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Abstract 

The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal transloca-
tion in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the 
component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the 
cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN 
are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell 
apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/
MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components 
of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted 
great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional 
regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review 
will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the 
role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive under-
standing of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help 
direct drug selection for tumor therapy.
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Introduction
With the discovery of oncogenes and antioncogenes in 
the 1980s, the novel targeted treatment of imatinib was 
first approved in 2001 by the FDA [1–3]. The require-
ment of new anticancer medicines to the molecular 
groundwork is significantly higher than that of traditional 
chemotherapeutic drugs, of which their molecular mech-
anism of action was not identified empirically [3]. Kinases 
and phosphatases have key roles in controlling cellular 
functions [4]. There are currently seventy-one kinase 
inhibitors approved by the Food and Drug Administra-
tion (FDA) and 16 attached inhibitors approved by other 

countries and regions’ regulatory agencies [5]. The PI3K/
AKT/mTOR and RAF/MEK/ERK signaling pathways are 
composed of kinase cascades that are managed by phos-
phorylation and dephosphorylation by particular kinases, 
phosphatases, and proteins regulating the exchange [6] 
(Fig. 1). The PI3K/AKT/mTOR and RAF/MEK/ERK sign-
aling pathways have been extensively studied over the 
past 25 years [7]. Enormous breakthroughs in component 
detection and the mechanisms of how the components 
relay on the signals and mutations result in aberrant sign-
aling and uncontrolled proliferation diseases. Broader 
perspectives and feedback loops have been identified, 
leading to more choice in blocking the pathways.

PI3K/AKT/mTOR signaling is a crucial intracellular 
pathway in regulating fundamental cellular functions, 
including but not limited to regulating cell growth, motil-
ity, survival, metabolism, and angiogenesis. Hyperactiva-
tion of the PI3K/AKT/mTOR pathway occurs in nearly all 
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malignant neoplasms [8]. A previous study showed that 
single nucleotide polymorphisms (SNPs) in the PI3K/
AKT/mTOR pathway are connected to the distant metas-
tasis of carcinomas [8]. This pathway also has a vital role 
in promoting cell apoptosis through inhibition of related 
genes such as p53, caspase 3, Fas receptor (CD95) and 
TNF receptor (TNFR1) [9, 10].

AKT could serve as the targeted effector to the cell 
surface for activation. Two sites (T308 and S473) of 

AKT could be phosphorylated. In addition to phos-
photidylinositide-dependent kinases (PDKs), AKT 
can be phosphorylated by mTOR. This signaling acti-
vation contributed to the growth of cells by suppress-
ing autophagy via the activation of mechanistic target 
of rapamycin (mTOR) [11, 12]. MTOR can inhibit the 
initiation of autophagy via distinct usual pathways [13, 
14]. In addition, PI3K/AKT/mTOR lead to epithelial-
mesenchymal transition (EMT) in chemotherapy resist-
ance and metastasis in malignant tumor cells [15–17].

Fig. 1  Schematic of the PI3K/AKT/mTOR and Raf/MEK/ERK signaling pathways. Growth factors, hormones, cytokines, GPCRs, and mitogens activate 
receptor tyrosine kinases (RTKs) recruiting PI3K to attach to the plasma membrane, where PI3K catalyzes PI (4,5) P2 to PI (3,4,5) P3. PTEN suppressed 
the process, and PTEN mutations could induce abnormal activation. PI (3,4,5) P3 promotes AKT activation via the activity of PDK1 and mTORC2. 
AKT activation induced cell cycle progression, cell growth, cell apoptosis, survival, glucose metabolism, protein synthesis, signal triggering and 
transduction, and phosphorylation of the downstream substrate TSC2. AKT activation suppressed the activity of TSC2 to promote the production 
of Rheb complex, resulting in mTORC1 activation. mTORC1 activation facilitates the initiation of eukaryotic protein translation. 4E-binding protein 1 
(4E-BP1) activation enhanced the release of eukaryotic translation initiation factor 4E (eIF4E). RTK activation further accelerates guanine exchange 
factor to load RAS with GTP. RAS–GTP dimers recruit RAFs or RAF/MEK heterodimers to membranes, where tetramers consisting of RAF and 
MEK promote RAF activation. MEK activation is initiated by docking on RAF dimers, which further facilitate ERK phosphorylation. RTKs, receptor 
tyrosine kinase; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; 
PTEN, phosphatase and tensin homolog; PDK1,3-pphosphoinositide-dependent kinase 1; mTOR, mechanistic target of rapamycin; TSC1, tuberous 
sclerosis 1; TSC2, tuberous sclerosis 2; 4E-BP, eIF4E-binding protein; GRB10, growth factor receptor-bound protein 10; IGF-1R, insulin-like growth 
factor 1 receptor; mLST8, mammalian lethal with SEC thirteen 8; RICTOR, rapamycin-insensitive companion of mTOR; S6K, ribosomal S6 kinase; FLCN, 
folliculin; ULK1, UNC-51-like kinase 1; RAPTOR, regulatory-associated protein of mTOR; RICTOR, rapamycin-insensitive companion of mTOR.
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The RAF/MEK/ERK pathway is a critical signaling 
pathway in transmitting signals from membranes to the 
nucleus [18]. The RAF family serine/threonine (ser/thr) 
protein kinases (Raf-1(C-Raf ), B-Raf, A-Raf ) activate 
MEK by phosphorylation, and MEK phosphorylation 
promotes ERK 1 and 2 phosphorylation at their resi-
dues. RAS GTPases and growth factor receptors, such 
as epidermal growth factor receptor (EGFR), control 
the activation of the RAF/MEK/ERK signaling pathway. 
Similar to PI3K/AKT/mTOR, activation of RAF/MEK/
ERK signaling pathways was observed in a large frac-
tion of solid cancers [6]. These observations contrib-
ute to the development of inhibitors targeting kinases 
containing the new RAF and MEK kinases approved 
by the FDA. Extracellular signal-regulated kinases 
(ERK1/2) are a subfamily of mitogen-activated protein 
kinases (MAPKs) that facilitate the culmination of sig-
nal transduction and regulate transcription. ERK1/2 are 
phosphorylated by the upstream MAPK/ERK kinases 
MEK1/2, which are tyrosine/threonine protein kinases 
that are necessary for proliferation and regular growth 
in human cells.

Both pathways share common inputs and can also 
be activated via RAS. In addition, when one pathway 
is suppressed, the other pathway may offer compensa-
tory effectiveness [19]. MTOR, a downstream molecule 
phosphorylated by AKT, is inhibited, and PI3K can 
stimulate MAPK through RAS. These results showed 
that these two pathways serve as a complex network 
and provide a method for dual therapeutic compounds 
that can simultaneously block both pathways [20]. In 
addition to mTOR, several nodes of the PI3K/AKT/
mTOR and RAF/MEK/ERK pathways are well known to 
interact with each other, and mounting evidence indi-
cates that dual blockade of both pathways might con-
tribute to anticancer effects [21]. Mutations observed 
in the genes of the pathway or in upstream receptors 
that activate these pathways [22]. The particular combi-
nation of phosphoinositide 3-kinase or phosphatidylin-
ositol-3 kinase (PI3K) and MEK inhibitors is generally 
being evaluated in several clinical studies in various 
kinds of cancers.

PI3K/AKT/mTOR and RAF/MEK/ERK contain vari-
ous kinases regulated by phosphorylation and dephos-
phorylation via relevant kinases. These two signaling 
pathways are considered vital oncogenic signaling path-
ways in tumorigenesis. In the current review, we 
describe the critical role of the PI3K/AKT/mTOR and 
RAF/MEK/ERK signaling pathways in carcinoma initia-
tion and tumor development as potential strategies for 
tumor therapy, summarizing the recent doubts about 
targeting the pathway in monotherapy and combina-
tion therapy.

Overview of the PI3K/AKT/mTOR pathway and its role
The signaling pathway composed of PI3K, protein kinase 
B (AKT), and mTOR is a part of a complicated signal-
ing cascade comprising distinct upstream regulators and 
downstream effectors, which play critical roles in the for-
mation processes of human cancers [23]. Prior evidence 
has identified that hyperactivation of PI3K/AKT/mTOR 
signaling promotes tumorigenesis. PI3K was first identi-
fied as a lipid kinase in the 1980s in the Cantley group’s 
study. Furthermore, the first clone and report of TOR was 
completed in 1991 by Hall, and its mammalian homolog 
mTOR was developed three years later [24].

Vital mouse models serving as key genetic evidence to 
identify the imperative roles of the PI3K/AKT/mTOR 
signaling pathway in promoting tumorigenesis have 
been constructed in recent years, contributing to the 
comprehension of the signaling by the recognition of 
whole modules via various methods and supplying valu-
able information for patients to confirm activation of the 
pathways in human carcinomas by deep sequencing, pro-
teomics, reversed-phase protein arrays (RPPA) and bio-
informatics approaches [25]. Different therapeutic agents 
targeting different components in the PI3K/AKT/mTOR 
signaling pathway have been designed and applied as 
anticancer agents [26].

PI3Ks promoted the transfer from PIP2 to PIP3 via 
phosphorylation of phosphatidylinositol. PIP3 is the basis 
of multiple downstream targets of the PI3K/AKT/mTOR 
pathway [27]. PI3Ks contain three classes: PI3Ks class I, 
PI3Ks class II and PI3Ks class III, which are separated 
by their structure, reaction mechanism, and character-
istic [28–31]. Both Class IA and Class IB can be gener-
ally activated by G protein-coupled receptors (GPCRs), 
either via Gβγ protein or indirectly via RAS [32]. In addi-
tion, Class IA could also be regulated by receptor tyros-
ine kinases (RTKs) and upstream oncogenes. Class IA 
PI3Ks contain a regulatory subunit (p85α, p85β, p85γ) 
and a catalytic unit (p110α, p110β, p110δ, p110γ), which 
belong to heterodimers [29, 33] (Table  1). The regula-
tory subunit can be activated by the catalytic subunit 
[32]. After stimulation or subsequent activation, class 
IA PI3Ks can be recruited to the cytomembrane via the 
p85 subunit for motif phosphorylation. The activation 
of the p110 catalytic subunit in turn activated down-
stream signals [34]. P85 combined with the receptors, 
and p110 catalyzed the formation of PIP3 by adding 
an additional phosphate on PIP2. PTEN promoted the 
transfer of PI (3,4,5) P3 back to PI (4,5) P2 to reduce PIP3 
by intrinsic lipid phosphatase. The N-terminal region of 
AKT docked to PI (3,4,5) P3 contributes to the translo-
cation to the cytomembrane, resulting in AKT activa-
tion with two vital amino acid residues phosphorylated 
[35]. AKT induced the phosphorylation of PRAS40 and 
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tuberous sclerosis complex (TSC2) to alleviate the inhibi-
tory effect on mTORC1 to induce mTOR activation. 
In addition to mTORC1, mTORC2 is another complex 
of mTOR. MTOR is a kind of ser/thr protein kinase in 
PI3Ks kinases [36]. The Ragulator/Rag GTPase complex 
acts as a regulator in controlling mTORC1 activity. S6K1 
and 4E-BP1 are downstream effectors of mTOR, which 
mediates protein synthesis [37]. AKT is a key node that 
transduces signals from mTORC2 to mTORC1, while 
mTORC1 could be regulated independently of mTORC2. 
MTORC1 activation by amino acids is mediated by Ras-
related GTP binding (RAG) GTPases. Amino acids acti-
vate mTORC1 via Rag GTPases, which are recruited to 
lysosomes by the Ragulator complex (MAPK and TOR 
activator). Downregulated cellular energy promotes 
AMPK activation to trigger Raptor phosphorylation to 
inhibit mTORC1 action [38]. MTORC1 activation was 
promoted by ERK-dependent Raptor phosphorylation by 
RAS/MAPK activation. More alternations occurring in 
this pathway according to transcription, protein produc-
tion, and other factors were discussed in next paragraph.

Dysregulation of the PI3K/AKT/mTOR pathway in neoplasms 
mediated by genetic alterations
Gene mutagenesis‑induced overactivation of  the  PI3K/
AKT/mTOR pathway in  neoplasms  Referencing previ-
ous studies, the frequency of the PIK3CA mutated gene 
varies from 10 to 15% in human cancers [39]. PIK3CA 

mutations are found in nearly all neoplasm types, such 
as mammary tumors, colorectal carcinoma, esophageal 
cancer, gallbladder carcinoma, non-small cell lung can-
cer (NSCLC), ovarian cancer, and gastric carcinoma [40]. 
PIK3CA mutations in breast carcinoma are the most prev-
alent. H1047R, E545K, E542K, N345K, and H1047 L were 
the top five mutations that accounted for three-quarters 
of all PIK3CA mutations [41]. PIK3CA gene amplification 
is frequent in gastric carcinoma (36.4%), thyroid adeno-
carcinoma (30%), prostatic cancer (28%), ovarian cancer 
(13.3–29.8%), and cervical carcinoma (9.0–80%). Various 
positions were observed to be mutated in the PIK3CB 
gene, including lung carcinoma, thyroid cancer, and lym-
phoma [42]. These studies implied that the function of the 
PI3K isoform was extremely different. Clinically, upregu-
lated PIK3CA expression was significantly related to neo-
plasm invasiveness, poor patient survival and lymph node 
metastasis [43].

AKT is a ser/thr kinase in downstream effectors of 
the PI3K/AKT/mTOR signaling pathway and includes 
three subtypes: AKT1, AKT2 and AKT3 [44]. AKT1 is 
observed in the majority of tissues, AKT2 is mainly found 
in organisms with high sensitivity to insulin, and AKT3 is 
expressed in the brain and testicles [45, 46]. PI3K facili-
tates Akt1 in cytoplasm transport to interact with PIP3 
on the cytomembrane, leading to Akt1 phosphorylation 
and activation [47]. In addition, negatively regulated PI3K 
activation can inhibit Akt1 via PTEN phosphorylation. 

Table 1  Different classes of PI3K enzymes and their functions

PI3K class Subunit Gene Protein Aliases Cellular functions

Class I IA Catalytic PIK3CA PI3K, catalytic, α
polypeptide

p110α Integrates extracellular signals from insulin and growth factors together 
with energy status, oxygenation and nutrient availability to modulate 
processes including cell growth, survival, proliferation, glucose metabo-
lism, and angiognesis

PIK3CB PI3K, catalytic, β
polypeptide

p110β

PIK3CD PI3K, catalytic, δ
polypeptide

p110δ

Regulatory PIK3R1 PI3K, regulatory subunit 1 (α) p85α

PIK3R2 PI3K, regulatory subunit 2 (β) p85β

PIK3R3 PI3K, regulatory subunit 3 (γ) p55γ

IB Catalytic PI3K3CG PI3K, catalytic, γ
polypeptide

p110γ

Regulatory PIK3R5 PI3K, regulatory subunit 5 p101

PIK3R6 PI3K, regulatory subunit 6 p87/p84

Class II Catalytic PIK3C2A PI3K, class 2, α
polypeptide

PI3K-C2α Exocytosis, promote insulin secretion and neurosecretory granules 
release, regulate glucose transport, endocytosis, activation of Rho 
GTPases in cell contraction and
migration.

PIK3C2B PI3K, class 2, β
polypeptide

PI3K-C2β

PIK3C2G PI3K, class 2, γ
polypeptide

PI3K-
C2ϒ

Class III Catalytic PIK3C3 PI3K, class 3 Vps34 Endosome maturation,
endosomal protein sorting, autophagosome formation and autophagy
flux, cytokinesis.

Regulatory PIK3R4 PI3K, regulatory subunit 4 Vps15/
p150
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In conclusion, positive regulation of PI3K signaling and 
negative regulation of PTEN signaling can induce Akt1 
activation in human cancers. Akt1 facilitates cell prolifer-
ation, survival, and metabolism via its downstream effec-
tors BAD, FOXO1, and TSC1/2 [9]. Genomic alterations 
of Akt1 could directly promote the activation of Akt1 
without phosphoinositide.

Mutations in Akt2 and Akt3 disrupt the role of pleck-
strin homology (PH) and kinase domain (KD), resulting 
in AKT oncogenic activation [48]. Akt1 amplification 
is frequently reported to promote cisplatin resistance 
in epithelial cancers, such as gastric carcinoma, breast 
neoplasm, gallbladder tumor, NSCLC, and SCLC [49]. 
Akt2 gene copy number gain was found in ovarian can-
cer, pancreatic carcinoma, liver cancer, colorectal carci-
noma, gastric carcinoma and breast neoplasm [50]. Akt3 
gene alterations are rare in carcinomas. The Akt1-E17K 
mutation existing in the PH domain has been observed 
frequently in breast carcinoma, ovarian carcinoma, and 
malignant meningioma with increased oncogenicity, par-
ticularly by facilitating AKT binding with PIP3, which 
promotes the action of AKT [51]. The The Akt1-E17K 
mutation in mouse models contributed to mammary 
hyperplasia and resulted in lung epithelium disorder, 
demonstrating that Akt-activating mutation plays an 
oncogenic role in promoting tumorigenesis [52]. The 
other two subtypes of AKT-E17K mutations were less 
frequent than The Akt1-E17K mutations. The Akt2-E17K 
mutation is commonly observed in hyperinsulin muco-
glycemia with dysregulated insulin production [53]. The 
Akt3-E17K somatic mutation was observed in human 
malignant melanoma [52]. Mutations in kinases manage 
the development of tumors and developmental disorders 
by promoting kinase activation [54].

The mTOR activation mutations increase its kinase 
activity, contributing to overactive downstream pro-
proliferation signaling pathways [55]. The mutation rate 
in metastatic cancer was 3% (329/10,336) in the MSK 
IMPACT Clinical Sequencing Cohort, which is simi-
lar to that (2.9%, 292/10,194) of the China Pancancer 
Cohort (OrigiMed2020). The rate of nonsynonymous 
mTOR mutations was approximately 10% in malignant 
melanoma patients, and nonsynonymous mTOR muta-
tions were connected to a poor prognosis [56]. The 
mTOR mutation was found in a wide variety of malig-
nant tumors, including lung, renal cell, endometrium, 
colorectal and squamous carcinoma [57]. HEAT repeat, 
FAT domain, and KD mutations promote the oncogenic 
role of mTOR in tumorigenesis [58]. Rictor and mTOR 
are prevalently observed in cancer, while mutations in 
mSin1, mLST8 and Raptor are not common in human 
cancers [59]. Rictor amplification is a selection criterion 
for potential mTOR inhibition treatment.

Deletion of genes promotes hyperactivity of the PI3K/AKT/
mTOR pathway  PTEN, the most common tumor sup-
pressor gene, is the major PI(3,4,5)P3 kinase that antago-
nizes PI3K phosphorylation, and its loss could contribute 
to uncontrolled PI3K signal transduction [60, 61]. PTEN 
deletion in different neoplasms has been found in either 
genetic or epigenetic mechanisms [62–64]. Moreover, 
the deletion of PTEN leads to its loss efficiency and is 
closely correlated with worse prognosis, drug resistance 
and advanced tumor stages. PTEN deletion is frequently 
found in solid tumors and hematologic malignancies, 
including prostate cancer, diffuse large B-cell lymphoma, 
glioma, endometrial carcinoma, hepatopancreatic ductal 
malignancy, and invasive bladder cancer [65–71]. PTEN 
neddylation is promoted by Nedd8 interaction at high 
glucose levels, which does not lead to an increase in PTEN 
accumulation in the nucleus [72]. PTEN in the nucleus 
could promote RAD51 expression, which results in DNA 
double-strand breaks.

PTEN mutations plays an important role in PI3K path-
way activation in tumor occurrence and contributes to 
a majority of activates in tumor prognosis [73]. PTEN 
mutations presumably lead to the hyperactivation of all 
PI3K-mediated pathways. However, PTEN mutations 
were not observed in some neoplasms. In head and neck 
cancers, 15% of PTEN mutations was found [74]. In 
breast carcinomas, only 3% of PTEN mutations was iden-
tified [73]. It is clear that some other signaling pathway 
existed besides PTEN mutations, activation and deletions 
to constitutively activated PI3K activity. The interaction 
between RAS and PI3K was supported by the vivo data. 
However, RAS and PTEN mutations is mutually exclusive 
in neoplasm of endometrium and malignant melanomas. 
PTEN mutations were commonly observed in spon-
gioblastoma but rarely seen in carcinoma of pancreas, 
lung and colorectum [75–80]. The mutations of RAS are 
opposite in these neoplasms. Compared with Pten+/− 
mice, RAS mutations was commonly observed in Pten+/+ 
mice in according to chemically induced skin neoplasms. 
Lacking RAS mutations results in second Pten allele loss. 
The results demonstrated RAS and PTEN may have syn-
ergistic effect in carcinogenesis.

PTEN promoter methylation induced PTEN tran-
scription reduction that correlated with the relapse 
and recurrence of gastric cancer via PI3K/AKT/mTOR 
signaling pathway hyperactivation [81–83]. Increased 
PTEN promoter methylation could decrease PTEN 
transcription, resulting in worse survival [82]. P53 
can be stabilized by PTEN and promote its transcrip-
tion. PTEN promoter deficiency demonstrated a defect 
in stabilizing and binding p53, contributing to PTEN 
reduction and alleviating its suppressive function in 
sporadic cancers and Cowden syndrome patients [84]. 
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Pin1, polycomb group protein EZH2, AKT activation, 
and RAC1P29S negatively mediate the transcription and 
function of PTEN [85–88]. Previous studies have indi-
cated that mutations in the PTEN promoter are dispen-
sable for common cancers. However, the potential role 
of the PTEN promoter in cancers needs more in-depth 
investigation.

The effect of deletion of other genes besides PTEN in the hyper‑
activity of PI3K/AKT/mTOR pathway  Besides PTEN dele-
tion alone, deletion of both Lkb1 and Pten genes and mTOR 
excessive activation result in the development of ovarian 
carcinoma [89]. PTEN inactivation by S-nitrosylation could 
also induced PI3K/AKT Activation. PARK2 depletion medi-
ated AMPK activity and promoted oxygen reaction lead-
ing to PTEN S-nitrosylation [90]. Inositol polyphosphate 
4-phosphatase type II (INPP4B) acts as a negative regula-
tor in PI3K activity, which promotes PIP2 to generate PIP3. 
INPP4B mutation led to the silence of PI3K signaling [91]. 
In mice kidney neoplasms, TSC2 exon 3 deletion contrib-
uted to the hyperactivity of mTOR, which resulted in Hes1 
overexpression [92].

Hyperactivation of  PI3K/AKT/mTOR signaling driven 
by gene fusion  Gene fusion is made by linking parts of 
two different genes during DNA from one chromosome 
moves to another chromosome, leading to fusion pro-
tein production. Fusion protein production has been 
found in colorectal cancer, myofibroma, B-lymphoblas-
tic leukemia, glioblastoma, NSCLC, and thyroid carci-
noma [93]. Gene fusions are commonly found in the 
PI3K/AKT/mTOR axis in cancer development. In the 
landscape of recurrent kinase fusions in solid tumors, 
the proportion of gene fusions was broadly different 
among various tumors, indicating diversity in the etiol-
ogy of these neoplasms. PI3KCA and AKT fusions have 
been widely researched, and their functions are involved 
in PI3K/AKT/mTOR hyperactivation [94]. TBL1XR1–
PIK3CA fusions were shown in invasive breast cancer 
and prostate cancer, which were driven by hormones 
[95]. Juxtaposing the promoter of the TBL1XR1 gene to 
the 5’ end of the intact PIK3CA coding sequence con-
tributes to TBL1XR1–PIK3CA fusions, which causes 
an increase in PIK3CA mRNA [96]. LAMTOR1-Akt1 
was observed in epithelioid cancer patients with tumo-
rigenic driver function. In addition, BCAM-Akt2 and 
RPS6KC1–Akt3 were reported and validated in ovar-
ian carcinoma and mammary cancer, respectively [97]. 
Hyperactivation and alterations of AKT proteins and 
their upstream and downstream effectors were gener-
ally researched in neoplasms of adults and pediatric 
malignancies, and only rare AKT fusions have been 
described [98–106].

In humans, the mTOR-TP53BP1 fusion gene is eas-
ily observed in colorectal carcinoma, mammary neo-
plasm, ovarian carcinoma, and lung carcinoma and 
regulates PI3K/AKT/mTOR signaling pathway acti-
vation. TFE3-mTOR, FKBP-mTOR, CHD1-mTOR, 
mTOR-CASZ1 and mTOR-TP53BP1 were found in 
cancers. However, their roles in tumorigenesis need 
further exploration [107, 108].

Transcriptional modifications drove PI3K/AKT/mTOR 
signaling pathway hyperactivation in cancer
In addition to genetic alterations leading to stable 
oncogenicity to promote oncogenesis and chemother-
apy resistance, the production of proteins and expres-
sion of mRNA in PI3K/AKT/mTOR signaling pathways 
also participate in neoplasm growth [109]. Various 
effectors are involved in regulating the PI3K/AKT/
mTOR pathway, such as promoter modification, micro-
RNAs (miRNAs), and transcriptional control. Micro-
RNAs (miRNAs), small noncoding RNAs, regulate 
a third of the functional genomics at the posttransla-
tional level. Upregulated Rictor expression was present 
in glioblastoma, advanced hepatocellular carcinoma 
(HC), SCLC, prostate carcinoma, cervical cancer, glio-
blastoma, mammary neoplasm, colorectal carcinoma, 
endometriosis, melanoma and esophageal squamous 
cell carcinoma (ESCC) [110, 111].

Distinct factors facilitate the signals in the pathways 
to regulate gene expression Promoter methylation could 
decrease the transcription of a targeted gene. PTEN 
promoter methylation is one of the most frequent sites 
in the PI3K/AKT/mTOR signaling pathway. TSC2 and 
TSC1 promoter methylation was significantly increased 
in breast carcinoma, oral squamous cell carcinoma, and 
tuberous sclerosis complex [112, 113]. The data show 
for the first time that methylation of the TSC2 promoter 
might cause a complete loss of tuberin in TSC2 cells 
and that the pathogenesis of angiomyolipomas might 
also originate from epigenetic defects in smooth muscle 
cells. TSC2 promoter methylation promoted the abnor-
mal proliferation of smooth muscle-like cells, leading to 
TSC [114]. Both PI3K/AKT/mTOR and RAF/MEK/ERK 
can be activated by TBX1 suppression in thyroid adeno-
carcinoma, which is induced by its promoter methyla-
tion [115].

In human NSCLC cells, a decrease in miR-192-5p 
induces tumor development. Downregulation of miR-
143, miR-145, and miR-101 in Burkitt’s lymphoma pro-
motes tumor cell growth [116]. MiR-19a and miR-96 
reduction suppress tumor cell proliferation through the 
PI3K/AKT pathway in HC cells [117]. MiR-425/489 is a 
target gene for the long noncoding RNA MHENC [118]. 
MiR-425/489 is increased in melanocytes. Knocking 
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down MHENCR significantly inhibits melanocyte growth 
and causes cell cycle arrest and cell apoptosis.

Yang et al. reported that miR-1297 bound to the 3’ end 
of Meg3 and that miR-1297 could also bind to PTEN in 
testicular germ cell neoplasms [119]. The effect of miR-
1297 on the 3’ end of PTEN mRNA expression could be 
suppressed by PTEN expression, leading to deactiva-
tion of AKT and reduction of cell proliferation. PTEN 
mRNA polyadenylation is frequently observed to regu-
late miRNA-mediated PTEN [120]. Polyadenylation of 
PTEN mRNAs is a dynamic process and results in differ-
ent isoforms with distinct 3′UTRs [121]. Considering the 
lack of specificity of transcription factors in controlling 
PI3K/AKT/mTOR signaling expression, we did not dis-
cuss transcription factors and transcription modification 
in this review.

Inhibitors of the PI3K/AKT/mTOR pathway
This pathway is one of the most common dysregulated 
pathways in tumors and a key signal in regulating tumor 
cell proliferation and apoptosis [122, 123]. The molecules 
in this pathway have drawn comprehensive attention in 
recent years. Many agents targeting components in this 

signaling pathway have been researched and assessed in 
animals and humans.

PI3K inhibitors
PI3K inhibitors were the primary agents developed and 
investigated in the PI3K/AKT/mTOR signaling pathways 
(Fig.  2) [124]. Various PI3K inhibitors were in develop-
ment and can be separated into three categories based 
on their pharmacokinetic effect and interaction with 
ATP: pan-PI3K inhibitors, isoform-specific PI3K inhibi-
tors and dual PI3K/mTOR inhibitors. Clinical trials have 
presented advanced antitumor treatment effects (Table 2) 
[125]. Compared with isoform-specific inhibition, class 
IA pan-PI3K inhibitors have been more comprehensively 
researched [126]. The off- and on-target effects of block-
ing all isoforms caused by pan-Class I inhibitors limited 
their use; however, their antitumor role was not influ-
enced [127].

Pan‑PI3K inhibitors
Buparlisib (BKM120) is an ATP-competitive pan class l 
PI3K inhibitor that can also affect mTOR and Vps34 at 
higher doses [128]. Buparlisib has already been assessed 
in a phase 3 trial [129]. Buparlisib exhibited superior 

Fig. 2  Inhibitors of the PI3K/AKT/mTOR pathway. Various classes of agents target different effectors of the PI3K/AKT/mTOR pathway
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antitumor effects in human cells in  vitro [130, 131]. 
In  vivo, buparlisib presents excellent oral bioavailabil-
ity and superior antitumor activity in mouse models. In 
a dose-escalation study of buparlisib, the most frequent 
buparlisib-related adverse effects (AEs) included rash, 
hyperglycemia, diarrhea, anorexia, mood alteration, 
decreased appetite, nausea and abnormal hepatic func-
tion [132]. In a phase I trial, the AEs increased in patients 
treated with buparlisib (40  mg daily) combined with 
standard mFOLFOX6 compared with either buparlisib or 
mFOLFOX6 [133]. In patients treated bevacizumab with 
BKM120, no encouraging efficacy was observed in glio-
blastoma tumors when bevacizumab was combined with 
BKM120 [134].

Based on the safety dose in solid tumors treated with 
chemotherapy combined with BKM120, the combina-
tion of BKM120 at a safe dose and radiotherapy was 
applied to advanced non-small cell lung carcinoma 
[135]. This therapeutic regimen was well tolerated, and 
hypoxia could be improved by PI3K inhibition, which 
indicated that BKM120 may act as a radiosensitizer. The 
maximum tolerated dose of BKM120 was 100 mg/day in 
solid tumors; however, the maximum tolerated dose of 
BKM120 was 80 mg/day in leukemias. Leukemia patients 
treated with the maximum tolerated dose demonstrated 
modest efficacy. BKM120 monotherapy demonstrated 
promising efficacy and manageable AEs in advanced 
ESCC patients in a phase II study [136]. However, buparl-
isib monotherapy was connected to an unfavorable safety 
profile and unsatisfactory anticancer activity in advanced 
or recurrent endometrial carcinoma [137]. The study was 
withdrawn before recruitment was finished because of 
AEs. In the BELLE-3 trial, the combination of buparlisib 
with fulvestrant was not recommended in postmeno-
pausal, hormone receptor (HR)-positive, HER2-negative, 
advanced breast cancer for the safety profile [138]. The 
use of buparlisib monotherapy in recurrent glioblastoma 
was limited by efficacy. Patients treated with buparlisib in 
combination with paclitaxel had longer survival times in 
relapsed or metastatic head and neck squamous cell car-
cinoma patients [139]. Then, buparlisib plus paclitaxel 
was recommended as a second-line therapy.

Copanlisib (BAY 80 − 6946) is a panclass I PI3K inhibi-
tor that can inhibit all four PI3K class-I isoform activa-
tions [140]. The maximum tolerated dose of copanlisib 
monotherapy in patients with advanced solid tumors and 
non-Hodgkin lymphoma (NHL) was determined in the 
NCT00962611 clinical trial [141]. Copanlisib has prom-
ising antitumor activity in these patients, particularly in 
NHL patients. The most common AEs related to copan-
lisib included hyperglycemia, nausea, and hypertension. 
Grade ≥ 3 AEs related to copanlisib were hyperglyce-
mia, hypertension, and rash. Another study developed 

on advanced or refractory solid tumors, and copanlisib 
was well tolerated in Japanese patients [142]. The most 
common toxicities in Japanese patients were hypergly-
cemia and hypertension. The maximum tolerated dose 
of copanlisib in Chinese patients with relapsed or refrac-
tory NHLs was at a lower dose and presented promising 
effects [143]. The COUP-1 trial assessed the effectiveness 
and AEs of copanlisib in combination with rituximab 
in marginal zone lymphoma patients, which demon-
strated the potential for the clinical and translational use 
of copanlisib [144]. In a phase II study of copanlisib in 
various lymphomas, the results showed that intravenous 
copanlisib could offer promising efficacy and manageable 
toxicity [145]. Further studies on copanlisib in periph-
eral T-cell and mantle cell lymphomas were carried out. 
In PIK3CA mutation patients, the over response rate 
was 16% with tolerable AEs, including hyperglycemia 
(76%), fatigue (48%), diarrhea (44%), hypertension (40%), 
and nausea (40%). The long-term efficacy and toxic-
ity of copanlisib in patients with relapsed or refractory 
indolent lymphoma exhibited progression-free survival, 
and overall survival was 12.5 months and 42.6 months, 
respectively. Approximately twenty-six patients received 
copanlisib four over one year [146]. In phase III of 
Copanlisib plus rituximab in indolent NHL, Copanlisib 
plus rituximab could improve progression-free survival 
compared with placebo plus rituximab [147]. Over-
all, serious AEs were largely unchanged and tolerable, 
with no new cases or grade 5 events in the undergoning 
and completed clinical trials. Treatment-emergent AEs 
caused by copanlisib did not contribute to increased inci-
dence or worsening prognosis. The results in the study 
demonstrated that intravenous copanlisib led to a sus-
tained, intensive treatment response without increasing 
treatment-emergent AEs, similar to other orally adminis-
tered PI3K inhibitors [148].

In addition to buparlisib (BKM120) and copanlisib 
(BAY 80 − 6946), LY294002, pictilisib (GDC 0941), pila-
ralisib (SAR 245,408 and XL 147), SF1126, ZSTK474, 
rigosertib (ON-01910) and CH5132799 are pan class 
l PI3K inhibitors with ongoing clinical studies [149]. 
Copanlisib (BAY 80 − 6946) is the only pan-PI3K 
inhibitor approved for tumor therapy and is a poten-
tial treatment for malignat solid tumors and hemato-
logic malignancies [141]. In 2017, the FDA administered 
copanlisib to patients with recurrent follicular lymphoma 
who were treated with two or more previous systemic 
therapies based on the outcomes of the CHRONOS-1 
trial [146].

Isoform‑selective PI3K inhibitors
Compared with pan-PI3K inhibitors, isoform-selec-
tive PI3K inhibitors target one of the isoforms in PI3K, 
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which decreases AEs and enhances targets [150]. Patients 
treated with isoform-selective PI3K may be selected and 
identified with sensitivity and resistance markers [151]. 
Preclinical trials of isoform-specific PI3K inhibitors in 
cancer are limited. GS-1101 (idelalisib/CAL-101), IPI145 
(duvelisib, INK-1197) and alpelisib (BYL719) have been 
approved by the FDA for tumor therapy. In 2014, idela-
lisib was approved for treating chronic lymphocytic leu-
kemia (CLL), relapsed follicular B-cell NHL, and relapsed 
small lymphocytic lymphoma (SLL) [152]. In 2018, duv-
elisib was approved in relapsed or refractory CLL or SLL 
after more than two previous therapies [153]. In 2019, 
alpelisib (a PI3KCA inhibitor) was approved for treating 
HR-positive, EGFR-negative, PI3K mutation, advanced 
or metastatic mammary neoplasms [154]. Based on the 
outcomes of the CBYL719 × 2101 trial, alpelisib showed 
promising results and tolerable toxicity in PIK3CA-
mutant tumor patients, demonstrating that isoform-
selective PI3K inhibitors combined with other antitumor 
regimens may be efficient in treating PIK3CA-mutant 
tumors [155]. The newest PI3K inhibitor approved by the 
FDA was umbralisib in 2021, which is efficient in treating 
lymphoma according to the UTX-TGR-205 trial [156].

Dual PI3K/mTOR inhibitors
Considering that both PI3K and mTOR are members 
of the same PIKK super family of kinases accompany 
with similar structural isoforms and responses, inhibi-
tors inhibiting both PI3K and mTOR targets were found 
through research on mTOR inhibitors [157]. The admin-
istration of BEZ235 to improve glucocorticoid resistance 
in pediatric T-ALL and the use of PKI-587 to decrease 
cancer cell proliferation in T-ALL demonstrated that 
dual PI3K/mTOR inhibitors significantly improved the 
treatment effect compared with inhibiting mTOR or 
PI3K alone [158–160].

In a phase Ib dose-finding study of BEZ235, diarrhea 
(58%), mucositis (58%), and nausea (42%) were the most 
frequent toxicities of all grades. Mucositis was the most 
common grade 3 AE [161]. No grade 4 BEZ235-related 
toxicity was observed, and no drug-related hospitaliza-
tions or deaths were found. BEZ235 monotherapy at 
300 mg BID orally was recommended in a phase II study, 
which is well tolerated, and no objective responses were 
found [162]. Further studies of BEZ235 have been devel-
oped in monotherapy or combination with other agents 
in various solid tumors and hematologic malignancies 
[163]. Although the outcomes of these studies showed 
that BEZ235 is generally tolerated, the clinical response 
is restricted [164]. There are no new clinical trials of 
BEZ235 developed on solid tumors. Some acute lymph-
oblastic leukemia patients may have some alterations in 
the PI3K/AKT/mTOR signaling pathway, and BEZ235 

had promising effects in this small subset of patients 
[165]. AML did not benefit from BEZ235 treatment. In 
metastatic renal cell carcinoma (RCC), apitolisib (GDC-
0980) was less effective than everolimus [166]. Increased 
toxicity was observed in the trials.

Voxtalisib (SAR245409, XL765) is a potent inhibitor 
targeting class-I PI3Ks, mTORC1 and mTORC2 [167]. 
In vitro, voxtalisib inhibited the phosphorylation of PI3K 
and controlled mTOR effector incorporation in malig-
nant tumor cells [168]. In a phase Ib study of voxtalisib 
in patients with advanced malignant tumors, pimasertib 
(90 mg) plus voxtalisib (70 mg) demonstrated poor long-
term tolerability and no faverable survival in advanced 
solid tumor patients [169]. Diarrhea (75%), fatigue (57%), 
and nausea (50%) were frequently observed in the pima-
sertib plus voxtalisib group. In relapsed or refractory 
NHL or CLL, voxtalisib was tolerable when it was given 
at 50 mg orally twice a day [170]. Voxtalisib (40 mg b.i.d.) 
plus temozolomide with or without radiotherapy pre-
sented a favorable safety profile in patients with high-
grade gliomas. Among these patients, 4% had a partial 
response, and 68% had stable disease.

Compared with voxtalisib and BEZ235, PQR309 (bimi-
ralisib) showed a better ability to transfer the brain blood 
barrier (BBB) [171]. PQR309 monotherapy or in com-
bination with other small molecular inhibitors dem-
onstrated promising antitumor activity in lymphomas 
[172]. In a phase I dose-escalation study, dose-limiting 
toxicities were not exhibited in advanced solid lymphoma 
patients. Seventy precention patients were found to have 
grade 3 treatment emergent AEs, and approximately 30% 
of patients had grade 4 treatment emergent AEs. 28% of 
patients discontinued treatment. PQR530 and PQR620 
also had a better ability to transfer the BBB [173].

GDC-0084 is another oral and brain-penetrant dual 
PI3K/mTOR inhibitor. The usual PI3K/mTOR-related 
AEs were observed after GDC-0084 treatment. The first 
phase I study of GDC-0084 in patients with progressive 
or recurrent glioma identified that GDC-0084 could cross 
the blood‒brain barrier [174]. The results indicated that 
GDC-0084 is a potential compound in brain metastatic 
mammary neoplasms with a dysregulativity of PI3K/
mTOR signals conferred by PIK3CA mutations.

Many dual inhibitors have been developed and applied 
in xenograft mouse models and malignant tumor 
cell lines with promising effects on tumors. PKI-587 
improved the radiosensitivity and oxaliplatin sensitiv-
ity of HC via the PI3K/AKT/mTOR pathways to reduce 
DNA damage repair [175]. The application of PKI-587 
led to broad spectrum cancer cell stasis and cell apopto-
sis. PIK3CA mutations caused by activation of the WNT/
β-catenin signaling pathway may decrease colorectal 
cancer cell sensitivity to the dual PI3K/mTOR inhibitor 
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PKI-587 [176]. PKI-587 plus cofetuzumab pelidotin in 
metastatic triple-negative breast cancer (TNBC) showed 
moderate toxicity and promising clinical activity [177]. 
PKI-587 combined with carboplatin and paclitaxel in 
clear cell ovarian cancer exhibited similar trends [178]. 
The administration of PKI-587 is well tolerated by weekly 
intravenous infusion rather than daily oral use in recur-
rent endometrial cancer [179]. The clinical response in 
the PKI-587/stathmin-low arm was slightly satisfactory, 
while that of the gedatolisib/stathmin-high arm did not 
meet the clinical benefit response criteria.

In addition to the mentioned small molecule inhibi-
tors, dual PI3K/mTOR inhibitors such as GSK2126458, 
SF1126, LY294002, PF-04691502, LY302341, and 
PWT33597 have shown favorable antitumor efficacy in 
various malignant neoplasms [180]. In a cellular assay, 
GSK2126458, an oral inhibitor, inhibited the growth 
and aggression of pancreatic cancer cells [181]. SF1126, 
an Arg-Gly-Asp (RGD)-conjugated LY294002 prodrug, 
can inhibit both the PI3K-Akt-mTOR and BRD4 cas-
cades. In colorectal cell lines and primary human colon 
cancer cells from human tumors, SF1126 inhibited cell 
growth and apoptosis and blocked the cell cycle [182]. 
Administration of SF1126 led to tumor angiogenesis in 
tumor tissues. Combining different chemotherapeutic 
agents with PF-04691502 promoted breast cancer cell 
apoptosis [183]. PF-04691502 could also promote radio-
sensitivity of gastroenteropancreatic neuroendocrine 
tumors. BGT226, an imidazoquinoline derivative, is 
an ATP-competitive dual PI3K/mTORC1/C2 inhibitor 
[184]. LY302341 presented promising antitumor activity 
in esophageal adenocarcinoma [185]. Clinical research 
on PWT33597 in advanced malignancies has been devel-
oped, but no results have been posted.

AKT inhibitors
AKT is a kind of effector in the PI3K/AKT/mTOR path-
way of tumors and is a potential target in treating cancer 
[186]. The AKT kinase family includes three isoforms, 
Akt1, Akt2, and Akt3 (Table 2).

Phosphorylation and dephosphorylation of AKT regu-
late the activation of Akt-dependent behavior [187]. ATP-
competitive inhibitors promote dephosphorylation of 
AKT activity by inhibiting ATP activity [188]. Allosteric 
inhibitors interact with the AKT substrate by inducing 
conformational transitions of their enzymatic structure 
[189]. Irreversible inhibitors are uncommon AKT inhibi-
tors. Both ATP-competitive inhibitors and allosteric 
inhibitors present potential effects in cancer cells [190]. 
ATP-competitive inhibitors contributed to AKT activa-
tion via inhibition of the pH and exposure of the ATP-
binding pocket. Allosteric inhibitors block AKT on the 
plasmalemma and inhibit AKT activity [191].

In the first human study of capivasertib, capivasertib 
monotherapy showed clinical significance in Akt1 E17K-
mutant metastatic breast cancer patients with estrogen 
receptor (ER) positivity [192]. Gastrointestinal events 
(diarrhea, vomiting, nausea) were the most frequent AEs 
related to capivasertib treatment in the D3610C00001 
trial [193]. Approximately sixty patients experienced 
grade ≥ 3 AEs, including hyperglycemia, diarrhea, and 
maculopapular rash. The combination of capivasertib 
and enzalutamide is tolerable in metastatic castration-
resistant prostate cancer and has a favorable prognosis. 
In the PAKT trial, capivasertib plus first-line paclitaxel 
therapy for metastatic TNBC led to extensively bet-
ter progression-free survival and overall survival, which 
identified the role of capivasertib in TNBC treatment 
[194]. According to the FAKTION trial, the median pro-
gression-free survival of metastatic, ER-positive breast 
cancer patients treated with capivasertib plus fulvestrant 
was 10.3 months compared with 4.8 months in patients 
treated with fulvestrant plus placebo [195].

Ipatasertib (GDC-0068), which targets AKT signal-
ing, showed acceptable AEs and a favorable prognosis 
in AKT-activated tumors [196]. No difference was found 
between the survival of ipatasertib/mFOLFOX6 and pla-
cebo/mFOLFOX6 (NCT01896531). In the IPATential150 
trial, ipatasertib plus abiraterone prolonged the survival 
of metastatic prostate cancer patients with PTEN loss 
compared with standard regimens plus placebo (approxi-
mately 19 months vs. approximately 17 months) [197]. 
70% of patients administered ipatasertib plus abiraterone 
had grade ≥ 3 AEs. Toxicity related to placebo plus abira-
terone resulted in discontinuation in 5% (28/546) of pros-
tate cancer patients. However, 21% (116/551) of patients 
in this trial were treated with ipatasertib plus abiraterone 
because of AEs. Ipatasertib plus paclitaxel prolonged sur-
vival compared with paclitaxel monotherapy (6.2 months 
vs. 4.9 months). In cohort B of the IPATunity130 rand-
omized phase 3 trial, adding ipatasertib to paclitaxel did 
not have a promising effect in PI3K pathway-mutant 
HR-positive unresectable locally advanced/metastatic 
malignant mammary tumor patients. Referencing AEs, 
the administration of ipatasertib decreased the propor-
tion of diarrhea, neutrophil count decrease, neutropenia, 
peripheral neuropathy, and peripheral sensory neuropa-
thy [198].

SPY 2 is a phase II study elevating the response of 
MK-2206 in combination with standard taxane- and 
anthracycline-based neoadjuvant therapy [199]. In the 
I-SPY 2 trial, MK-2206 contributed to higher complete 
response rates in HR-negative and HER2-positive breast 
cancer [200]. The median progression-free survival and 
overall survival for recurrent endometrial cancer patients 
treated with MK-2206 were 2.0 months and 8.4 months, 
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respectively. Rash, fatigue, nausea, hyperglycemia, diar-
rhea, fever, and vomiting were the most common AEs 
related to MK-2206. Compared with standard chemo-
therapy regimens, the activity of MK-2206 in recurrent 
endometrial cancer was limited [201]. Administration of 
MK-2206 demonstrated amazing effectiveness in uterine 
serous cancer.

mTOR inhibitors
The mechanistic target of rapamycin (mTOR) is a ser/
thr kinase that belongs to the PIKK family [202]. MTOR 
contains two multiprotein complexes called mTORC1 
and mTORC2 [203]. MTORC1 participates in multiple 
growth factor signals to promote cell growth, whereas 
mTORC2 is primarily responsible for cell prolifera-
tion and survival. Rapamycin is a widely known mTOR 
inhibitor that has been developed in various solid tumors 
and hematologic malignancies [204]. Rapamycin was 
primarily separated from the soil on Rapanui Island 
and could be used as an anti-fungal agent [205]. Rapa-
mycin integrates antitumor cell growth and acts as an 
immune suppressant. Rapamycin directly combines with 
FKBP12 targets, which immediate rapamycin to regulate 
mTORC1 activity [206]. Two allosteric mTORC1 inhibi-
tors, temsirolimus (CCI-779) and everolimus (RAD001), 
have been approved for the treatment of cancer [207]. 
Both temsirolimus and everolimus are derivatives from 
rapamycin [208]. The activity mechanisms of temsiroli-
mus and everolimus were similar to that of rapamycin, 
which binds to FKBP12 to encourage mTOR activity 
[209]. Temsirolimus and everolimus disturbed Raptor 
binding to mTOR, contributing to mTORC1 isoform 
decomposition and mTORC1 inactivation [210].

A phase I trial of temsirolimus demonstrated a higher 
overall response rate (ORR) of advanced RCC [211]. 
A phase II trial exhibited promising effects in patients 
with metastatic renal cell carcinoma [212]. A phase III 
trial of temsirolimus plus other chemotherapies pro-
moted the survival of metastatic RCC patients [213]. 
Overall, temsirolimus is a potent agent in treating RCC 
[214]. Temsirolimus plus sorafenib in advanced HC dem-
onstrated acceptable toxicity. No grade 5 events were 
observed. The most frequent drug-related grade ≥ 3 
AEs were hypophosphatemia, thrombocytopenia, and 
rash in this phase II trial. The median time to progres-
sion of advanced HC patients who received temsiroli-
mus plus sorafenib was 3.7 months, with 14% of patients 
reaching a time to progression of at least 6 months 
[213]. The median overall survival was 8.8 months. 
Everolimus is another well-researched derivative from 
rapamycin, including advanced RCC, HR-positive/HER2-
negative mammary neoplasms, pancreatic neuroendo-
crine tumors, and ependy malignant cell astrocytoma 

[215]. Everolimus monotherapy plus capecitabine and 
oxaliplatin is presently being evaluated in phase I and 
phase II clinical trials of patients with gastric carcinoma 
[216]. The first-generation mTOR inhibitors temsiroli-
mus and everolimus can inhibit mTORC1, resulting in 
activation of the MAPK signaling pathway via PI3K. Sec-
ond-generation mTOR inhibitors inhibited both TORC1 
and mTORC2 [217]. AZD8055 is a second-generation 
mTOR inhibitor that inhibits protein synthesis in HCs, 
inhibits malignant mammary tumor cell proliferation and 
reduces tamoxifen resistance [218].

AZD2014 is another second-generation mTOR inhibi-
tor that attenuates myeloid-derived suppressor cell 
recruitment and blocks cell proliferation in ovarian can-
cer [219]. AZD2014 increased docetaxel sensitivity and 
overcame docetaxel resistance in prostate carcinoma cells 
[220]. AZD2014 in tumors has been developed in phase 
I and II clinical trials. In a phase I/II randomized clini-
cal trial, AZD2014 plus anastrozole showed therapeutic 
benefit and had manageable toxicity in women with HR-
positive recurrent or metastatic carcinoma of the endo-
metrium [221]. In the AcSé-ESMART trial, the absence 
of clinical response and deficient target management in 
the AZD2014-treated adult subgroup led to the termina-
tion of the study [222]. However, a phase II study claimed 
that dual mTORC1 and mTORC2 inhibitors were not 
superior to mTORC1 inhibitors in relapsed or refractory 
diffuse large B-cell lymphoma [223]. Second-generation 
mTOR inhibitors did not confer advantages over second-
generation mTOR inhibitors. Approximately 30% treated 
with mTORC1 inhibitors had a clinical response. In 
diffuse large B-cell lymphoma, 6% of patients achieved 
partial response, with no complete response [224]. 20% 
of patients reached stable disease after six cycles of 
treatment. The effect of AZD2014 in metastatic clear 
cell RCC is unclear. Currently, several dual mTORC1/2 
inhibitors are undergoing clinical tests for adult and 
pediatric tumor therapy, such as OSI-027, CC-223, and 
MLN0128 [225].

Overview of the RAF/MEK/ERK signaling pathway 
and its deregulation in cancer
Function of the RAF/MEK/ERK signaling pathway
RAF/MEK/ERK transfer signals from receptors on the 
cytomembrane to regulate transcription, which promotes 
protein synthesis and other functions (Fig. 1) [226]. This 
pathway has been comprehensively researched because 
of its role in regulating cell apoptosis, which makes 
inhibitors targeting the components in this pathway 
have potential antitumor effects. The RAF/MEK/ERK 
pathway, also known as the MAPK pathway, transmits 
signals from receptors on the cell surface to the nucleus 
to promote transcription [227]. This pathway could be 
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activated in various cancers by overexpression of B7-H3, 
upregulated expression of decidual protein induced by 
progesterone, overexpression of HOXA3, and aberrant 
expression of the COX2/PGE axis [228]. This signaling 
pathway also has enormous effects on promoting tumor 
cell apoptosis by DR5 expression, ALDH6A1 decrease, 
and KIF15 expression [226]. The pathway participates in 
tumor cell growth, cell cycle block, apoptosis, cell adhe-
sion and differentiation.

Construction of the RAF/MEK/ERK signaling pathway
The role of RAS in regulating the RAF/MEK/ERK signaling 
pathway
The complexity of this pathway was gradually observed 
with the academic paper published, including many fac-
tors in the transcription factor, apoptosis-promoting, 
and caspase executioner families [229]. Transcription of 
RAF genes could improve the phosphorylation of down-
stream proteins via MEK and ERK to control cancer cell 
apoptosis. The pathway positively or negatively regulates 
cancer cell apoptosis via different signals [230]. Alterna-
tions at upstream receptors, RAS, B-Raf and other genes 
contribute to abnormal RAF activation, which results in 
unnatural signaling pathway activity [231]. RAS, the key 
regulator and upstream protein of the RAF/MEK/ERK 
pathway, consists of four small GTPases [232]. RAS acti-
vation induced by epidermal growth factor promoted 
GTPase binding with upstream receptor tyrosine kinase 
signaling. The RAS gene family includes N-Ras, H-Ras, 
and K-Ras, which are the most commonly activated in 
human neoplasms. RAS alterations have been reported 
to be associated with poor overall survival. S-phase could 
be induced by V-Raf, indicating that RAF could be regu-
lated by RAS or in parallel with RAS [233]. It was also 
confirmed by studies of Drosophila and C. elegans that 
RAF is understream of RTKs and RAS [234].

The cascade signaling in the RAF/MEK/ERK signaling 
pathway
RAF included three isoforms: A, B and C. The supporting 
evidence for C-Raf serving as a cellular oncogene was not 
sufficient. After stimulation of receptors on the cell sur-
face for RAF activation, C-Raf was phosphorylated at the 
S43, S259 and S621 sites, which maintained kinase activ-
ity. A-Raf is rarely found to be mutated in neoplasms and 
is one of the weakest effectors in promoting MEK1. B-Raf 
is the strongest isoform that promotes MEK activity 
[235–242]. ERK is a downstream gene of a stable module 
stimulated by RAF ser/thr kinases. RAF activates ERK1/2 
by stimulating MAPK/ERK kinase (MEK)1/2 dual-speci-
ficity protein kinases [243].

Collectively, the signaling pathway is a critical path-
way in tumors and could act as a promising approach in 

therapy. Inhibitors in the pathway have been developed 
and are undergoing clinical trials [244].

Mutations in the RAF/MEK/ERK Signaling Cascade
Gene alterations in the signaling cascade can be divided 
into two categories: driver of neoplasms (RAF mutations) 
or indicator of worse survival (MEK and ERK mutations) 
[245]. In this section, mutations in the RAF/MEK/ERK 
signaling pathway are described.

RAF mutations
As mentioned above, V-Raf serves as a ser/thr pro-
tein kinase, of which C-Raf is rarely mutated in tumors 
[246]. The role of RAF was identified until the observa-
tion of BRAF(V600E). Alterations in BRAF are frequently 
observed, while the frequency of C-Raf, A-Raf, and 
KRAS mutations is much lower than that of BRAF [247]. 
BRAF mutations frequently occur in melanoma, thyroid 
adenocarcinoma, colon carcinoma, gallbladder carci-
noma, ovary cancer, and lung carcinoma. RAF mutations 
in tumors are frequent in their specific regions of protein 
and can be separated into several subgroups according to 
the way they trigger the pathway [248]. Multiple groups 
of RAF alterations have been observed. The abnormal 
activation of RAF mimics the phosphorylation of the acti-
vation, which belongs to the first group [248]. The second 
group promoted RAF to relieve the autoinhibitory effect. 
The third group had no effect on its activity. They pro-
moted the RAF/MEK/ERK signaling pathway via their 
wild-type counterparts. The first group of RAF mutations 
occurred in V600 mutations, including V600D/E/R/K, 
and V600E was the most common site based on the Cata-
log of Somatic Mutations in Cancer (COSMIC) database. 
The activity of B-Raf does not rely on RAS [249]. The sec-
ond group of RAF mutations are commonly observed in 
the activation loop and Gly-rich loop, which break the 
autoinhibitory status and consist of an activation loop 
and Gly-rich loop. Class II RAF mutations could work as 
medium kinase activity and contribute to dimer forma-
tion. The mutations also triggered dimer ERK activation. 
Third group RAF mutations existed in the Gly-rich loop, 
the DFG motif, the catalytic loop, or the C-spine. RAF 
mutations lead to the inactivation of some kinases, and 
transactivating normal RAF can activate ERK by promot-
ing dimerization affinity.

B-Raf is considered the primary event but is not 
enough for tumor formation. BRAF mutations may lead 
to abnormal signaling activation and protein overexpres-
sion, which contribute to cell cycle blockade [250]. In 
hematologic malignancies, including AMLs and acute 
lymphocytic leukemias (ALLs), the constitutive abnormal 
activation of the signaling pathway was observed without 
any distinct alterations [251]. Unrecognized mutations 
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exist in the signals of the pathway, and some kinase defi-
ciency or excess may promote the activation of the path-
way. Furthermore, ERK overexpression is significantly 
associated with worse survival in AML and ALL patients 
[252]. RAF and MEK inhibitors are promising agents in 
some pathological subgroups of AML and ALL patients. 
Mutations in the signaling pathway need further explora-
tion [253].

MEK and ERK mutations
MEK and ERK mutations are not frequently observed in 
tumors. Furthermore, MEK and ERK mutations did not 
co-occur with RAF mutations, which may demonstrate 
that the role of MEK and ERK mutations in neoplasms 
was not similar to that of RAF [245]. MEK mutations 
were correlated with resistance to RAF and MEK small 
molecule inhibitors [254, 255]. MEK deficiency facilitates 
resistance to RAF inhibitors by promoting ERK signal-
ing flux. MEK mutations induced the activation of MEK 
signaling by disturbing its activity mediated by regula-
tory helix A. The activation of MEK signaling could also 
be turned on by MEK mutations by promoting MEK 
homodimerization [254, 256]. In consideration of the 

different mechanisms of the two types of MEK mutations 
and MEK signaling activation, MEK mutations presented 
distinct sensitivities to MEK inhibitors in animal models 
and clinical trials, which were similar to RAF mutations.

RAF/MEK/ERK pathway inhibitors
The RAF/MEK/ERK signaling pathway is critical in 
tumor cell growth, cell apoptosis, cell differentiation and 
cellular metabolism [257]. GTP-bound Ras can recruit 
RAF to the plasma membrane and facilitate only sub-
strates, Mek1 and Mek2 phosphorylation [258]. Mek1 
and Mek2 promote Erk1 and Erk2 activation, enabling 
Erk1 and Erk2 to phosphorylate more than 70 substrates 
containing nuclear transcription factors [259]. Based on 
the mechanisms and functions of the RAF/MEK/ERK 
signaling pathway, small molecular inhibitors targeting 
the signaling pathway have demonstrated excellent treat-
ment effects in cancer patients (Fig.  3) [260]. Inhibitors 
of the RAF/MEK/ERK signaling pathway are potential 
agents in tumor therapy, and many compounds have 
been developed in clinical trials and preclinical studies 
[257]. Tour kinds RAF and MEK inhibitors have been 
approved. No ERK inhibitors have been approved.

Fig. 3  Comprehensive understanding and agent direction for targeting the RAF/MEK/ERK signaling pathway in cancer treatment
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RAF and MEK inhibitors
A series of RAF inhibitors are undergonig clinicals, and 
some are in preclinical research (Table 3). Generally, RAF 
inhibitors demonstrated a higher ORR in clinical cancer 
patients than MEK inhibitors, which may be associated 
with the extensive effect of RAF inhibitors that inhibit 
ERK activation [261]. In contrast, MEK inhibitors inhib-
ited MEK in cancer or normal cells rather than other tar-
gets. Many inhibitors were initially considered as single 
target drugs, but with the pharmacodynamics of drug 
development, their effects on multiple targets were found 
[226]. This observation has no influence on their effect on 
tumor inhibition.

GSK2118436 (dabrafenib, Tafinlar), PLX-4032 (zelbo-
raf, RG7204, and vemurafenib), encorafenib (Braftovi 
and LGX818), and sorafenib (BAY 43-9006) have been 
approved. It has been reported that sorafenib is approved 
for treating RCC and HC, while it is not a pure RAF 
inhibitor [262, 263]. Sorafenib has been generally con-
sidered a first-line treatment method for patients with 
advanced HC. Early identification of patients who would 
benefit from sorafenib is essential because many HC 
patients do not benefit from sorafenib treatment and 
experience intolerant toxicity [264, 265]. In phase 3 
studies in patients treated with sorafenib, more serious 
AEs and fatal AEs were observed in patients receiving 
sorafenib plus nontargeted chemotherapy than in those 
treated with placebo or nontargeted chemotherapy [265, 
266]. MEK inhibitors and other inhibitors have been 
used in treating advanced HC, but they have shown bet-
ter effects than sorafenib [267]. It was suggested that 
sorafenib is a multiple target inhibitor that could sup-
press RAF and other targets [268].

PLX-4720 and PLX-4032 (vemurafenib and RG7204) 
are two inhibitors produced by Plexxikon/Roche [269]. 
PLX-4720 is a specific mutant B-Raf inhibitor that has 
not been researched in clinical trials [269, 270]. PLX-4032 
was identified as a potential and selected B-Raf inhibitor 
of BRAF mutation signaling in 2010 and was approved by 
the FDA in 2017 [271]. PLX4032 showed a certain effect 
in melanoma patients with mutant B-RAF in phase 1–3 
trials. Overall survival and progression-free survival were 
also prolonged in untreated melanoma patients [272]. 
The disease-free survival of melanoma patients was 7 
months, which could be improved by PLX-4032 treat-
ment [273]. Approximately 30% of patients treated with 
PLX-4032 maintained a stable disease status. The results 
showed that both intrinsic and acquired resistance could 
influence the clinical efficacy of PLX4032. Overall, the 
outcomes demonstrated that to prolong the survival of 
mutant B-RAF melanomas, more efficient small molecule 
inhibitors are essential. It is vital to improve PLX4032 
activity to increase the clinical response and recognize 

the mechanisms of BRAF mutation in tumors. PLX-4720 
is designed as a highly selective BRAF mutation inhibi-
tor that can distinguish between mutant and wild-type 
proteins [269, 270]. Preclinically, PLX-4720 is efficient 
in suppressing the progression of colorectal cancer cells 
and melanoma cells with the V600E mutation. This in 
tumor cells was considered to be related to more aggres-
sive activity and poor survival. In cellular assays, the IC50 
for PLX-4720 in BRAF mutations is significantly lower 
than that in wild-type patients [274]. In the cell lines, the 
BRAF status could be detected. The IC50 of PXL-4720 
was approximately 100 lower than that of sorafenib in 
malignant meningioma and colorectal neoplasms with 
the BRAF V600E mutation. In RAS mutations with-
out BRAF mutations in cell lines, the IC50 of PLX-4720 
was similar to that of sorafenib in colorectal cancers and 
NSCLC. PLX-4720 is a potential agent in patients with 
B-Raf mutations [274].

Trametinib (GSK1120212, Mekinist, and JTP 74,057) 
and cobimetinib (GDC-0973, Cotellic, and XL518) are 
approved for tumors with the BRAF V600E mutation and 
could be used as monotherapy or plus other therapies 
[275]. These inhibitors had a high specificity and could 
strongly suppress the MEK signaling pathway in tumor 
and normal cells, which do not block ATP.

Trametinib was approved in 2017 for treating unresect-
able BRAF V600E or V600K mutation melanoma patients 
[276]. The effect of trametinib is undergoing clinical tri-
als of other neoplasms [277]. The median overall survival 
of locally recurrent pancreatic cancer patients treated 
with stereotactic body radiotherapy (SBRT) plus pem-
brolizumab and trametinib was 24.9 months compared 
with 22.4 months in patients treated with SBRT plus 
gemcitabine [278]. There were no therapy-related deaths 
reported. Compared with SBRT plus gemcitabine regi-
mens, less neutropenia or thrombocytopenia was found 
in SBRT plus pembrolizumab and trametinib. SBRT 
plus pembrolizumab and trametinib may be a potential 
approach to patients with relapsed pancreatic carcinoma. 
Selumetinib (AZD6244, Arry-142,886) and MEK162/
ARRY-483,162 (binimetinib and Mektovi) are two other 
agents approved by the FDA in 2016 and 2020, respec-
tively [279, 280]. In addition to these small molecule 
inhibitors, dozens of MEK inhibitors are in the clinic, 
and some are in preclinical trials, such as refametinib 
(BAY86-9766, RDEA119), pimasertib (AS703026, 
MSC1936369B), mirdametinib (PD-0325901), CI-1040 
(PD184352) and RO4987655 (Table 3).

ERK inhibitors
Some agents targeting the terminal kinase ERK have been 
developed, but most have been in preclinical trials, and 
few have been developed in clinical trials. Their effect in 
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RAF or MEK-mutated tumors is unclear [281, 282]. Simi-
lar to MEK inhibitors, ERK inhibitors have no selectiv-
ity in tumor cells and normal cells, which may result in 
severe toxicity and unfavorable survival. ERK inhibitors 
combined with RAF inhibitors, as synergetic agents, may 
have amazing antitumor activity [281, 282]. In MAPK-
related tumors with BRAF mutations, BRAF and MEK 
inhibitors improved survival. Furthermore, resistance to 
MAPK inhibitors results in abnormal regulation of ERK, 
and the phosphorylation of ERK increases [283]. The 
application of an ERK1/2 kinase inhibitor could relieve 
MAPK inhibitor resistance in tumor cells with BRAF 
mutations.

Overall, the application of RAF/MEK/ERK inhibitors 
contributes to targeted therapy for tumors, and the effect 
of RAF/MEK/ERK inhibitors facilitates the understand-
ing of RAF mutations in tumor therapy. Comprehensive 
investigation of the relationship of RAF/MEK/ERK muta-
tions and wild-type counterparts provides new insight 
into novel allosteric targets to help the treatment of 
neoplasms.

Cross‑talk between the PI3K/AKT/mTOR and RAF/
MEK/ERK pathways
Apoptosis induced by the RAF/MEK/ERK and PI3K/
AKT/mTOR signaling pathways is regulated by key fac-
tors that are regulated by the phosphorylation of ERK 
or AKT [284]. HER2 overexpression results in abnormal 
activation of the RAF/MEK/ERK and PI3K/AKT/mTOR 
signaling pathways in breast cancer [257]. Furthermore, 
class III RTK uptake in upstream clouds also leads to the 
activation of the two pathways in AML. The suppressor 
p53 plays a vital role in both the PI3K/AKT/mTOR and 
RAF/MEK/ERK pathways [251]. The activity of p53 could 
be mediated by the PI3K/AKT/mTOR and RAF/MEK/
ERK pathways. Approximately 90% BRAF mutations, 
45% PTEN phosphatase-related gene depletion and 45% 
AKT amplification are found in melanomas. All these 
mutations contributed to the activation of AKT, which 
indicated poor survival. In addition to these mutations, 
signaling from RAS and the cell surface also leads to PI3K 
phosphorylation, contributing to AKT activation. Cosup-
pression of the RAF/MEK/ERK and PI3K/AKT/mTOR 
signaling pathways by RAF plus AKT inhibitors or mTOR 
inhibitors led to synergistic inhibition [285]. Dactolisib is 
an approved dual PI3K/mTOR inhibitor, and selumetinib 
is an approved MEK inhibitor [286]. Dactolisib com-
bined with selumetinib resulted in the synergistic action 
of lung carcinoma with KRAS and PIK3CA mutations. 
The treatment response of a RAF kinase, sorafenib, could 
be enhanced by the administration of mTOR inhibitors 
in a hepatoma carcinoma cell tumor xenograft model 
[287, 288]. Dactolisib improved the treatment effect of 

Raf inhibitors in differentiated and medullary thyroid 
cancers.

Cell growth and protein production were suppressed 
by inhibiting MEK and mTOR simultaneously in human 
NSCLC cells [289]. Inhibiting both MEK and mTOR sup-
pressed ribosomal biogenesis and was related to obstruc-
tion of translation [290, 291]. The results were identified 
in a mouse xenograft model. These results indicated that 
inhibiting both pathways could not only promote cell 
apoptosis but also converge to mediate the production of 
proteins. ERK mediates the initial translation activity via 
Mnk1/2 and p90Rsk phosphorylation [285]. Phosphoryl-
ated 4EBP1 is inhibited in BRAF-mutant cells [292]. AKT 
and mTOR were suppressed, and the activity of 4EBP1 
was inhibited. It is clear that the translation of some 
mRNAs was promoted in cells with BRAF mutations. 
The production of certain proteins may result in syner-
gistic responses. More potent mechanisms need further 
exploration.

Improving the effect of targeting the RAF/MEK/ERK 
and PI3K/AKT/mTOR pathways by simultaneous 
treatment
With the development of RAF/MEK/ERK and PI3K/
AKT/mTOR pathways, combinations of RAF and PI3K/
AKT/mTOR or MEK and PI3K/AKT/mTOR inhibitors 
are undergoing clinical trials. The combination applica-
tion of the agents in advanced solid neoplasms was well 
tolerated and was a single agent. The clinical response 
and long-term survival were observed. The signals from 
the RAF/MEK/ERK signaling pathway negated PI3K/
AKT/mTOR activation. Both signaling pathways are 
regulated by RAS and RTK on the surface and stimu-
lated by second messengers. ERK phosphorylation was 
promoted by mTORC1 dephosphorylation of its residues 
in malignant mammary patients after therapy. The RAF/
MEK/ERK signaling pathway was activated in patients 
with TNBC treated with buparlisib. The MEK inhibitor 
combined with buparlisib demonstrated a superior anti-
tumor effect, indicating that inhibiting the PI3K/AKT/
mTOR and MAPK/MEK/ERK pathways could have syn-
ergistic action [293, 294]. In contrast, PI3K inhibitors 
also play vital roles in RAF/MEK/ERK signaling pathway 
dysregulation. The alterations in PTEN may upregulate 
AKT activity, which attenuates apoptosis-induced BRAF 
inhibition. However, PI3K inhibitors plus BRAF inhibi-
tors demonstrated promising effects compared with 
single inhibitor treatment [295, 296]. An AKT inhibitor 
(GSK2141795) and MEK inhibitor (GSK1120212) combi-
nation have been used in cancer patients. The study was 
completed in 2017, but no results were posted. The pri-
mary clinical response to PI3K/mTOR inhibitors (geda-
tolisib) plus MEK inhibitor (PD-0325901) was presented 
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in ovarian carcinoma and endometrial carcinoma. 
According to the potential effect of the agents combina-
tion, MEK1/2 inhibitor (MEK162) plus the PI3K/mTOR 
dual inhibitor (BEZ-235) was also evaluated in selected 
advanced solid cancer patients, which included EGFR 
mutant NSCLC patients with response to EGFR inhibi-
tors, TNBC, pancreatic carcinoma, colon carcinoma and 
melanoma with KRAS, NRAS, and/or BRAF mutations 
patients. The combination of a dual PI3K/mTOR inhibitor 
(BEZ-235) and a mTOR inhibitor (RAD-001) was evaluated 
in a phase 1 clinical trial. A MEK inhibitor (MSC1936369B) 
combined with a PI3K/mTOR inhibitor (SAR245409) demon-
strated severe toxicity and poor clinical response [169].

Conclusion
Both the PI3K/AKT/mTOR and RAF/MEK/ERK path-
ways are frequently involved in cancer therapy. Both 
PI3K/AKT/mTOR and RAF/MEK/ERK can be regu-
lated by p53, which contributes to cell proliferation, 
drug resistance, cell cycle progression and tumor metas-
tasis [71]. Many oncogenes are trapped by retroviruses, 
including RAS, PI3K, AKT, Src, Abl, RAF, Fos, and Jun 
[229]. These genes in the two pathways have been found 
to be frequently and aberrantly mediated. Alternations 
in upstream receptors serving to PI3K/AKT/mTOR and 
RAF/MEK/ERK activation have also been widely dis-
cussed in the development of tumors [257]. Mutations 
upstream result in multiple abnormal downstream acti-
vation. These factors lead to the complicated treatment 
of tumors and targeted drug failure because single-target 
small molecular inhibitors may not suppress additional 
downstream factor activity. In addition, more subsequent 
mutations may be acquired, which contribute to resist-
ance and tumor cell anti-apoptosis. The results indicated 
that mutations and additional activation should be taken 
into consideration during the development of inhibitors 
targeting these genes, which may relieve drug resistance. 
Although the mechanisms of the PI3K/AKT/mTOR and 
RAF/MEK/ERK pathways are different, the two pathways 
share many downstream targets that may promote cell 
proliferation and facilitate drug resistance in an alterna-
tive way. In addition to mutations, abnormal activation is 
another reason for tumor development and drug resist-
ance. This reason also leads to limited effectiveness in 
patients treated with inhibitors.

In the RAF/MEK/ERK pathway, MEK inhibitors ini-
tially demonstrated the most specificity [230]. Some 
neoplasm patients benefit from MEK inhibitors, but 
some do not. MEK activation may not be the only tar-
get responsible for the disease. This limited the effi-
ciency of MEK inhibitors. Therefore, the combination 
of MEK inhibitors with chemotherapy or radiotherapy 
may demonstrate promising effects. MEK inhibitor 

monotherapy promoted cell apoptosis and induced 
AEs. Therefore, the tolerance of the combination ther-
apy deserves more attention [245]. A similar situation 
was observed in selective RAF inhibitors, while some 
Raf inhibitors have multiple targets. In addition to sup-
pressing BRAF, sorafenib also inhibited VEGFR and 
PDGFR to block the cell cycle, promote cell apoptosis 
and relieve drug resistance. This promiscuous nature 
of sorafenib makes it effective in certain cancers. In 
addition to combination with chemotherapy and radi-
otherapy, dual inhibitors are another hot spot, such as 
RAF and PI3K inhibitors. These targets are upstream 
of pathways, and mutations are frequent, which may 
result in exciting effectiveness. The trouble is that RAS 
activation leads to Raf-1 activation, which may have 
a limited response to the inhibitors [230]. Therefore, 
inhibitors in combination with traditional drug/physi-
cal treatment are still widely researched. Likewise, dual 
PI3K and mTOR inhibitors may be a potential antitu-
mor approach compared with either PI3K or mTOR 
inhibitors. Dozens of dual PI3K and mTOR inhibitors 
are undergoing preclinical assays and clinical trials. The 
effectiveness and toxicity are expected.

Thus, the concepts of the two pathways were summa-
rized. First, with the wide understanding of the PI3K/
AKT/mTOR and RAF/MEK/ERK pathways, hundreds of 
inhibitors have been developed. Some of them demon-
strated promising effects and moderate toxicity in par-
ticular cancers, while some were abolished for certain 
reasons. Some potential mechanisms that are unknown 
with further exploration are essential. Second, cross-
talk between PI3K/AKT/mTOR and RAF/MEK/ERK is 
complex and not fully discussed. The targets in the two 
pathways dependent or independently regulated cell pro-
liferation, apoptosis, and other characteristics. There-
fore, multiple target inhibitors are desirable. Third, some 
inhibitors were abolished, and some clinical trials were 
withdrawn because of their toxicity and AEs. How to 
solve this is another crucial question.

The PI3K/AKT/mTOR and RAF/MEK/ERK pathways 
are intriguing aspects of human cancer therapy and are 
two complex cascades containing many targets. Further 
studies on reducing toxicity and improving effectiveness 
should be conducted. Accumulated studies on these two 
pathways will provide new hope for cancer patients.
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