et  al. showed that the 
collaboration between TLR2 and NOD2 is required for 
the induction of pro-IL-1β and NOD-like receptor pyrin 
domain-containing 3 (NLRP3) in Helicobacter pylori-
infected murine-derived DCs [82]. In addition, NLRX1, 
a member of the NLR family, negatively regulates RLR-
mediated type I IFN production in human pDCs [71]. In 
conclusion, the differences in intrinsic immune receptor 
expression between different subsets of DCs confer the 
corresponding ability of DCs to respond appropriately in 
response to different pathogens and stress signals (Fig. 2).

As tissue sentinels, DCs take up antigens through 
phagocytosis, micro- or macropinocytosis, and endo-
cytosis [40]. After acquisition by DCs, the antigen is 
processed either by an endogenous or exogenous path-
way. In general, antigens processed by the endogenous 
pathway are bound to MHC I molecules and presented 
to  CD8+ cells, whereas antigens processed by the exog-
enous pathway are bound to MHC II molecules and 
presented to  CD4+ cells [4, 40]. However, DCs are also 
capable of presenting peptides of exogenously internal-
ized antigens via MHC I molecules, a process known 

as ‘cross-presentation’ [83]. Autophagy protein-medi-
ated degradation of extracellular material provides sub-
strates for MHC class II presentation to late endosomes 
and lysosomes [84, 85]. Conditional knockdown of the 
autophagy protein ATG5 in cDCs reportedly resulted in 
mice that were completely resistant to the development 
of experimental autoimmune encephalomyelitis (EAE) 
and had significantly reduced  CD4+ T cell aggregation in 
the central nervous system [86]. DCs possess fewer pro-
teases and are more susceptible to modulation by pH, 
unlike macrophages. Thus, they degrade internal anti-
gens slowly but more efficiently recover immunogenic 
peptides and assemble peptide-MHC II complexes [87]. 
Reactive oxygen species (ROS), generated by the NADPH 
oxidase (NOX) complex or by electron leakage from 
mitochondrial aerobic respiration, promote alkaliniza-
tion of phagosomal pH and inhibit rapid antigen degra-
dation by acidic lysosomal proteases [88]. In contrast, 
activation of the transcription factor TFEB in mouse 
DCs induces a reduction in lysosomal pH and elevation 
in lysosomal protease expression, which results in down-
regulation of processing and presentation by MHC class 
II antigens and upregulation of processing and presenta-
tion by MHC class II antigens [89, 90]. In addition, the 
immunosuppressive function of the anti-inflammatory 
cytokine IL-10 is because of its ability to reduce the 
expression of MHC II molecules [91].

Antigen presentation
DCs are the predominant cell population responsible for 
presenting antigens in vivo and induce the activation of 
antigen-specific T cells through the interaction of the 
antigenic peptide-MHC complex with TCRs in combi-
nation with appropriate co-stimulatory signals. cDC1s 
highly express MHC class I molecules and possess a 
superior cross-presentation capability, which are neces-
sary for  CD8+ T cell activation. The binding of DNGR-1 
to F-actin in cDCs exposed to dead cell debris facilitates 
cross-presentation of relevant antigens in tumors. There-
fore, abundant DNGR-1 is positively correlated with 
the survival of cancer patients [92–94]. Secreted gelso-
lin blocks DNGR-1-dependent cross-presentation and 
inhibits antitumor  CD8+ T-cell responses [92]. In con-
trast, WD Repeat- and FYVE domain-containing pro-
tein 4 (WDFY4)-regulated vesicular transport pathway 
is essential for DNGR-1 to bind dead cell antigens and 
facilitate cross-presentation [95]. TLR stimulation also 
upregulates the cross-presentation of cDC1s, which is 
associated with a reduction in Rab34-dependent phago-
lysosome fusion[96]. Earlier, pDCs were not considered 
cross-presenting DCs. However, a plethora of evidence 
indicates that pDCs can activate  CD8+ cells by cross-pre-
senting antigens in humans and mice [88, 97, 98]. Unlike 
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cDC1s, the ability of pDCs to cross-present and activate 
 CD8+ T cell responses are mainly dependent on mito-
chondrial ROS production rather than NOX1/2-medi-
ated ROS production [88]. moDCs can also cross-present 
cell-associated antigens by using a different transcrip-
tional program for cDCs [99].

DC-derived exosomes (Dex) are nanosized membrane 
vesicles that are initially formed by the inward budding 
of the endosomal membrane of DCs and subsequent 
release via the cell membran [90, 100]. Like DCs, Dex 
carries functional peptide-MHC complexes, co-stim-
ulatory molecules (CD80 and CD86), and a variety of 
surface membrane proteins (integrins and ICAMs) that 
interact with immune cells [74, 100]. As a result, Dex can 
initiate antigen-specific  CD4+ and  CD8+ T cell responses 
directly or indirectly through antigen uptake and presen-
tation. Exosomes derived from alpha-fetoprotein (AFP)-
expressing DCs activate specific CD8 antitumor immune 
responses in tumor tissues [101]. Although Dex stimu-
late T cells in vitro and promotes increased secretion of 

IFN-γ and IL-2, these exosomes appear to be effective 
only for activated T cells, memory T cells, and T cell lines 
and are inefficient for the development of naïve T cells 
[101–103]. Compared to directly activating T cells with 
antigen-specific signals, the Dex antigen presentation 
pathway can stimulate T cell responses more efficiently 
by utilizing bystander DCs as intermediaries. One mech-
anism involves the direct transfer of peptide-MHC com-
plexes to bystander DCs following the binding of Dex to 
the cell membrane of bystander DCs. Another possible 
mechanism is that Dex binds to bystander DCs and are 
reprocessed by the endosomal pathway, followed by the 
transfer of antigen epitopes of these Dex MHC molecules 
on bystander DCs for presentation to T-cells [102, 104].

DCs maintain immune homeostasis 
through multiple signaling pathways
Although DCs are classified as innate immune cells 
because of their ability to recognize danger signals via 
multiple PRRs, as APC, they also play an important role 

Fig. 2 PRRs of DCs and their signaling pathways. The four major subgroups of DCs (cDC1s, cDC2s, pDCs, and moDCs), each have distinct PRRs. 
TLR2, TLR4, TLR5, TLR7, TLR8, TLR9, and TLR11 activate TRAF6 predominantly through Myd88; this then leads to the activation of IKKs and the release 
of NF-κB for nuclear translocation. In addition, TRAF6 can promote AP1 activity through MAPK signaling [58]. TLR3 signaling is primarily mediated 
by TRIF. TLR3 can promote the activation of TRAF6 and IRF3/IRF7. Activated RLRs interact with MVAS through their signaling structural domain, 
CARD, to activate TBK1, which then phosphorylates IRF3 and IRF7, translocating them from the cytoplasm to the nucleus [73]. In addition, the RLR 
signaling pathway activates NLRP3 inflammatory vesicles, which promote the formation of IL-1β. When NLR receptors are activated, they aggregate 
and activate downstream signaling molecules, including RIPK2, which in turn triggers the activation of NF-κB [58]. CLR activation recruits multiple 
kinases, including sky and the CARD9/Bcl10/MALT1 (CBM) complex, ultimately leading to activation of NF-κB [59]. TRAF6, TNF receptor associated 
factor 6; TRIF, TIR domain-containing adapter-inducing interferon-beta; ROS, reactive oxygen species; CARD, caspase recruitment domain; TBK1, 
TANK-binding kinase 1; RIPK2, receptor-interacting serine/threonine protein kinase 2
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in initiating the subsequent adaptive immune response. 
DCs provide a constant supply of antigens to T cells 
under infectious/inflammatory and steady-state condi-
tions [105, 106]. Under noninflammatory conditions, 
DCs can present self-antigens derived from local tissues 
to T cells without inducing active autoimmunity [107]. 
These findings strongly suggest that DCs play a role in 
inducing peripheral immune tolerance and maintaining 
immune homeostasis.

DC‑mediated T cell homeostasis
The specification of an appropriate T cell fate is an 
important aspect of the effective adaptive immune func-
tion of T cells. For example,  CD8+ cytotoxic T lym-
phocytes (CTL) kill infected or tumor cells, Th1 cells 
counteract intracellular bacterial and protozoal immune 
responses, Th2 cells respond to parasitic infections of 
the body, and Th17 cells counteract extracellular bacte-
ria, and mycobacteria. DCs induce antigen-specific acti-
vation and expansion of T cells through peptide-MHC 
complexes and co-stimulatory signals, Expression of IRF4 
by cDC2s is critical for the activation of  CD4+ T cells; 
this may be attributed to the ability of IRF4 in enhancing 
the formation of peptide-MHC II complexes in cDC2s [4, 
108]. DCs similarly instruct the fate of  CD4+ cell polari-
zation during antigen presentation (Fig. 2).

cDC1s are a major source of IL-12 in  vivo and IL-12 
signaling is essential for Th1 cell differentiation in mice 
and humans [109–111]. The absence of cDC1s in para-
sitic infection models such as Trichuris muris and Leish-
mania major infections is associated with impaired 
Th1 responses, suggesting that certain protective Th1 
responses require the support of cDC1s in  vivo [110, 
112]. Unlike cDC1s, cDC2s adept at inducing Th2 and 
Th17 responses and are required for Th2 cell differenti-
ation in the skin, lung, and intestine [113–115]. In par-
ticular, in the lungs of mice following house-dust extract 
inhalation, the partially mature  Ly6C+ cDC2s lack CCR7 
expression and promote Th17 differentiation, whereas the 
more mature  CD200+ cDC2s expresse CCR7 and induce 
Th2 differentiation [116]. Tussiwand et al. suggested that 
differentiation of Th2 cells driven by cDC2s is dependent 
on the transcription factor KLF4 [28]. Conditional dele-
tion of KLF4 in cDC2s impairs the Th2 cell response, but 
not Th1, Th17, or CTL responses [28]. The IL-13-induced 
signaling pathway promotes the STAT6-dependent dif-
ferentiation of cDC2s and, subsequently, Th2 cells in the 
mouse dermis, while also reducing Th17 cell responses 
[117]. In humans, activation of formyl peptide receptor 
3 (FPR3) enhances cDC2-mediated Th2 responses by 
decreasing IL-12 expression [118]. Interestingly, cDC1s 
have been recently found to similarly promote Th2 dif-
ferentiation via p38α signaling [119]. TNFR2-cDC2s 

can promote the body’s Th1/17 immune response by 
activating moDCs after intranasal immunization with 
mucosal adjuvants [120]. Th17 cells play a key role in host 
defense and mucosal tissue homeostasis and are driv-
ers of a variety of autoimmune diseases [121–123]. Fur-
thermore, cDC2s provide many of the signals required 
for Th17 differentiation and promote the activation of 
latent transformation growth factor (TGF)-β via αvβ8 
integrin [124–126]. Activation of TGF-β is an important 
requirement for non-pathogenic Th17 differentiation. 
Regulation of the C-type lectin dectin-1-mediated type 
I IFN response in human DCs allows TGF-β activation 
and promotes a nonpathogenic Th17 cellular immune 
response during fungal infection [127]. In mouse models 
of lung infection with Aspergillus fumigatus or in intes-
tinal infection with Citrobacter rodentium, IL-23 that is 
specifically produced by cDC2s, can help establish an 
effective Th17 response [32, 115].

CD4+ T follicular helper (Tfh) cells support the germi-
nal center response and maintain a prolonged humoral 
immune response [128–130]. A reduction in pre-Tfh 
cells was observed in  Notch2−/−,  irf4−/− and other 
cDC2s-specific deletion mouse models; these mice 
had impaired humoral immunity and reduced germi-
nal center B cells[131, 132]. Therefore, cDC2s are nec-
essary and sufficient for Tfh cell induction. In addition, 
DCs enhance Tfh cell differentiation via high expression 
of CD25 (IL-2 receptor alpha chain) and quenching of 
T cell-derived IL-2, a potent inhibitor of Tfh differen-
tiation[133]. cDC2s and  CD14+ macrophages in human 
tonsils synergistically induce Tfh cell polarization and 
effector molecule production[134]. Although the absence 
of DCs results in a slight reduction in Treg numbers, 
their presence is essential for maintaining the homeo-
static proliferation of Tregs [135–137]. The dynamic 
equilibrium between Tregs and DCs is discussed in the 
next subsection. Activated  CD4+ T cells optimize the cel-
lular immune response by enhancing  CD8+ T cell clonal 
expansion and differentiation, and DCs may act as a 
bridge in this process [138–140]. DCs that interact with 
 CD4+ T cells can activate antigen-specific  CD8+ T cells, 
even in the absence of  CD4+ T cells after the interaction 
[141]. In contrast, recognition of cognate antigens on 
DCs by  CD4+ T cells induces the production of CCL3/4, 
which attracts  CD8+ T cells via CCR5 to recognize anti-
gens on  CD4+T-DC pairs [142]. The CCR5 ligand also 
attracts pDCs to the vicinity of  CD8+T-DC pairs, with 
subsequent pDC-derived type I IFN production, further 
promoting the functions of cDC1s [143]. Takagi et  al. 
determined that pDCs inhibit the induction of  CD4+ T 
cell responses and are involved in the initiation of  CD8+ 
T cell responses under antigenic stimulation and micro-
bial infection [144]. In contrast, antigen-specific  CD8+ T 
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cell responses were reduced when pDCs were depleted, 
suggesting an active role for pDCs in cross-initiating 
 CD8+ T cells [144]. Indeed, under certain conditions, 
pDCs can transfer antigens to cDC1s by producing pDC-
derived exosomes(pDex), which enable cross-priming of 
 CD8+ T cells [145]. Similarly, deficiency in cDC1s results 
in reduced numbers and function of memory CTL in 
immunized mice [146].

Altogether, these data suggest that multiple DC sub-
populations orchestrate T cell differentiation in vivo and 
that infection, immunity, and location determine the ulti-
mate polarized fate of T cells. Interestingly, the functional 
dichotomy between DC1s and DC2s is not invariant and 
can change in certain inflammatory settings wherein 
DC2s acquire the ability to activate  CD8+ T cells. In a 
recent study, an IFN-I-induced activation state of novel 
cDC1s was identified, which, unlike the conventional 
cross-presentation of cDC1s, can acquire and present 
intact tumor-derived peptide-MHC I complexes, thereby 
promoting a specific  CD8+ antitumor response [147].

DCs establish central and peripheral tolerance
Several studies have highlighted that DCs can induce 
negative selection of thymocytes in  vivo, rather than 
positive selection, to maintain central tolerance [148, 
149]. Medullary thymic epithelial cells (mTECs) express 
many tissue-specific antigens to avoid tissue-specific 
T-cell production. Thymic DCs can either directly pre-
sent or cross-present autoantigens that are shed from 
mTECs and kill T cells if the peptide-MHC complex is 
strong [150]. Even peripheral DCs can migrate into the 
thymic medulla to induce self-reactive thymocytes and 
the formation of naturally occurring Tregs [151]. Circu-
lating DCs can be recruited to the thymic medulla with 
the assistance of p-selectin, integrin VLA-4 interacting 
with its ligand VCAM-1, and pertussis toxin-sensitive 
chemoattractant signaling [149]. Husein et al. also dem-
onstrated that peripheral pDCs can transport antigens to 
the thymus in the absence of TLR signaling in a CCR9-
dependent manner to promote the central negative selec-
tion of T cells [152]. However, constitutive deletion of 
DCs did not affect the normal T cell pool of mice, and 
central tolerance was not disrupted under steady-state 
conditions, suggesting that DCs may not be critical for 
the establishment of central tolerance [135, 153].

Although central tolerance is closely coordinated by 
multiple mechanisms, it has certain dysregulations. 
For example, some auto-reactive T cells escape nega-
tive selection and some harmless antigens can not be 
expressed in the thymus [150]. To avoid the resulting 
immune homeostatic dysfunction, the second layer of 
peripheral tolerance in the organism is crucial. DCs are 
similar to sentinels that patrol the body and are widely 

distributed in peripheral tissues including the skin, kid-
ney, lung, and respiratory mucosa, where they exhibit 
greater self-tolerance [154]. Relative to normal subsets 
of DCs, tolerogenic DCs (tolDCs) exhibit lower cross-
presentation capacity and lower expression of co-stim-
ulatory molecules [155]. A recent study reported that 
the Tim-3 bridging protein Bat3 acts as an endogenous 
regulator of tolDC function[156]. Mechanistically, the 
lack of Bat3 in DCs leads to enhanced steroidogenesis 
and suppresses Th1, Th17, and CTL cell responses in 
a paracrine fashion, thereby diminishing autoimmun-
ity [156]. A tolerogenic subpopulation of DCs (DC-10) 
that stably express CD163, CD141, CD14, and CD16, 
produces IL-10 in the absence of IL-12 and enables 
the induction of T regulatory type 1 (Tr1) cell differen-
tiation, was identified in human peripheral blood and 
spleen [157].

At steady state, tolDCs have a quiescent or semi-
mature nature, in which they trap and process antigens 
to promote T cell anergy and Treg expansion rather than 
inducing T cell activation [154]. Several mechanisms 
underlying the induction of peripheral tolerance by DCs 
have been identified in mice and humans (Fig.  3). First, 
cytotoxic T lymphocyte-associated antigen 4 (CTLA4) 
expressed on T cells competitively binds to B7 mol-
ecules on DCs, inducing T-cell anergy [158]. Second, 
many tolDCs express programmed cell death-ligand 1 
(PD-L1 and PD-L2), which induces the resting state of 
T cells upon binding to programmed cell death protein 
1 (PD-1) expressed on T cells[159]. In addition to direct 
contact with T cells, DCs can induce peripheral toler-
ance through the secretion of cytokines and metabolites 
including TGF-β, IL-10, IL-27, indoleamine-2,3-dioxyge-
nase (IDO), kynurenine, and retinoic acid[5]. The roles of 
the regulatory cytokines IL-10 and TGF-β in Treg prolif-
eration and development have been widely demonstrated 
[160]. TolDCs express the IDO, rate-limiting enzyme that 
promotes T-cell apoptosis by blocking the cell cycle of T 
cells [161]. Notably, IDO is not constitutively expressed 
in DCs but requires induction by multiple mediators 
(e.g., TGF-β, endotoxin, TNF, IL-1, and IFN-γ) [55, 161, 
162]. Moreover, IL-27 suppresses Th1, Th2, and Th17 
cell-mediated immune responses and limit the develop-
ment of central nervous system (CNS) autoimmunity 
[163, 164]. In addition, IL-27 regulates CD39 on DCs and 
Tregs and induces Tr1 cells capable of producing IL-10 
[165]. The development of acute graft-versus-host disease 
is exacerbated by impaired Treg suppression and reduced 
Tr1 numbers in mice with a deficiency of the p28 subunit 
of IL-27 in DCs [166]. Furthermore, a clinical trial using 
human autologous tolDCs for kidney transplantation 
demonstrated that DCs can shape the T cell response to 
tolerance by producing high levels of lactate, which is a 
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novel mechanism identified for the suppression of T cell 
immunity by tolDCs [167].

Similar to Tregs, regulatory B cells (Bregs) are func-
tionally involved in the production of tolerance, highly 
expression IL-10, TGF-β, and IL-35, and can stimulate 
T cell anergy as well as regulate invariant natural killer 
T cell responses [168, 169]. Although Bregs are nor-
mally triggered by inflammatory signals, they appear to 
be induced by DCs during the maintenance of periph-
eral tolerance [5]. DC-derived IFN-β and CD40 ligands 
induce the differentiation of mouse spleen B cells into 
 CD19hiFcγIIbhi Bregs, which inhibit the  CD4+ T cell 
response by secreting IL-10 [170]. In a group of EAE 
mouse models, antigen-specific vitamin D3 (vitD3) 
tolerogenic DC cell therapy halted disease progression 
by inducing multiple tolerance mechanisms, including 
increased Bregs, reduced natural killer (NK) cells, and 
immunomodulatory NKT activation [171]. These find-
ings show that not only Tregs but also Bregs, play a role 
in the maintenance of peripheral tolerance by DCs.

Promotion of antitumor immunity by DCs
DCs are capable of initiating antigen-specific T cells 
to generate robust and durable T cell-driven immune 
responses; therefore, they are known as key regulators 
of antitumor responses. The tumor microenvironment 
(TME) can evolve a variety of immunosuppressive mech-
anisms that impede the effectiveness of DC maturation 
or DC-induced immune responses, enabling tumors to 
thrive under unfavorable conditions [172, 173]. Although 
most tumors contain only a small number of mature DCs, 
the presence of these DCs is positively associated with 
improved survival and prognosis in mouse tumor models 
as well as patients with cancer [94, 174]. The accumula-
tion of DCs in the TME depends on the local production 
of growth factors and chemokines that promote the 
recruitment and expansion of DCs [1]. Subsequently, 
these DCs transport tumor antigens into draining lymph 
nodes (DLN) in a CCR7-dependent manner; this trans-
port is critical for the initiation of anti-tumor T cells 
[175–177]. In the absence of CCR7, antitumor T cells in 

Fig. 3 The role of DCs in the induction of immune tolerance and immune response. After activation of DCs by antigens from pathogens or with 
danger signals, DCs integrate multiple factors to induce T cell polarisation. As an important source of IL-12, DCs promote Th1 cell polarisation. 
The specific DCs-derived factors that promote Th2 differentiation are unclear, but the transcription factor KLF4 and the STAT6 and p32α signalling 
pathways play an important role in this pathway. DCs-derived IL-6 is involved in the differentiation of Tfh cells, and in the presence of DCs-derived 
IL-23 together with TGF-β induces Th17 differentiation [130]. DCs promote the proliferation and function of antigen-specific CTL through antigen 
cross-presentation, co-stimulatory signalling and derived cytokines such as IFN-I and IL-12 [4]. DCs promote the proliferation and function of 
antigen-specific CTL through antigen cross-presentation, co-stimulatory signalling and derived cytokines such as IFN-I and IL-12. tolDCs induce 
immune tolerance in the body by direct or indirect means. PDL1/2 is expressed on most tolDCs, and binding to PD1 on T cells induces T cell 
apoptosis. In addition, tolDCs secrete a variety of cytokines or metabolites with tolerance activity, such as TGF-β, IL-10, IL-27, Kynurenine, RA and 
lactate, which tend to promote differentiation of Treg and Breg, creating further suppression of Teff
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the DLN are no longer efficiently stimulated despite load-
ing of DCs with tumor antigens [176]. NK cells produce 
XCL1, XCL2, and CCL5 chemokines, which contribute 
to the recruitment of DCs to the TME; in contrast, FLT3L 
expressed by NK cells can further promote the differen-
tiation and expansion of DCs [178, 179]. PGE2-mediated 
tumor immune escape is partly because of the direct 
inhibition of NK cell production of CCL5 and XCL1 by 
PGE2, which impairs the localization and accumulation 
of cDC1s in the TME [178]. Several recent studies have 
highlighted the potential contribution of microbiota-
derived PAMP in counteracting tumor immunity via the 
activation of DCs [1, 180, 181]. In addition, microbial-
derived STING agonists (e.g., c-di-AMP) induce IFN-I 
production via monocytes in the TME to regulate cross-
talk between NK cells and DCs, thereby enhancing the 
efficacy of immune checkpoint blockade [182]. In turn, 
the absence of these signals polarizes the differentiation 
of mononuclear phagocytes to tumor-promoting mac-
rophages [182].

Given that  CD8+ T cells are often considered the pri-
mary effector of antitumor immunity, promoting effec-
tive tumor-associated antigen presentation by DCs has 
been the focus of cancer immunotherapy. The number 
and stimulatory phenotype of cDC1s in draining lymph 
nodes has been reported to decrease with tumor pro-
gression, and restoration of the cDC1s axis with Flt3L/
anti-CD40 treatment resulted in the expansion of tumor-
specific  CD8+ T cells and a reduction in tumor burden 
[183]. Consistent with this,  Batf3−/− or  Cd207creIrf8fl/fl 
mice have reduced numbers of tumor-infiltrating  CD8+ T 
cells owing to the lack of cDC1s, thereby promoting the 
progression of lung adenocarcinoma and fibrosarcoma 
[21, 184]. The expression of β-linked proteins in can-
cer cells leads to a reduction in CCL4 concentration in 
tumors, which prevents CCR5-mediated recruitment 
of cDC1s and impedes the normal activation of  CD8+ T 
cells [185]. Interestingly, selective deletion of MHC II in 
cDC1s can prevente early activation of  CD4+ T cells by 
tumor-derived antigen [186]. This suggests that in the 
presence of tumor-derived antigens, CD40 signaling in 
cDC1s is critical not only for  CD8+ T cell initiation but 
also for early activation of naïve  CD4+ T cells.

In contrast to cDC1s, cDC2s present tumor-associated 
antigens directly to  CD4+ T cells or transfer them to lym-
phoid tissue-resident DCs [29, 187]. In oropharyngeal 
squamous cell carcinoma models, cDC2s are required for 
Th1 cell polarization and the production of high levels 
of IL-12 and IL-18 [188]. Tumor infiltration by cDC2s is 
also positively correlated with infiltration by  Tbet+ and 
tumor-specific T cells [188]. In a mouse model of degen-
erative fibrosarcoma, cDC2s expressing IFN-stimulated 
genes can acquire and present intact tumor-derived 

peptide/MHC class I complexes that activate antitumor 
 CD8+ T cell responses [147]. Despite the ability of pDCs 
to produce large amounts of IFN-α/β in the activated 
state, their specific role in tumors remains controver-
sial [189]. Activation of pDCs in tumor-draining lymph 
nodes or the presence of TGF-β results in the constitu-
tive expression of the IDO immunosuppressive enzyme, 
which induces immune tolerance and facilitates tumor 
progression [190, 191]. moDCs can act as a source of 
IL-12 to induce a protective Th1 response mice; however, 
their ability to produce IL-12 is much lower than that 
of cDC1s [192]. In contrast, moDCs exert immunosup-
pressive functions in tumors through the production of 
nitric oxide, a potential T-cell suppressor molecule [193]. 
The heterogeneity of moDCs may explain their conflict-
ing roles in tumors. Furthermore, different tumor mod-
els with different immune backgrounds may contribute 
to this discrepancy. In the TME, DCs communicate not 
only with immune cells but also with cancer cells through 
multiple pathways. For example, tumor-derived VEGF 
can inhibit FLT3L-mediated activation of NF-κB and 
negatively affect the production and function of cDCs 
in  vivo [194]. Thus, different subsets of DCs coordinate 
the body’s antitumor immunity by interacting with multi-
ple cell types (Fig. 3).

Immunotherapy based on DCs and their signaling 
pathways
The ability of DCs to induce immune tolerance and adap-
tive immune responses makes them an optimal candi-
date for research in cellular immunotherapy. Numerous 
attempts have been made to exploit the potential of DC-
based immunotherapies, from suppressing autoimmune 
diseases and establishing transplant tolerance to inducing 
antitumor immunity[195–198].

The role of DCs in autoimmune diseases and therapeutic 
perspectives
As previously mentioned, DCs play a double-edged 
sword role in autoimmune diseases. Prolonged stimula-
tion by autoantigens induces DC activation and matura-
tion, which subsequently initiates self-reactive T and B 
cells, which disrupts immune tolerance and sustains tis-
sue inflammation [199, 200]. An increase in the matura-
tion phenotype of DCs, such as upregulated expression of 
co-stimulatory molecules, such as CD86, and increased 
secretion of pro-inflammatory cytokines, such as IL-12 
and IFN-I, have been documented in systemic lupus 
erythematosus (SLE) patients [201, 202]. Additionally, 
pDCs isolated from patients with rheumatoid arthri-
tis (RA) secrete higher levels of IFN-α than those from 
healthy donors [203]. The altered distribution or function 
of DCs are also part of the pathogenesis of autoimmune 



Page 11 of 23Cheng et al. Molecular Biomedicine            (2023) 4:15  

diseases [204, 205]. Compared to healthy individuals, 
patients with autoimmune diseases have a higher distri-
bution of DCs at pathological sites and a lower distribu-
tion in the blood [206–208]. Specifically, pDC infiltration 
that is nearly completely absent in healthy tissue has been 
observed at significantly higher levels in various patho-
logical tissues, such as the skin of patients with SLE, 
and muscle tissue of patients with idiopathic inflamma-
tory myopathies [207, 209–211]. This may be attributed 
to the increased migration ability of DCs in the patho-
logic state. For example, an increased CCR7 expression 
in DCs of patients with SLE promotes enhanced migra-
tion of CCR7-dependent DCs to the skin [212, 213]. In 
addition, elevated myeloid growth factors, including 
IL-3 and GM-CSF, contribute to the inflammatory path-
ways and pathology of SLE [214, 215]. Activation of the 
IL-3- or GM-CSF-induced JAK2-STAT5 signaling path-
way is necessary to establish mTORC1 activity, which is 
required for IFN-I production by pDCs at nephrotic sites 
in patients with SLE [216].

In EAE, DC signals induce pathogenic T cell develop-
ment following the interaction between prostaglandin 
D2 (PGD2) and its receptor PTGDR [217]. Mitogen-
activated protein kinase p38α regulates the expression 
of cytokines and co-stimulatory molecules in DCs and 
promotes pathogenic Th17 differentiation and pro-
gression of EAE by interacting with the IL-23 recep-
tor (IL-23R) [218]. The intrinsic IFN-γ-JAK1-STAT1 
signaling pathway in DCs promotes the expression of 
the co-inhibitory molecule PD-L1 and limits T cell pro-
liferation, which is essential for iTreg production and 
peripheral tolerance during EAE [219]. Furthermore, a 
recent study showed that optineurin in DCs inhibits the 
downstream transcription of IL-10 by suppressing JAK2-
STAT3 interactions, and inhibition of STAT3 phospho-
rylation reportedly facilitates the progression of EAE in 
mice [220]. A mouse model of psoriasiform dermatitis 
demonstrated that the production of IL-36 by skin cells 
drives the pathological IL-23/IL-17/IL-22 axis through 
DCs to promote disease progression, whereas dele-
tion of  CD11c+ DCs inhibits disease progression [221]. 
IL-17  A downregulates protein phosphatase 6 (PP6) 
expression in psoriatic keratinocytes, indirectly promot-
ing TLR7-dependent RNA sensing and IL-6 production 
by DCs, which subsequently drives the hyperprolifera-
tion of keratinocytes [222]. Single-cell analysis of lesional 
and non-lesional skin from patients with psoriasis by 
Nakamizo et  al. revealed a significant enrichment of 
 CD14+ DC3s in damaged skin; these cells are one of the 
key cell types co-expressing IL-1B and IL-23 A, which are 
two cytokines critical for psoriasis pathogenesis [223]. 
In contrast, DCs with immunologic tolerance proper-
ties can suppress inflammation by inducing Treg or Breg 

production and, consequently, inhibit the activation of 
self-reactive T and B cells [200, 204]. In conclusion, prior 
data from mouse models and humans suggest that DCs, 
especially pro-inflammatory DCs, are important in main-
taining the activation and polarization of effector T-cells 
in autoimmune diseases.

Currently, two main types of therapies for autoim-
mune diseases target DCs (Fig. 4). One approach is sys-
temic immunomodulation by small-molecule drugs or 
monoclonal antibodies that selectively target a specific 
function of DCs, including cytokine secretion, antigen 
processing, antigen presentation, and migratory capacity, 
or deplete a subpopulation of pro-inflammatory DCs that 
are critical for the disease pathogenesis [208]. The second 
approach involves tolDCs with immune tolerance, which 
are induced in  vivo or in  vitro. These tolDCs usually 
exhibit an immature or semi-mature phenotype with low 
expression of co-stimulatory molecules, reduced secre-
tion of inflammatory cytokines, and increased secretion 
of anti-inflammatory cytokines [224]. The first drug tar-
geting the co-stimulatory signal between DCs and T cells 
was the fusion protein CTLA4-Ig, known as abatacept, 
which has been approved for the treatment of RA with 
successful results [225, 226]. Several clinical trials target-
ing pDC for the treatment of SLE have achieved favorable 
results [227]. VIB7734, a monoclonal antibody targeting 
the pDC-specific marker immunoglobulin-like transcript 
7(ILT7), rapidly and efficiently depletes pDCs in  vivo, 
and the reduction in pDCs in the skin correlates with 
reduced local IFN-I activity and alleviates clinical disease 
presentations [228]. B-cell lymphoma 2 (Bcl-2) is criti-
cal for pDC survival and IFN-I production in lupus mice 
or patients with SLE, and the use of the selective Bcl-2 
inhibitor venetoclax (ABT-199) significantly reduces 
auto-reactive B cell and total lymphocyte counts and alle-
viates disease symptoms in female patients [229, 230]. 
Inflammatory cytokines secreted by DCs are involved in 
the hyperactivity of T and B cells as well as tissue dam-
age and are positively associated with disease activity in 
a range of autoimmune diseases, including type 1 diabe-
tes (T1D), SLE, and RA. Therefore, the inhibition of the 
action of these cytokines is an important strategy for 
treating the disease. Tocilizumab blocks the binding of 
IL-6 to the IL-6 receptor, and its safety and efficacy have 
been demonstrated in clinical trials of RA, juvenile idi-
opathic arthritis, and SLE [231, 232]. Etanercept has also 
been used as an TNF-α blocker in the treatment of many 
autoimmune diseases, including T1D, psoriasis, and 
ankylosing spondylitis [233]. In addition, treatment of 
humanized CCR7 mice with the anti-human CCR7 mon-
oclonal antibody 8H3-16A12 produced favorable prophy-
lactic and therapeutic effects against arthritis [234].
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Although immunosuppressive drugs used to treat 
autoimmune diseases are effective in improving disease 
outcomes, their use is often accompanied by the risk of 
chronic infection or cancer development [235]. In this 
context, tolDCS-based therapy is a promising alterna-
tive that specifically abrogates pathological autoimmune 
or inflammatory responses without compromising pro-
tective immune responses against other pathogens and 
malignancies [236]. Not only DCs themselves, but also 
various immunomodulatory Dex that are produced by 
DCs and modified with anti-inflammatory molecules, 
such as IL-10, IL-4, TGF-β, IDO and CTLA4, have shown 
promising results for the treatment of immune diseases 
and chronic inflammation [237–241]. Many small mol-
ecules such as dexamethasone, acetylsalicylic acid, mino-
cycline, and vitamin D3, induce tolDC formation [242]. 
Moreover, dexamethasone and vitamin D3 similarly pre-
vent the maturation of DCs in humans and mice in vitro, 
leading to a tolerogenic phenotype with downregulation 
of co-stimulatory molecules and reduced IL-12 produc-
tion [243, 244]. Rapamycin, IL-10, and GM-CSF have 

been incorporated into protocols for the in  vitro gen-
eration of human monocyte-derived tolDCs [5]. Many 
clinical trials have been performed to assess the feasibil-
ity of putative tolDC therapies for the treatment of auto-
immune and other inflammatory diseases following the 
development of these protocols, and to increase under-
standing of DC-induced self-tolerance (Table  1). In a 
clinical trial evaluating the safety and tolerability of autol-
ogous tolDCs in Crohn’s disease (CD), intraperitoneal 
administration of tolDCs led to clinical improvement and 
good treatment tolerability in one-third of the patients 
[245]. Phase I clinical trials using tolDCs pulsed with pro-
insulin peptide that were administered intradermally to 
treat patients with T1D, have also confirmed the antigen-
specific immunomodulation of tolDCs as a therapeutic 
option [246]. In addition, several clinical trials based on 
tolDCs in multiple sclerosis, RA, and organ transplanta-
tion have demonstrated encouraging results [197, 247]. 
However, significant challenges remain in the large-
scale production of protocols for tolDCs with different 

Fig. 4 The role of DCs subsets in the tumor microenvironment. The antitumor effects of DCs start with the uptake of TAAs in the tumor 
microenvironment, followed by the activation and migration of DCs into the DLN. At the same time, tumors interfere with the maturation, 
recruitment and function of DCs through a series of signals such as secretion of VEGF, PEG2, β-catenin, TGF-β, and upregulation of Tim-3 expression 
of DCs. DCs migrating into the DLN deliver TAAs to naive T cells via cross-presentation and direct presentation, which promotes differentiation of 
tumor-specific T helper cells and CTL. There is also an interaction between DCs and NK cells, with IL-12 secreted by DCs promoting the activation 
and proliferation of NK cells, while NK cells further promote the recruitment and expansion of DCs via XCL1/5, CCL5 and FLT3L. pDCs can produce 
IFN-I and Granzyme to kill tumor cells, but can also inhibit the killing effect of effector T cells by secreting IDO. pDCs can produce IFN-I and 
Granzyme to kill tumor cells, but can also inhibit the killing effect of effector T cells by secreting IDO. moDCs exhibit dual effects on  CD4+ T cells via 
NO and IL-12. TAAs. tumor- associated antigens; VEGF, vascular endothelial growth factor
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phenotypes and tolerabilities, as well as in the dose and 
route of administration for different patients.

DCs in cancer therapy
Over the last two decades, clinical trials of DC-related 
immunotherapy have focused primarily on tumors, 
rather than autoimmune diseases, and have shown prom-
ising results (Table 1). Therapies targeting DCs focus on 
enhancing or restoring the function of DCs, increasing 
their number, or inducing de novo antitumor immu-
nity. The therapies can be broadly categorized into DC 
vaccines and other DC-related trials (Fig.  5). WNT2 
secreted by tumor cells or cancer-associated fibroblasts 
inhibits DC-mediated antitumor T cell responses via the 
SOCS3/p-JAK2/p-STAT3 signaling cascade, promoting 
the malignant progression of solid tumors including colo-
rectal cancer, esophageal squamous cell carcinoma, gas-
tric cancer, and breast cancer [248–251]. The use of an 
anti-WNT2 monoclonal antibody significantly restored 
antitumor T cell responses in mouse tumors by increas-
ing active DCs [250]. Furthermore, the STAT3 signaling 

pathway is equally involved in the downstream transcrip-
tion of IL-6, IL-10, and VEGF, which can impair the dif-
ferentiation of DCs and inhibit the production of IL-12 
in human moDCs [220, 252, 253]. Local injection of a 
STAT3 antisense oligonucleotide (CpG-STAT3ASO) 
activates human DCs and promotes CD8 + T-cell recruit-
ment to tumor sites [254]. Many inhibitors of STAT3, 
including BP1-102, STX-0119, and HJC0123, have been 
identified clinically and shown to have pro-apoptotic and 
antitumor activities against STAT3-overactivated cancer 
cells [255].

As knowledge of the DC signaling pathway accumu-
lates, strategies to directly target DCs in vivo to enhance 
antitumor immunity are being increasingly devel-
oped. Activation of TLR on DCs induces their matura-
tion and promotes the production of pro-inflammatory 
cytokines and chemokines; therefore, TLR agonists are 
also widely used to activate DCs [40]. The TLR7/8 ligand 
imiquimod has been used to treat non-melanoma skin 
cancers because of its ability to promote CCL2-depend-
ent recruitment of pDCs and induce the secretion of 

Table 1 Clinical trials of DCs-based immunotherapy in autoimmune diseases and tumor

Indication Phase Status Treatment Patient
number

NCT Number

Autoimmune diseases
MS I Completed Intradermal or intracolonic administration of tolDC 9 NCT02618902

MS I Recruiting Intracervical lymph node administration of tolDC-VitD3 16 NCT02903537

MS II Recruiting Tol-DC is administered in combination with immunomodulatory 
drugs

45 NCT04530318

RA I Completed Tol-DCs are administered at the knee joint 15 NCT01352858

RA I Completed Tol-DCs are administered at the knee joint 10 NCT03337165

T1D II Unknown BM-derived DCs are treated with antisense oligonucleotides targeting 
CD80, CD86, CD40 and then administered intradermally

24 NCT02354911

T1D I Recruiting TolDCs loaded with Proinsulin Peptide (C19-A3) are administered 7 NCT04590872

SLE II Active, not recruiting VIB7734, a drug targeting pDCs, was administered 214 NCT04925934

Cancer
GBM III Active, not recruiting GBM lysate-pulsed autologous DC vaccine was administered intra-

dermally
348 NCT00045968

GBM I Completed GBM lysate-pulsed autologous DC vaccine was administered intra-
dermally

26 NCT01006044

Melanoma I/II Completed Autologous TLR-ligand matured DC vaccine encoding mRNA elec-
troporation of tumor-associated antigens was administered

20 NCT00940004

Melanoma III Active, not recruiting DC vaccines loaded with autologous tumor RNA are administered 
intravenously

200 NCT01983748

Renal Cell Carcinoma II Recruiting DC vaccines loaded with autologous tumor antigens in combination 
with immune checkpoint inhibitors are administered

120 NCT04203901

Breast cancer I/II Completed HER2 peptide-pulsed cDC1s vaccines are administered 58 NCT02061332

Ovarian carcinoma I/II Not yet recruiting moDC vaccines loaded with patient-specific peptides or tumor lysates 
are administered

16 NCT05714306

Prostate Cancer II Completed DC vaccines loaded with tumor antigens in combination with doc-
etaxel are administered

43 NCT01446731

Bladder cancer I Recruiting Anti-CD40 antibody 2141-V11 targeting DCs was administered by 
intravesical drip

25 NCT05126472
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tumor-killing TRAIL and granzyme B from pDCs [256]. 
Similarly, the TLR3-specific agonist ARNAX effectively 
initiates DCs to induce antitumor immunity without 
causing systemic inflammation in mice [257]. Activation 
of CD40 on DCs upregulates the secretion of co-stimula-
tory molecules and IL-12 [258]. A newly developed CD40 
agonist antibody, 2141-V11b, has been shown to acti-
vate long-term systemic antitumor immunity in cDC1s-
driven  CD8+ T cells in orthotopic bladder cancer models 
and is now in phase I clinical studies [259]. However, the 
increased potency of Fc-engineered CD40 antibodies in 
clinical use is accompanied by increased toxicity, such 
as cytokine release syndrome and macrophage-depend-
ent hepatotoxicity [260–263]. Therefore, Salomon et  al. 
designed bispecific antibodies that preferentially tar-
get CD40 on DCs, increasing their specificity and safety 
while preserving their effective antitumor activity [264]. 
In addition, VitE can restore the function of DCs in TME 
by inhibiting intrinsic checkpoint protein tyrosine phos-
phatase SHP1 and enhancing tumor antigen cross-pres-
entation by DCs and Dex [265]. Eliminating the ability of 
DCs to induce tolerance in the TME is another strategy 

for enhancing the antitumor immunity of DCs. In this 
regard, four IDO inhibitors are in clinical development, 
and preliminary findings indicate their antitumor activ-
ity [266]. Similarly, the anti-TIM-3 antibody upregulates 
CXCL9 on DCs and promotes cDC1-mediated antitu-
mor immunity, which has been successfully combined 
with PD-1/PD-L1 blockade to inhibit tumor growth [267, 
268].

DC vaccines aim to provide the immune system with 
in  vitro-trained DCs, which are usually isolated from 
the peripheral blood of patients, properly activated, and 
loaded with tumor antigens or tumor lysates, to induce 
a strong antitumor response [196]. Treatment with per-
sonalized neoantigen peptide-pulsed autologous DC vac-
cine (Neo-DCVac) reportedly promotes the secretion of 
cytokines, such as IL-12, IFN-γ, and TNF-α in patients 
with metastatic lung cancer, with a disease control rate 
of 75% [269]. In a phase 2 study, the use of a DC vaccine 
electroporated with Wilms’ tumor 1 (WT1) mRNA in 
patients with acute myeloid leukemia was shown to be 
a safe and feasible regimen in promoting tumor infiltra-
tion of multi-epitope WT1-specific  CD8+ T cells and 

Fig. 5 DCs-based immunotherapy. Current strategies for DCs-based treatment of autoimmune diseases and tumors fall into two broad categories. 
One is the direct targeting of DCs in vivo. In the treatment of autoimmune diseases, the targets of various DCs (e.g., IL-12, Bal-2, ILT7, CCR7) are 
usually used to induce immune tolerance or suppress their immune response. In the treatment of tumors, DCs are usually targeted by various DCs 
(e.g., TLRs, CLRs, STING, CD40) to enhance or restore the function of DCs in order to achieve anti-tumor immunity. Another strategy is vaccination of 
DCs. Precursors of DCs (or mature cDCs and pDCs) are isolated from patient blood, induced to amplify and differentiate with different cocktails, and 
DCs are pulsed with relevant antigens to give them antigenic specificity. After a final safety and efficacy assessment, they are injected back to the 
patient
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effectively prevent or delay cancer recurrence after stand-
ard chemotherapy [270]. Owing to the rarity of cDCs 
or pre-DCs in the blood, moDCs are currently used in 
most clinical studies. The addition of autologous tumor 
lysate moDC vaccine (DCVax-L) to standard therapy in 
patients with glioblastoma (GBM) prolongs patient sur-
vival and has a favorable safety profile, with only 2.1% 
of patients experiencing treatment-related grade 3 or 
4 adverse events [271]. However, endogenous DCs are 
required for the initiation of tumor-specific T cells after 
moDC vaccination [15]. Owing to their excellent antigen-
presenting ability and high specificity, cDCs are consid-
ered promising antitumor vaccine candidates [272, 273]. 
HER2 peptide-pulsed cDC1 vaccines induce specific 
anti-HER2  CD4+ and  CD8+ immune responses in the 
treatment of patients with  HER2pos tumors, independent 
of the vaccination route [274]. It is important to note that 
cDC1s vaccines can directly engage in antigen presen-
tation to drive tumor-specific  CD8+ T cell responses in 
mice independent of host cDC1s [275].

Conclusion and outlook
Undoubtedly, the advances made in DCs research in 
recent years have led to increased knowledge of many 
key transcription factors and cytokines that are involved 
in the regulation of DCs differentiation and function. 
To capitalize on these discoveries, a growing number of 
clinical trials based on DCs therapies are being initiated. 
Some trials have shown promising safety and efficacy 
in the treatment of autoimmune diseases and cancers. 
However, considerable challenges remain in establish-
ing effective and applicable DC vaccines. One challenge 
is ensuring that DC vaccines avoid the effects of immu-
nosuppressive factors in TME, including IDO, IL-10, 
TGF-β, and PEG2. Moreover, most DC vaccines do not 
effectively migrate to the lymph nodes to mobilize the 
T cell immune response. Moreover, DC-based immuno-
therapies are often expensive and require complex manu-
facturing processes, which limit access to a wide range of 
patients.

The primary focus of research on DCs is to identify the 
precise conditions which determine whether DCs exert 
their immunosuppressive or immune-activating func-
tions. The diversity of different DCs subpopulations in 
terms of origin, location, phenotype, and function makes 
this challenging. Future research should explore the bio-
logical properties of DCs in controlling T cell immunity 
to maximize their therapeutic potential. In addition, con-
tinuous advancement in technology has the potential 
to revolutionize the field of DC-based immunotherapy. 
The use of nanotechnology may enable the more effec-
tive delivery of DC-targeted drugs or vaccines. Advance-
ments in gene editing technologies like CRISPR/CAS9 

may enable the development of more effective and spe-
cific DC-based therapies. Overall, continued research 
in the field of DC biology and immunotherapy has the 
potential to revolutionize the treatment of a wide range 
of diseases and offers hope to patients with a wide range 
of disorders.
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