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Abstract

tion to treat diseases.

The transforming growth factor beta (TGF-B) is a crucial cytokine that get increasing concern in recent years to treat
human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeo-
stasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-f3 signal plays an essential role
in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the
epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer.
Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory
disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising thera-
peutic target in these diseases. Recently, multiple strategies targeting TGF-{3 signals including neutralizing antibodies,
ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligo-
nucleotides to disrupt the production of TGF-(3 at the transcriptional level, and vaccine are under evaluation of safety
and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and
function of TGF-3 in physiological and pathological conditions, elaborated TGF-3 associated signal transduction. And
then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-(3 signal transduc-
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Introduction

Cytokine-based targeting presents a promising therapy
in many disorders, including cancer, inflammatory or
infectious diseases, and fibrotic diseases [1-3]. One mul-
tifunctional polypeptide cytokine, transforming growth
factor beta (TGF-p), becomes a potential therapeutic tar-
get for its bio function in regulating the growth and dif-
ferentiation of cells. This cytokine belongs to the TGF-p

"Yan Tie, Fan Tang and Dandan Peng contributed equally to this work.

*Correspondence: drzye1983@163.com; shihuashan@scu.edu.cn

! Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer
Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang,
Chengdu 610041, China

* Department of Radiation Oncology, National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy

of Medical Sciences and Peking Union Medical College, Beijing 100021,
China

Full list of author information is available at the end of the article

@ Springer

superfamily, which comprises many proteins, including
growth differentiation factors and activins. The structur-
ally-related TGF-B1, TGF-B2, and TGF-p3 cytokines are
three isoforms of the TGF- family [4, 5]. If not otherwise
specified, TGE- in the following statement will stand for
TGEF-B1. Generally, latent TGF- is stored in the multi-
ple extracellular matrix. Under enzymatic and non-enzy-
matic action, latent TGF transforms into activated TGF.
Only activated TGF can bind to the TGF receptor com-
plex and induce canonical and noncanonical pathways of
TGE-p signal transduction.

Although scientists have proposed the critical role of
TGEF-B signaling pathways in fibrosis, tumorigenesis,
and regulating immune responses, developing TGEF-f3-
targeted therapeutic drugs is a great obstacle for the dual
role and paradoxical effects on fibrosis and immune sys-
tems regulation in the occurrence and development of
disease. TGF-p is critical in regulating tissue homeostasis
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and renewal in physiological conditions. In pathological
conditions, TGF-P signaling plays a critical role in regu-
lating inflammatory progression and wound healing [6—
8]. Moreover, TGF-p signaling also contributes to fibrosis
by inducing extracellular matrix deposition [4, 9]. Dys-
regulated TGF-P regulates both adaptive immunity and
innate immunity during tumorigenesis. At early tumori-
genesis, TGF-p becomes cytostatic, apoptotic, and tumor
suppressive and acts as a tumor suppressor by inhibiting
excessive inflammation and inducing tolerance. While
during advanced cancer, TGF-J} is necessary to promote
tumor tolerance, inflammation suppression, T cell exclu-
sion, epithelial-mesenchymal transition, migration, inva-
sion, and progression [10].

Regulation of TGF-f signal transduction occurs at sev-
eral levels, including the production of TGF- ligands,
ligand-receptor interactions, downstream signal cascades
after kinase receptor activation, and transcriptional dis-
ruption. These crucial roles and promising therapeutic
potential of TGF-p in the diseases mentioned above, the
specific mechanisms of TGF-p driving these diseases and
therapies based on TGF-p signal transduction provide
targeted therapeutic strategies. Recently, many TGEF-p-
targeted drugs are under preclinical and clinical trials.
Neutralizing antibodies, TGF-p ligand traps, small-mol-
ecule receptor kinase inhibitors, antisense oligonucleo-
tides, and vaccine-based therapy are the main targeted
strategies of TGF-B [11-15]. However, most of them
are in phase 1/2 clinical trials. In this review, we elabo-
rated on the biology and function of TGF-f, and summa-
rized the recent advances in TGF-P associated targeted
therapy.

The biology of TGF-f

The production and activation of TGF-

TGEF-P usually exists extracellularly as heterodimers or
homodimers [16]. Generally, TGF-Bs have three mam-
malian genome-encoded isoforms: TGF-f1, TGEF-p2,
and TGEF-B3 [4]. Each isoform is synthesized in the rough
endoplasmic reticulum as a precursor molecule that con-
sists of an N-terminal signal peptide, the latency-associ-
ated polypeptide (LAP), and a mature polypeptide at the
C-terminal [17]. When the signal peptide is removed,
the precursor is elaborated through proteolytic cleav-
age, thereby separating the N-terminal prodomain from
the C-terminal mature polypeptide. Among the three
isoforms, the TGF-P1 homodimer is the most widely
studied subtype and was the first purified protein, which
is characterized by complementary DNA cloning [18].
For cell origination, TGF-B1 is originally purified from
platelets [19]. In addition, tumor cells, tumor-associated
macrophages and stromal cancer-associated fibroblasts
in the tumor microenvironment also express TGF-B1 in a
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heterogeneous manner, not necessarily the expression of
TGE-B2 or TGE-B3 [17, 20, 21].

The mature polypeptides form mature homodimeric
and heterodimeric complexes through disulfide-linked
dimerization [22]. The latent TGF-$ complex is associ-
ated with TGF-f binding protein through disulfide bond-
ing to the large latent complex (Fig. 1). The large latent
complex is relevant to the extracellular matrix or to the
glycoprotein-A repetitions predominant (GARP, also
known as leucine-rich repeat containing 32, LRRC32)
on the cell surface [23, 24]. Further activation of latent
TGE-B is required to release mature TGF-B, which
binds to TGF-P receptors on adjacent cells [24]. Besides,
TGE-p is supposed to act in a cell- and context-depend-
ent manner [25]. Moreover, latent TGF-f is associated
with GARP on mesenchymal stromal cells, platelets, and
Tregs, thereby promoting GARP to manage the pres-
ervation of these TGF- complexes [26, 27]. GARP is
expressed on fibroblasts, megakaryocytes, and endothe-
lial cells, raising the possibility that GARP plays a broad
role in TGF-B1 latency. In addition to GARP, another
GARP-related protein, LRRC33, is associated with latent
TGEF-B and regulates TGF-f activation [23, 28]. Besides,
LRRCI15, expressed on stromal fibroblasts in advanced
tumors, plays similar roles in the cell-associated preser-
vation of TGF-p [29, 30].

The canonical and noncanonical pathways of TGF-f signal
transduction

TGEF-B signal transduction depends on canonical and
noncanonical pathways (Fig. 2). For the canonical path-
way, TGF-P ligands primarily bind to the TGF-§ type
III receptor (TGF-BRIII, also called betaglycan), which
has a high expression level on many cell types. Among
the three isoforms of TGF-f, TGF-B2 primarily depends
on TGE-BRIII for signaling compared with the other
two isoforms [31]. The receptor complex of TGF-p is
a tetramer composed of two paired serine or threonine
protein kinases, TGF-fRIs and TGF-BRIIs [32]. After
binding to TGF-BRIII, TGE-BRIII presents TGE-P to the
TGE-BRI/TGEF-PRII complex, which has a high affinity
for TGF-P [33]. In addition, TGF-P binding to TGF-f can
recruit and phosphorylate TGF-BRI, which is a require-
ment for signal transduction [34]. TGF-BRI phospho-
rylates SMAD2 on a carboxyl-terminal fragment which
contains three serine residues specially at positions 465
and 467 [35]. Then, the phosphorylated SMAD2/3 sepa-
rates immediately from TGF-BRI and aggregates with
SMAD4 to form a heteromeric complex. The formative
SMAD2/3-SMAD4 complex translocate into the cell
nucleus and activates or restrains target gene expression
[36]. TGE-P induced SMAD?7 to encode a negative regu-
lator of TGF-B/SMAD signals, which is associated with
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Fig. 1 Schematic diagram and activation of latent TGF-f3. The pro-TGF- precursor consists of an N-terminal peptide with latency-associated
peptide (LAP) and a mature C-terminal fragment. The pro-TGF- precursor is cleaved by the convertase furin, and then the LAP dimer binds to
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mature TGF-B and forms the small latent complex (SLC). Proteases including plasmin, cathepsin and matrix metalloproteinase 9/14 (MMP9/14)) can
cleave LAP and release active TGF- in the extracellular matrix (ECM). SLC binds to latent TGF-3-binding protein (LTBP) with ECM proteins, including
fibronectin and fibrillin, mediating the release of active TGF- via interaction with aB-integrin. TGF-B can also be activated through SLC anchoring to

glycoprotein A repetition predominant protein (GARP)

TGF-BRI, thereby blocking SMAD2 phosphorylation and
activation. Moreover, SMAD?7 antagonizes TGF-f3 signals
by affecting the formation of the SMAD-DNA complex in
the nucleus [37] and inhibits the formation and translo-
cation of the SMAD2-SMAD4 complex [38, 39]. SMAD7
is demonstrated to form complex with SMAD2/3 to
mitigate signaling. SMAD7 affects the TGF-f signaling
cascades by deactivation of SMAD2/3 and non-SMAD
pathways, without any influences on TGF-f receptor
activity. SMAD7 is demonstrated to induce myofibro-
blasts as an endogenous TGF-B-related negative feed-
back mechanism which inhibits postinfarction fibrosis
by restraining TGEF-p-independent fibrogenic func-
tions [40]. Overexpression of SMAD?7 is associated with
inflammatory diseases and is regarded as an inhibitor
of TGF-B1 activity [41]. SMAD?7 recruits E3 ubiquitin
ligases, including tripartite motif-containing protein
31 (TRIM31), SMAD ubiquitination regulatory fac-
tor 1/2 (Smurfl/2), and neural precursor cell expressed
developmentally downregulated 4-2 (NEDD4-2) to
TGF-BRI, promoting proteasomal or lysosomal degra-
dation [42—44]. TGF-PRI ubiquitination is reversed by

deubiquitinating enzymes, such as ubiquitin carboxyl-
terminal hydrolase L1 (UCHL1) and ubiquitin-specific
protease 4 (USP4) [45, 46].

In addition to the canonical signal transduction of
TGEF-B, the noncanonical signaling pathways play vital
roles in diseases [47]. TGF-BRI is demonstrated to acti-
vate RHO small GTPases, which control the activity of
LIM kinase (LIMK) and phosphorylate cofilin, thereby
reorganizing the actin cytoskeleton and participating in
cell adhesion and proliferation [48, 49]. TGF-BRII phos-
phorylates the cell polarity regulator PAR6 and is associ-
ated with tight junctions and epithelial-to-mesenchymal
transition (EMT) [50, 51]. TGF-p is demonstrated to
activate the c-Jun N-terminal kinase (JNK) and P38/
mitogen-activated protein kinase (MAPK)/nuclear fac-
tor kappa-B (NF-kB) pathways, which are downstream
of tumor necrosis factor-associated factor 4/6 (TRAF4/6)
[52-54]. PI3K/AKT pathway is also activated as the
downstream signal transduction of noncanonical TGF-3
signals [55, 56]. In addition, TGF-P induced the phos-
phorylation of Src homology domain 2-containing pro-
tein and then activated the rat sarcoma signal (RAS),
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Fig. 2 TGF-3 induced canonical and noncanonical signaling pathways. TGF-(3 is presented to TGF-BRII, which phosphorylates TGF-BRI to initiate the
subsequent TGF- pathway. In the canonical pathway, TGF-BRI phosphorylates SMAD2/3 to form the SMAD2/3-SMAD4 complex. SMAD2/3, SMAD4
and transcription factor (TF) complexes are transferred to the cell nucleus, modulating the expression of target genes. SMAD?, one of the target
genes, regulates the duration and intensity of TGF- with a negative feedback loop. In the noncanonical pathway, TGF-3 can activate PI3K, RHO,

rapid accelerated fibrosarcoma signal (RAF), MAPK, and
extracellular signal regulated kinase (ERK) pathways [57—
59]. RAS-responsive element-binding protein 1 (RREB1)
is supposed to provide a connection between RAS and
TGE-P signals that coordinate the initiation of fibrogenic
EMT [60]. There is crosstalk between the canonical and
noncanonical signals induced by TGF-f, which is regu-
lated by receptor tyrosine kinases. TGF-B activated the
above pathways by influencing the expression of platelet-
derived growth factor (PDGF) in a paracrine or autocrine
manner [61].

The function of TGF-f signals in disease

TGF-f and the tumor microenvironment (TME)

TGE-P signals play critical roles in the regulation of the
TME, which has a complex impact on the progression
of cancers (Fig. 3). TGF-3 may be used as a biomarker
in cancer [62]. The TME contains various types of
immune cells, such as tumor-associated macrophages

(TAMs), neutrophils, myeloid-derived suppressor cells
(MDSCs), dendritic cells (DCs), T cells and B cells,
and nonimmune cells, including cancer-associated
fibroblasts (CAFs) and stromal cells, as well as a wide
range of cytokines [63—-66]. Some immunosuppressive
cells, such as TAMs and MDSCs, accumulate early in
the TME during tumor growth and suppress the T-cell
responses that maintain an immunosuppressive envi-
ronment [67, 68]. In turn, immune cells and stromal
cells in the TME are the primary sources of cytokines,
including TGE-B [69]. In fact, TGF-p plays a dual role
during tumor progression, functioning as a tumor sup-
pressor in the early stage of cancer and as a tumor pro-
moter in the late stages of cancer, such as breast cancer,
hepatocellular carcinoma, lung cancer and pancreatic
cancer [70-73]. Generally, TGF-p inhibits the prolif-
eration of immunosuppressive myeloid cells, especially
in early-stage cancers [74, 75]. In advanced tumors,
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Fig. 3 The functions of TGF-3 in the TME. Tumor cells, endothelial cells, mesenchymal stem cells, cancer-associated fibroblasts, and macrophages
can induce the production and secretion of TGF-{3 in the TME. TGF-[3 suppresses tumor immune responses by modulating the multiple functions of
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TGEF-B produced by myeloid cells suppresses antitumor
immunity and then promotes tumor metastasis [76, 77].

TGE-B inhibited naive CD4" T cells from differentiat-
ing into other effector subtypes, such as Tregs, thereby
suppressing the antitumor immune response [78]. Deple-
tion of TGF-BRII in CD4" T cells inhibited tumor pro-
gression, which resulted in tumor cell death in distant
avascular regions due to vascular remodeling [79]. DCs
are antigen-presenting cells that deliver tumor antigens
to natural killer cells (NK cells) and T cells, inducing
antitumor cytotoxic effects [80, 81]. TGF-P blocks cyto-
toxic CD8*1 T-cell activation and maturation by inhibit-
ing DC tumor antigen presentation. In addition, TGE-f
also inhibited the proliferation and function of CD8*
T cells by reducing the secretion of interferon-y (IFN-
y) and interleukin-2 (IL-2) [82, 83]. TGF- promoted
the expression of antigen-induced programmed death
1 (PD-1) on CD8"' T cells, leading to the exhaustion of
T cells [84]. TGF-p signals maintain the immunosup-
pressive properties of CD8" Treg cells. TGF-p and the
transcription factor eomesodermin, which controls the
follicular location of CD8* Tregs, synergistically promote

homeostasis in CD8" Tregs [85]. In addition to influenc-
ing T cells, TGF-P regulates the activation, proliferation,
and apoptosis of B cells. However, this effect of TGF-f on
the B-cell-mediated antitumor immune response has not
been well studied [86, 87].

Angiogenesis is a hallmark of cancer during its growth
and distant metastasis. Besides, by suppressing the
immune system, TGF-p also induces tumor angiogenesis.
Increasing evidence shows that tumor angiogenesis is
regulated by various cytokines, including TGEF-f, IL-22,
IL-1pB [88-91]. Increased TGF-f expression in the TME
is associated with tumor neovascularization in cancers
[17, 92]. In endothelial cells, increasing TGF-p1/SMAD3-
associated thrombospondin-4 mediated the effects of
TGF-B1 on angiogenesis, resulting in tumor growth [93].
An in vivo study showed that increased TGF-p plasma
concentrations are related to tumor vascularity [94].
During the tumor process, TGF-p stimulates angiogen-
esis by affecting TGF-P sequestration [95, 96]. In more
detail, fibrillins play an essential role in matrix sequester-
ing of TGEF-P. The activation of TGF-f is closely related
to integrin binding, which is upregulated upon TGF-$
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exposure. Moreover, the exposure of fibrillin-2 in the
tumor endothelium directly induces tumor angiogenesis
by affecting TGF-PB sequestering by microfibrils, which
results in the higher TGF-PB concentration in the TME.
Non-polymerized fibrillin-1, fibrillin-2, and fibrillin-
containing microfibrils can indirectly bind and sequester
TGF-B by interacting with LTBPs, which is the impor-
tant component of TGF-$ and promotes the binding to
microfibrils in the ECM [97].

TGF-B and fibrosis

Overexpression of TGF-f correlated with the formation
and development of fibrosis, which supports the fact that
TGEF-B is related to fibrotic diseases, such as pulmonary
fibrosis, hepatic fibrosis, renal fibrosis, cardiac fibrosis,
and systemic sclerosis [7, 98, 99] (Fig. 4). Macrophages
are innate immune cells that have essential roles in tis-
sue repair. TGF-B signaling is relevant to resident
immune cells, including macrophages, which play criti-
cal roles and contribute to the development of fibrosis
[100, 101]. TGE-P is crucial in regulating the recruitment
and function of macrophages in fibrotic lesions. It func-
tions as a chemoattractant for macrophages, leading to
the recruitment of macrophages to fibrotic lesions [102,
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103]. In turn, TGF-P induces the secretion of profibrotic
cytokines by macrophages, thereby boosting TGF-$
activities [104]. Besides. TGF-p also stimulates the
expression of ECM proteins by macrophages [105, 106].
ECM deposition is the main characteristic and initial
process during fibrosis. TGF-$ stimulates the activation
and proliferation of fibroblasts, leading to ECM deposi-
tion and abnormal organ functions. During this physi-
ological and pathological process, fibroblasts are the
main cell types. TGEF-p influences the biological behav-
ior of fibroblasts, and low levels of TGF-$ promote their
proliferation [107]. In addition, TGF-f is chemoattract-
ant for fibroblasts even at a relatively low concentration,
which results in recruitment of fibroblasts to fibrotic sites
after the activation of TGF-p [108]. Mammalian target of
rapamycin (mTOR) signals in the noncanonical pathway
are essential in enhancing protein synthesis and acti-
vating fibroblasts [109, 110]. Moreover, TGF-p induces
epithelial-mesenchymal transition, which contributes to
fibroblasts in fibrotic disease [111, 112]. Mechanistically,
administration or expression of TGF-P induced fibrosis
[113, 114], while inhibiting TGF-p receptor or SMAD
signaling decreased the development of fibrosis [115,
116]. SMAD signals cooperated with other signals and
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Fig. 4 The functions of TGF-{3 in fibrosis. Tumor cells, endothelial cells, mesenchymal stem cells, cancer-associated fibroblasts, and macrophages
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transcription factors to promote fibrosis [117], as TGF-p/
SMAD signals control the transcription of high-affinity
DNA-binding factors, such as TCF/LEF and p-catenin.
TCF/LEF and B-catenin are activated by WNT signals
and adaptor protein 1 complexes. The adaptor protein
1 complexes are activated by the ERK, JNK, and MAPK
pathways [4, 118, 119].

The increase in TGF-f activated fibroblasts, lead-
ing to the enhancement of protein synthesis and alter-
ing metabolic gene expression [120]. Genes that encode
fibronectin and collagen Ia1 are potential transcriptional
targets of TGF-B [121, 122]. Moreover, TGF-p promotes
the expression of regulators and glycolytic enzymes of
metabolism, which results in hyperglycolysis. Meanwhile,
the expression of the transcription factor ATF4 increases
protein synthesis to meet the crucial needs of collagen
and ECM protein synthesis depending on SMAD and
mTOR signals [123, 124].

The downstream target genes of TGF-$ contributing
to the formation of fibrosis is prominent. The crosstalk
between the tyrosine kinase receptors and TGEF-f signals
induced a contractile protein expression signature. This
signature leads to a-smooth muscle actin expression,
which activates myofibroblast differentiation [125-127].
TGF-f signals are also associated with the expression of
connective tissue growth factor (CTGF/CCN2), which
plays an essential role in the expression of ECM pro-
teins and the differentiation of myofibroblasts [128, 129].
TGE-B induces the expression of interleukin-11, which is
a profibrotic cytokine secreted by fibroblasts and epithe-
lial cells and contributes to myofibroblast differentiation,
fibroblast activation, and ECM deposition [130, 131].
TGF-B signal also increases the expression of c-JUN,
JUN-B, and JUN-D transcription factors, which heter-
odimerize with c-FOS and related proteins to form AP-1
transcription complexes, positioning them as drivers
of fibrosis. AP-1 complexes are activated in response to
ERK, JNK, and MAPK signals induced by TGEF-f, thereby
promoting fibrosis [132—135]. In addition, TGF-B/SMAD
complexes cooperate with AP-1 complexes to increase
target gene expression, including those encoding c-JUN,
interleukin-11, fibronectin, and collagen Ia2, contribut-
ing to fibrosis [136, 137].

TGEF-B differentiates cultured tubular epithelial cells
into upregulated collagen cells and exhibits a distinct
myofibroblast morphology [138-140]. Both canonical
(SMAD3-dependent) and noncanonical signals mediate
these differentiations [141-144]. TGF-p interacts with
[B-catenin, which regulates EMT via cAMP response
element-binding protein [145]. In addition, bone mor-
phogenic protein-7 (BMP-7) prevents TGF-p-induced
EMT in epithelial cells by antagonizing TGF-B, induc-
ing upregulation of a-SMA and downregulation of
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E-cadherin [139, 146]. TGE-f activates Jagged 1/Notch
signals via SMAD and ERK pathways to initiate EMT
[147]. TGE-PB induces vascular endothelial cells to have
mesenchymal characteristics [148-150]. Increased
TGE-p signals promote endothelial-mesenchymal trans-
differentiation, similar to EMT [151, 152]. Overexpres-
sion of TGF-P induces avf6 integrin-mediated activation
of latent TGF-f in epithelial cells, which plays an essen-
tial role in the formation and development of fibrosis via
mesenchymal traits [153-155]. Single-cell sequencing
of pulmonary fibrotic lesions reveals that cells have sup-
pressive epithelial features and potential mesenchymal
characteristics, suggesting the contributions of EMT and
endothelial-mesenchymal transdifferentiation to fibrosis
[156, 157].

TGF-B and anemia

The TGEF-P superfamily is associated with multiple inef-
fective erythropoiesis-induced anemias, including mye-
lodysplastic syndrome, Fanconi anemia, B-thalassemia,
cancer cachexia-related anemia, acquired aplastic anemia
and sickle cell anemia [158—163]. In the hematopoietic
system, the TGF-p pathway controls diversified biologi-
cal processes, ranging from immune system homeostasis
to hematopoietic stem cell proliferation, differentiation
and self-renewal [164, 165]. The TGF-B/SMAD path-
way plays an essential role in ineffective erythropoiesis,
which is characterized by early-stage erythroid precur-
sor expansion and late-stage precursor apoptosis [166,
167]. Various cells in the bone marrow niche produce
TGE-f, including Schwann cells and megakaryocytes,
to maintain the quiescence of hematopoietic stem cells
[168, 169]. In addition, transcriptional intermediary fac-
tor 1y (TIF1gamma) induces a differentiation response in
hematopoietic stem cells, and SMAD4 mediates the anti-
proliferative response, whereas SMAD2/3 participates in
both of these responses. Overall, SMAD2/3-SMAD4 and
SMAD?2/3-TIF1gamma are complementary effector arms
in controlling hematopoietic cell fate through TGF-f sig-
nals [170, 171].

Myelodysplastic syndrome is a hematopoietic stem
cell disease that manifests as bone marrow dysplasia and
cytopenias because of impaired hematopoiesis [172, 173].
In myelodysplastic syndrome, TGF-f signaling controls
the behavior of hematopoietic stem cells in the bone
marrow niche. Moreover, the activation of TGF-} impairs
the competitive advantage of normal hematopoietic stem
cells, which actually contributes to the selection of early-
stage myelodysplastic syndrome-genic clones [174, 175].

[B-thalassaemia is a B-globin gene mutation that causes
genetic disease, which is characterized by iron-loading
anemia and ineffective erythropoiesis [176]. TGE-p is a
negative regulatory factor in erythrocyte differentiation
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and maturation, similar to erythropoietin [177]. Hence,
TGE-p is a possible target of p-thalassaemia and has been
evaluated in clinical studies [178].

In addition to the aforementioned syndrome-inducing
anemia, Fanconi anemia is a genetic DNA repair disor-
der that is characterized by progressive bone marrow
failure and predisposition to malignancy [179]. TGE-B
signal-mediated growth inhibition is one of the causes
of bone marrow failure in Fanconi anemia by impairing
the function of hematopoietic stem and progenitor cells
[180, 181]. Hence, TGF-f is a potential target of Fanconi
anemia.

TGF- signaling and inflammatory diseases

TGE-P is supposed to act as a pro- or anti-inflammatory
factor contributing to host defense which controls physi-
ologic inflammation and immune response [182]. Over-
expression and/or activation of TGF-pB are observed in
persistent inflammation. On the other hand, systemic
routing of TGF-P can also prevent inflammatory patho-
genesis through multiple mechanisms [183]. TGF-p
maintains T cell tolerance to self and innocuous envi-
ronmental antigens by influencing the differentiation and
homeostasis of effector T cells and Tregs. The activity of
TGE-B controls inflammatory response balance by tar-
geting pathogens without evoking over immunopathol-
ogy to healthy tissues [184].

TGE-p is essential in the development and progression
of chronic respiratory diseases which is overexpressed in
chronic inflammation, fibrosis and viral infection associ-
ated respiratory abnormities including asthma, chronic
obstructive pulmonary disease and pulmonary fibrosis
[185]. Moreover, TGF-f and SMAD4 mediated uncou-
pling protein-2 downregulation leads to Aspergillus
protease associated inflammation in primary bronchial
epithelial cells [186]. Besides, TGF-p is involved in the
fluid homeostasis and fibrosis in the lung of COVID-19
patients, which may contribute to a potential immuno-
therapy strategy [187].

Dysregulated TGF-f signal is also observed in patients
with inflammatory bowel disease, which is chronic
intestinal inflammation, including ulcerative colitis
and Crohn’s disease. The dysfunction of TGE-p sig-
nal transduction occurs in T-cells and dendritic cells,
which leads to spontaneous colitis in vivo. Moreover,
the immune homeostasis of host modulated by intestinal
microbes depends on TGF-f production [188]. SMAD4
can restrain naive CD8% T cells from becoming patho-
genic for the gut to prevent inflammatory bowel disease
in a TGF-B-independent manner [189]. However, the
over expression of SMAD?7 in inflammatory cells makes
them unresponsive to TGF-p1 and negatively regulates
gut inflammation [190]. Besides, TGF-P knockout mice
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present a phenotype with severe multiorgan inflamma-
tion [191].

TGEF-P is also important in protecting keratinocytes
from oxidative stress and involves in the wound healing
process [192, 193]. The inhibition of TGF-p is demon-
strated to accelerate wound closure and reduce scarring
[194, 195]. Exogenous SMAD?7 below an oncogenic
level can mitigate wound healing and skin inflammation
defects related to over activation of TGF-p and NF-«xB
[196].

TGF-B signaling and other diseases

In addition to the roles of TGF-B signals in cancers,
fibrosis, anemia and inflammatory diseases, this sig-
nal is associated with the progression of other diseases.
TGEF-B family plays an essential role in the maintenance
of normal blood vessel wall structure [197]. Mutations in
TGEF-B family components are associated with specific
cardiovascular syndromes, such as primary pulmonary
hypertension, and hereditary hemorrhagic telangiecta-
sia [198, 199]. TGF-f family mutation associated specific
hereditary vascular syndromes include Osler-Rendu-
Weber disease, hereditary hemorrhagic telangiectasia,
Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome,
and Marfan syndrome [200, 201].

Single-cell RNA sequencing reveals that TGF-p signal
overexpression is the upstream driver of smooth muscle
cells modulation which plays a pivotal role in promot-
ing extracellular matrix substrate modulation and aortic
aneurysm progression in Marfan syndrome [202, 203].
The SMAD signaling of TGE-p is essential in maintaining
smooth muscle cell phenotype, while the noncanonical
signaling pathway like ERK negatively regulates smooth
muscle cell phenotype [204]. Moreover, dysregulated
TGE-B signal transduction is related to nonhereditary
disorders, including atherosclerosis and cardiac fibrosis,
by influencing endothelial cells and smooth muscle cells
proliferation, differentiation and migration [205].

The epigenetic alterations of TGF-B canonical and
non-canonical pathways are related to thoracic ascend-
ing aorta dilatation and aortic aneurysm through remod-
eling of the vascular wall in Loeys-Dietz and Marfan’s
syndromes [206, 207]. Aortic valve disease is character-
ized by elastic fiber fragmentation, fibrosis, and aberrant
angiogenesis. Noncanonical TGF-f signals progressively
increase over the progression of aortic valve disease, sug-
gesting that TGF-f signals are possible targets in this
disease [208]. In a cohort study, platelet expressed TGEF-
B1 plays a pivotal role in acute coronary syndromes and
indicates a prognostic impact of TGF-p1 on clinical out-
comes in patients with coronary artery disease [209].

Besides, TGF-P family members play crucial roles in
the development and homeostasis of connective tissue
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and skeletal system [210]. TGFBR1 or TGFBR2 muta-
tions cause increased expression of TGF-B signaling,
connective tissue growth factor and phosphorylation
of SMAD2, which lead to a syndrome of altered car-
diovascular, neurocognitive, craniofacial and skeletal
development [211].

Therapies based on TGF- signal transduction

in disease

Novel strategies targeting TGF-p signaling transduc-
tion have been designed and evaluated clinically to
treat cancers, sclerosis, and fibrosis. These strate-
gies include neutralizing antibodies and ligand traps,
small-molecule receptor kinase inhibitors targeting
ligand—-receptor signaling pathways, and antisense oli-
gonucleotides to disrupt the production of TGF-p at
the transcriptional level. In addition, some vaccines
containing a TGF-f antisense transgene, downregulat-
ing TGE-p, also show promising therapeutic efficacy in
cancer (Fig. 5).
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Neutralizing antibodies

Fresolimumab

Fresolimumab (GC1008) is a human IgG4k anti-TGF-$
monoclonal antibody that neutralizes all TGF-B iso-
forms. This agent is safe and effective in a phase I study
for advanced malignant melanoma and renal cell car-
cinoma. For efficacy, one melanoma patient achieves a
partial response, and six patients are proven to have sta-
ble disease (NCT00356460) [13]. Fresolimumab poten-
tially controls cutaneous lesions, such as cutaneous
keratoacanthomas or squamous cell carcinomas [212]. In
addition, administration of fresolimumab during radio-
therapy is feasible for patients with metastatic breast
cancer. Patients receiving 10 mg/kg fresolimumab have a
longer median overall survival with a favorable systemic
immune response than patients in the 1mg/kg group
(NCT01401062) [213].

In systemic sclerosis patients, administration of fresoli-
mumab decreases disease-related biomarkers, including
THBS1, COMP, SERPINE1, CTGF and other longitudi-
nal pharmacodynamic biomarkers. Regarding efficacy,

Ligand traps Vaccines
y \/ AVID200 TGF-B1/TGF-B3 Belagenpumatucel-L
Neutralizing antlbodles—ﬂ/ % Bintrafusp alfa —— TGF-B/PD-LT Vigil
Fresolimumab N TGF-B Luspatercept —— TGF-B/ActRIIB
LY3022859 Sotatercept
SAR439459 P144
ABBV151 ACE-1334
NIS793 TST005
QLS31901 TGF-BRI/TGF-BRII JS201
GT90001
LY2382770
Extracellular
|_ Small-molecule receptor kinase inhibitors
o Vactosertib
Galunisertib
(® LY3200882
Cytoplasm © SHR-1701
Cilengitide
SMAD2/3) SMAD4 GFHO18
PF06952229
SMAD2/3 Antisense
SMAD4 Am oligonucleotides
Trabedersen
ISTHO036
Nucleus dMIDIN TAS0-001
STP705
TRK250
Fig. 5 Potential therapeutic strategies based on the TGF-{3 signaling pathway in disease. Antagonists targeting the TGF-3 pathway, including
neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors, antisense oligonucleotides and vaccines, have recently been
evaluated in clinical trials. Representative drugs are shown
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fresolimumab treatment improves clinical symptoms
and decreases the infiltration of dermal myofibroblasts
(NCT01284322) [214, 215]. In a clinical trial involving
patients with primary focal segmental glomeruloscle-
rosis, fresolimumab is well tolerated [216]. However, an
additional phase II study is underpowered and does not
achieve the primary or secondary endpoints. Thus, fre-
solimumab is appropriate for more evaluation in larger
studies (NCT01665391) [217]. For osteogenesis imper-
fecta, a phase I study of fresolimumab is conducted in 8
patients. In this clinical trial, fresolimumab is associated
with increases in lumbar spine areal bone mineral density
in participants (NCT03064074) [218].

LY3022859

LY3022859 is a human anti-anti-TPRII IgG1 monoclo-
nal antibody that inhibits the activation of receptor-
mediated signals and has favorable antitumor efficacy
for primary tumors and metastatic disease in tumor
models [219]. A phase I study including patients with
advanced solid tumors shows that the maximum toler-
ated dose of LY3022859 is not determined. During dose
escalation, when the dose of LY3022859 is greater than
25mg, patients have worsening symptoms, partially due
to uncontrolled cytokine release (NCT01646203) [220].

SAR439459
SAR439459, a neutralizing antibody targeting all iso-
forms of TGF-f, is supposed to block TGEF-B/SMAD
signals. This agent also shows activity in reversing TGE-
B-mediated NK-cell and T-cell suppression. An in vitro
study shows that SAR439459 synergizes with an anti-
PD1 antibody, resulting in enhancement of the T-cell
response. Moreover, administration of SAR439459 pre-
vents tumor growth by augmenting the proliferation
of intertumoral CD8" T cells, reducing their exhaus-
tion, and evoking proinflammatory cytokines in synge-
neic tumor models. This evidence supports the ongoing
clinical exploration of SAR439459 in patients with solid
tumors (NCT03192345) [221].

Other anti-TGF-B neutralizing antibodies, includ-
ing ABBV151, NIS793, QLS31901, GT90001, and
LY2382770, are undergoing clinical trials (Table 1).

TGF-B ligand traps

AVID200

TGF-p ligand traps are chimeric fusion proteins designed
to restrain TGF-Bs from binding to TGE-B receptors
based on their ectodomain. AVID200 is a potent TGF-p1/
TGEF-P3 protein trap that enhances antitumor efficacy in
a syngeneic 4 T1 triple-negative breast cancer model [86].
Currently, a phase I clinical trial of AVID200 has been
conducted for advanced solid tumors (NCT03834662).
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In fibrotic disease, administration of AVID200 decreases
the proliferation of human mesenchymal stromal cells and
reduced the phosphorylation of SMAD?2 and the expres-
sion of collagen. Myelofibrosis mononuclear cells pre-
sent increasing progenitor cells emerging after treatment
with AVID200. In addition, AVID200 treatment reduces
bone marrow fibrosis, increases bone marrow cellular-
ity, and increases the numbers of murine progenitor and
hematopoietic stem cells in a myelofibrosis mouse model
[222]. AVID200 is supposed to promote the survival of
murine/human fanconi anemia hematopoietic stem and
progenitor cells in vitro by downregulating nonhomolo-
gous end-joining pathway-related genes and reducing
DNA damage in vivo [223]. AVID200 also increases the
hematopoietic colony formation of Shwachman-Diamond
Syndrome patients’ bone marrow, leading to the improve-
ment of bone marrow failure [224]. Currently, a clinical
trial of AVID200 for systemic sclerosis has been launched
(NCT03831438).

Bintrafusp alfa

Bintrafusp alfa (M7824) is a bifunctional fusion pro-
tein that contains the extracellular TGF-p trap fused to
a human IgG monoclonal antibody against PD-L1. Bin-
trafusp alfa synergizes effectively with radiotherapy by
modulating the TME to reverse cancer immune eva-
sion. Combining bintrafusp alfa with radiotherapy
increases tumor-infiltrating lymphocytes, attenuates
radiotherapy-induced fibrosis, reconstitutes tumor
immunity and regresses spontaneous lung metastases
[12]. In addition, bintrafusp alfa shows safety and clini-
cal activity in human papillomavirus (HPV)-associated
cancers. The objective response rate is 30.5%, includ-
ing five patients, with a disease control rate of 44.1%
(NCT02517398, NCT03427411) [225]. Bintrafusp alfa
is safe and enhances tumor antigen-specific immunity
by reversing Treg immunosuppression and reducing
myeloid cell tumor infiltration in patients with HPV-
unrelated head and neck squamous cell carcinoma [226].
Several factors are associated with the clinical response
during bintrafusp alfa therapy, including low levels of
TGF-B1 expression and higher CD8" T cell: MDSC
ratios [227]. Bintrafusp alfa has promising antitumor effi-
cacy in a phase I study involving patients with non-small
cell lung cancer who are previously treated with plati-
num. The objective response rate in all patients is 21.3%
(NCT02517398) [228]. In a phase I trial, bintrafusp alfa
also has clinical activity for biliary tract cancer, with an
objective response rate of 20%. In addition, the overall
survival is 12.7 months [229]. In patients with advanced
esophageal adenocarcinoma and esophageal squamous
cell carcinoma, bintrafusp alfa shows clinical antitumor
efficacy with a manageable safety profile. In patients
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Table 1 Clinical trials that evaluated TGF-f3 signaling pathways antibodies and ligand traps in disease

Page 11 of 29

Agent Targets ClinicalTrials. Indication Number  Phase Treatment Status
gov of
Identifier Patients
Antibodies
ABBV151 GARP/TGF-B1 NCT03821935  Solid tumor 260 Phasel  Monotherapy/+Budigalimab  Recruiting
SAR439459 TGF-B1,B2,B3  NCT05231668 Osteogenesis 24 Phasel  Monotherapy Recruiting
imperfecta
NIS793 TGF-B 1gG2 NCT04935359 Pancreatic cancer 501 Phaselll  +Chemotherapy Recruiting
NCT04390763  Pancreatic cancer 161 Phasell  +Chemotherapy Recruiting
NCT04952753 Colorectal cancer 266 Phasell  +Standard of care Recruiting
NCT05417386 Pancreatic cancer 50 Phasel  +Chemotherapy Recruiting
NCT04810611  MDS 90 Phase | Monotherapy/+MBG453 Recruiting
QLS31901 PD-L1/TGF-B NCT04954456  Solid tumor 9% Phasel  Monotherapy Recruiting
GT90001 ALK-1 NCT03893695 HCC 20 Phase I/l +Nivolumab Active, not
recruiting
NCT04984668  Solid tumor 216 Phase I/ll  +PD-L1-CTLA-4 bispecific Recruiting
antibody KN046
NCT05178043 HCC 105 Phasell  +Nivolumab Recruiting
Ligand traps
Bintrafusp alfa PD-L1/TGF-B RII NCT04396886  Nasopharyngeal 38 Phasell  Monotherapy Active, not
(M7824) carcinoma recruiting
NCT05005429 Pleural mesothe- 47 Phasell  Monotherapy Recruiting
lioma
NCT04349280 Urothelial cancer 25 Phase | Monotherapy Active, not
recruiting
NCT04396535 NSCLC 80 Phase Il +Docetaxel Active, not
recruiting
NCT05145569  Ovarian cancer 33 Phasel  +Carboplatin/paclitaxel Not yet recruiting
NCT05061823  Lung cancer 42 Phase Il Monotherapy Recruiting
NCT04874311  Soft-tissue sar- 80 Phasell  +Doxorubicin Recruiting
coma
NCT04246489 Cervical cancer 146 Phasell  Monotherapy Active, not
recruiting
NCT04878250 Bladder cancer 49 Phasell  Monotherapy Not yet recruiting
NCT05445882  Prostate cancer 28 Phase Il +N-803 + BN-Brachyury Not yet recruiting
NCT05012098  Olfactory neuro- 32 Phasell  Monotherapy Recruiting
blastoma
NCT04708470 Advanced cancer 80 Phasell  +Entinostat and M9241 Recruiting
NCT04789668 Intracranial metas- 36 Phase I/ll +Pimasertib Recruiting
tases
NCT04708067 Intrahepatic chol- 15 Phasel  +Hypofractionated radiation  Recruiting
angiocarcinoma
NCT04417660 Thymic carcinoma 38 Phasell  Monotherapy Recruiting
JS201 PD-1/TGF-BRII  NCT04951947 SCLC 30 Phasell  +Lenvatinib Recruiting
NCT04956926  Solid tumor 244 Phasel  Monotherapy Recruiting
AVID200 TGF-31, 33 NCT03834662  Solid tumor 19 Phasel  Monotherapy Active, not
recruiting
NCT03831438  Systemic sclerosis 24 Phasel  Monotherapy Active, not
recruiting
TSTO05 PD-L1/TGF-B NCT04958434  Solid tumor 55 Phasel  Monotherapy Recruiting
ACE-1334 TGF-B1/c3 NCT04948554  Systemic sclerosis 210 Phase I/l Monotherapy Active, not

recruiting
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Table 1 (continued)
Agent Targets ClinicalTrials. Indication Number  Phase Treatment Status
gov of
Identifier Patients
Luspatercept TGF-3 NCT04064060 MDS, 665 Phase Il Monotherapy Recruiting
(ACE-536) B-thalassemia,
Myelofibrosis
NCT04477850 MDS 30 Phasell  Monotherapy Recruiting
NCT04717414  Myelofibrosis 309 Phase lll  Monotherapy Recruiting
NCT03900715 MDS 21 Phasell  Monotherapy Active, not
recruiting
NCT03682536 MDS 350 Phase lll  Monotherapy/Epoetin alfa Recruiting
NCT04143724  [-Thalassemia 54 Phasell  Monotherapy Recruiting
NCT05181735 MDS 150 Phase I/l Monotherapy/+Epoietinalfa  Recruiting
NCT05181592 MDS 70 Phaselll  Monotherapy Recruiting
NCT04539236 MDS 50 Phase I/ll  +Lenalidomide Recruiting
NCT05384691 MDS 213 Phasell  Monotherapy Not yet recruiting
Sotatercept (ACE-  TGF-p NCT04796337 PAH 700 Phase lll Monotherapy Recruiting
01 NCT04945460 PAH 180 Phasell  Monotherapy Recruiting
NCT04896008 PAH 200 Phaselll  Monotherapy Recruiting
NCT04811092 PAH 662 Phaselll  Monotherapy Recruiting

MDS Myelodysplastic syndrome, HCC Hepatocellular carcinoma, NSCLC Non-small cell lung cancer, SCLC Small cell lung cancer, PAH Pulmonary arterial hypertension,
PD-1 Programmed death 1, PD-L1 Programmed death ligand 1, CTLA-4 Cytotoxic T lymphocyte antigen 4

with esophageal adenocarcinoma, the confirmed objec-
tive response rate is 20.0% (NCT02517398) [230]. Simi-
larly, the confirmed objective response rate is 10.0% in
patients with esophageal squamous cell carcinoma, with
a median overall survival of 11.9 months (NCT02699515)
[231]. Bintrafusp alfa also has antitumor efficacy in
patients with pretreated advanced squamous cell car-
cinoma of the head and neck. The confirmed objective
response rate is 13%, with 4 patients having stable dis-
ease (NCT02517398) [232]. In patients with advanced
gastric and gastroesophageal junction cancer, the objec-
tive response rate to bintrafusp alfa is 16%, with a disease
control rate of 26% [233]. In patients with advanced solid
tumors who received bintrafusp alfa treatment, two of 23
patients have a partial response, for a disease control rate
of 35.7% (NCT02699515) [234].

Luspatercept

Luspatercept (ACE-536, reblozyl) is an activin recep-
tor type IIB fusion protein-ligand trap targeting TGF-f3/
SMAD signals. This agent has been used to treat ane-
mia diseases, including beta-thalassemia, myelofibrosis,
and myelodysplastic syndromes [235]. TGF-B/SMAD
signals promote erythroid maturation by enhancing
the differentiation of late-stage erythroblasts, thereby
improving anemia [236]. Luspatercept impacts the bone

marrow microenvironment, leading to a selective res-
toration of ineffective hematopoiesis [237]. In patients
with transfusion-dependent lower-risk myelodysplas-
tic syndrome, luspatercept shows clinical activity in a
phase II (PACE-MDS) trial and a phase III (MEDAL-
IST) trial, leading to US Food and Drug Administra-
tion approval in 2020 [238]. In a phase III (MEDALIST)
trial, 38% of the patients treated with luspatercept have
transfusion independence for 8weeks and even longer
(NCT02631070) [239-241]. In a phase II (PACE-MDS)
trial, luspatercept is well tolerated and has clinical effi-
cacy for patients with myelodysplastic syndromes induc-
ing anemia (NCT01749514, NCT02268383) [242, 243].
In patients with myelodysplastic syndromes or myelo-
proliferative neoplasms who currently have no effective
treatments, administration of luspatercept reduces the
transfusion burden and improves the modified hema-
tologic response-erythroid levels [244]. Luspatercept
therapy has been demonstrated to strengthen the contri-
bution of host immunity to disease biology in myelodys-
plastic syndromes with ring sideroblasts [245].

In patients with p-thalassemia after luspatercept ther-
apy in a clinical trial, twenty-six of 64 patients achieve
over a 20% reduction in red blood cell transfusion burden
(NCT01749540 and NCT02268409) [246]. In a phase III
(BELIEVE) trial for transfusion-dependent -thalassemia,
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the transfusion burden is reduced after the administra-
tion of luspatercept (NCT02604433) [247]. Luspatercept
is also supposed to be a potential strategy in patients
with nontransfusion-dependent p-thalassemia [248]. In
this phase II (BEYOND) trial in patients with nontrans-
fusion-dependent B-thalassemia, 77% of patients after
luspatercept therapy achieve an increase in hemoglobin
concentration (NCT03342404) [249].

Sotatercept

Sotatercept (ACE-011), a TGEF-P ligand trap, restrains
late-stage negative regulators of erythropoiesis and
improves ineffective erythropoiesis. For anemia caused
by PB-thalassemia, a phase II study demonstrated that
sotatercept is clinically efficient and well tolerated. In
nontransfusion-dependent patients, 18 of 30 (60%)
achieve a hemoglobin increases of more than 1.0g/dL,
which is sustained for more than 3 months. In the trans-
fusion-dependent B-thalassemia subgroup, four (100%)
patients achieve a more than 20% transfusion-burden
reduction (NCT01571635) [250].

For pulmonary arterial hypertension, a phase II (PUL-
SAR, NCT03496207) study shows a reduction in pulmo-
nary vascular resistance after sotatercept treatment [251].
The extension study revealed that 32 of 97 (30.8%) par-
ticipants suffer serious treatment-related adverse events.
Importantly, the placebo-crossed to sotatercept group is
demonstrated to have improved both primary and sec-
ondary endpoints. The clinical effectiveness is well main-
tained in the patients with continued sotatercept [252].

For lower-risk myelodysplastic syndromes, especially
in patients for whom previous erythropoiesis-stimulating
agents failed, sotatercept is well tolerated and clinically
effective. Thirty-six of 74 (49%) patients achieve hema-
tological improvement-erythroid. Among them, 29 of 62
(47%) participants with a high transfusion burden achieve
hematological improvement-erythroid, whereas seven of
12 (58%) patients with a low transfusion burden achieve
hematological improvement-erythroid (NCT01736683)
[253].

In patients with chemotherapy-induced anemia in
advanced solid tumors, both clinical trials are terminated
early because of the slow patient accrual. However, the
existing results indicate that sotatercept is potentially
effective with an acceptable safety profile when treated
with chemotherapy-induced anemia (NCT00931606,
NCT01284348) [254].

P144

P144 (Disetertide®) is a peptide inhibitor of TGF-B1. This
inhibitor decreases the proliferation and invasiveness of
glioblastoma cells. P144 increases apoptosis and anoikis
by reducing SMAD2 phosphorylation, downregulating
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SK, and upregulating SMAD?7 in vitro. Additionally, P144
impairs tumor growth and increases survival in a glio-
blastoma mouse model [255]. Besides, treatment with
P144 results in a reduction in the mitotic-to-apoptotic
ratio and angiogenesis, which are induced by TGF-p1.
In addition, P144 abrogates EMT and the phenotypes
of cancer stem cells, which decreases liver metastasis
in patients with colorectal cancer [256]. P144 reduces
tumor growth by reducing the infiltration of mac-
rophages and increasing the intratumor levels of MCP-1
and VEGF [257]. The therapeutic applications of P144 are
limited due to a lack of target selection, possible recogni-
tion by the immune system, and potential cytotoxicity on
healthy cells. Encapsulation of P144 with nanoparticles
facilitated its dissolution, improves its functionalization
and improves its potential therapeutic applications in
liver cancer [258].

P144 also has treatment efficacy in controlling fibrotic
disease. Administration of P144 reduces radiation-
induced fibrosis in soft tissue sarcoma by retaining the
macro- and microscopic morphology of muscle, reduc-
ing extracellular matrix fibrosis and reducing SMAD2/3
phosphorylation [259]. P144 decreases renal fibrosis by
blocking TGF-B1/SMAD3 signals and modulating the
polarization of macrophages, suggesting its possible ther-
apeutic potential in ischemia-reperfusion injury-induced
renal fibrosis [260]. P144 decreases laser-induced choroi-
dal neovascularization in a rat model [261]. P144 is also
proposed to promote the maturation of scars, with the
improvement of the morphology of hypertrophic scars
in a mouse model [262]. P144 prevents the formation of
an aortic aneurysm but not its progression in a Mafan
syndrome mouse model. Hence, reducing the excess of
active TGF-P signaling during the early stages of aortic
disease progression is essential [263]. Furthermore, P144
inhibits TGF-B-dependent signals in cardiac fibroblasts,
preventing myocardial fibrosis in spontaneously hyper-
tensive rats [264]. P144 also inhibits NADPH oxidases
and prevents kidney oxidative stress in spontaneously
hypertensive rats [265].

Other TGEF-p ligand traps, including ACE-1334,
TSTO005, and JS201, are under evaluation in clinical trials
(Table 1).

Small-molecule receptor kinase inhibitors

Vactosertib

Currently, some small-molecule receptor kinase inhibi-
tors of TGF-B signals are undergoing clinical trials
to treat cancer and fibrosis. Vactosertib (TEW-7197,
EW-7197) is a small-molecule kinase inhibitor of TGF-
BRI that has promising antitumor and antifibrotic poten-
tial [11, 266, 267]. Vactosertib inhibits hepatic, renal, and
pulmonary fibrosis by blocking both TGF-f1/SMAD2/3
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and reactive oxygen species (ROS) signals [268]. The
combination of vactosertib with radiation has a favorable
antimetastatic efficacy in breast cancer [269]. Vactosertib
prevents ulcerative colitis-associated inflammation and
fibrosis, protecting against postsurgical adhesion forma-
tion by downregulating proinflammatory and profibrotic
genes, inhibiting oxidative stress, decreasing inflamma-
tory cell infiltration, and inhibiting excessive collagen
deposition [270-272]. The combination of vactosertib
with imatinib mesylate, a tyrosine kinase inhibitor, delays
chronic myeloid leukemia relapse and prolongs survival
by eliminating leukemia-initiating cells [273]. Vactosertib
potently inhibits breast cancer lung metastasis by inhibit-
ing SMAD/TGE- signals and enhancing the activity of
cytotoxic T cells [274]. Clinical trials based on vactosertib
are undergoing in melanoma, lung cancer, urothelial car-
cinoma, gastric cancer, and colorectal cancer (Table 2).

Galunisertib
Galunisertib (LY2157299) is another small-molecule
inhibitor that selectively binds to TGEF-BRI, inhibit-
ing kinase activity [275]. Galunisertib exerts antifibrotic
effects on dermal fibroblasts by attenuating the expres-
sion of fibrotic genes and increasing the expression of
antifibrotic genes such as decorin and MMP1 [276].
Galunisertib is a potential prophylactic drug for treat-
ing traumatic heterotopic ossification by intercepting
TGF-B/SMAD?2/3 signals [277]. What is more, galuni-
sertib shows a prominent antifibrotic potential in liver
fibrosis by inhibiting phosphorylation of SMAD?2, block-
ing the production and maturation of collagens, and pro-
moting the degradation of collagens [278, 279].

Galunisertib overcomes stemness-derived aggressive-
ness by reducing the expression of CD44 and THY1 in
hepatocellular carcinoma [280]. A phase IB study of gal-
unisertib plus ramucirumab for advanced hepatocellular
carcinoma shows that the combination therapy displays
favorable pharmacokinetics, with a disease control rate
of 12.5% [281]. A pilot study of galunisertib combined
with stereotactic body radiotherapy in patients with
advanced hepatocellular carcinoma shows good toler-
ability and is associated with antitumor activity. Two out
of 15 patients achieve a partial response [282]. In a phase
II study, galunisertib plus sorafenib results in prolonged
overall survival [283]. In patients with unresectable pan-
creatic cancer, galunisertib plus gemcitabine improves
overall survival [284]. In another phase IB clinical trial
of patients with pancreatic cancer, galunisertib is coad-
ministered with durvalumab, showing tolerable adverse
events but limited clinical activity, with progression-free
survival of 1.87 months [285].

Galunisertib is supposed to suppress the activation
of SMAD2 in neuroblastomas and activate NK cells,
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restore NK cytotoxic activity, and increase the efficacy
of dinutuximab with activated NK cells against neuro-
blastoma tumors [286]. For recurrent glioblastoma, the
combination of galunisertib and lomustine fails to dem-
onstrate improved overall survival compared with the
group receiving monotherapy [287]. In a phase II study
of galunisertib for myelodysplastic syndromes, 10 out of
41 patients achieve hematologic improvement erythroid
response, 18 patients have erythroid response and nine of
28 transfusion-dependent patients achieve hematologic
improvement [288]. Other clinical trials targeting solid
tumors, including hepatocellular carcinoma, breast can-
cer, and glioma, are ongoing (Table 2).

LY3200882

LY3200882 is an orally selective next-generation potent
adenosine triphosphatase competitive TGF-BRI small-
molecule inhibitor that has promising antitumor efficacy
[289, 290]. Codelivery of LY3200882 and programmed
cell death protein ligand 1 (PD-L1) siRNA boosts antitu-
mor immunotherapy by downregulating the expression
of ECM, promoting the infiltration of effector T cells,
resulting in enhanced tumor antigen presentation and
reversing the immunosuppressive microenvironment in
triple-negative breast cancer [289]. LY3200882 effectively
inhibits liver metastases by increasing the infiltration of
CD8™ cytotoxic T cells and inhibiting the recruitment
of immunosuppressive cells such as MDSCs in colorec-
tal mouse models [290]. A phase I study showed that
LY3200882 is well tolerated, with preliminary antitumor
activity in advanced cancer. Four patients with grade 4
glioma have partial responses. In patients with advanced
pancreatic cancer, 6 out of 12 patients have partial
responses, and 3 patients are stable disease. In this trial,
the overall disease-control rate of LY3200882 plus gem-
citabine and nab-paclitaxel is 75% [291].

SHR-1701

SHR-1701 is a bifunctional fusion protein that is a
PD-L1 monoclonal antibody fused with the extracel-
lular TGE-BRII domain. This agent has promising anti-
tumor efficacy in advanced cervical cancer [292, 293].
Among 32 patients with cervical cancer, the objective
response rate is 15.6%, and the disease control rate is
50.0%. Notably, as assessed by imRECIST, the median
PES is 4.1 months, and the 12-month overall survival rate
is 54.6% (NCTO03774979) [293]. Moreover, patients with
lung cancer suffering from persistent lymphopenia after
chemotherapy are sensitive to SHR-1701 [294].

Cilengitide
avp integrin is a major local activator of latent TGF-f.
Genetically and pharmacologically targeting avf} integrin
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inhibits the TGF-f signals and suppresses tumor metas-
tasis [295-297]. Cilengitide, a selective cyclic RGD pen-
tapeptide antagonist of avf3 and avp5 integrin, has been
demonstrated to modulate the attachment and viabil-
ity of glioma cells and induce autophagy-mediated cell
death [298, 299]. In a phase III study of cilengitide plus
standard treatment for patients with glioblastoma, com-
binational therapy does not improve the outcomes [300].
In this trial, the authors recommend a different continu-
ous infusion schedule that is more appropriate according
to the pharmacokinetics [301]. In a phase II study with
two cilengitide regimens plus standard treatment for
patients with glioblastoma, the median overall survival
is 16.3months in the cilengitide arm and 14.5months
in the intensive cilengitide arm (NCT00813943) [302].
However, in another phase II trial, cilengitide plus met-
ronomic temozolomide, procarbazine, and standard
radiotherapy does not improve survival in patients with
glioblastoma [303].

Cilengitide is supposed to enhance the inhibition of
erlotinib on TGF-Bfl-induced EMT and phosphoryla-
tion of SMAD2/3 [304, 305]. In a phase I study, con-
tinuous infusion of cilengitide plus chemoradiotherapy
for patients with stage III non-small cell lung cancer is
potentially tolerable. Four out of 9 patients have a com-
plete response, and 4 patients have a partial response
[306]. In another phase II study that combined cilen-
gitide with cetuximab and platinum-based chemo-
therapy as first-line treatment in advanced non-small
cell lung cancer patients, the progression-free survival
is 6.8 months in the cilengitide group versus 5.6 months
in the control group. The median overall survival is 13.6
versus 9.7months compared with the control group
(NCT00842712) [307].

Cilengitide has been demonstrated to downmodulate
the invasiveness of melanoma cells by targeting avp5
integrin [308]. Cilengitide is well tolerated but has lim-
ited antitumor efficacy as a monotherapy for metastatic
melanoma [309, 310]. Cilengitide enhances the effective-
ness of anti-PD1 treatment and produces a more robust
antitumor immune response by decreasing STAT3 phos-
phorylation and reducing tumor PD-L1 expression in a
melanoma mouse model [311]. In addition, activation of
POSTN releases TGF-P1 from the ECM and initiates the
POSTN/TGE-P1 positive feedback loop. Cilengitide plus
lenvatinib suppresses tumor cell growth in a hepatocellu-
lar carcinoma mouse model [312]. Generally, cilengitide,
combined with paclitaxel, is well tolerated and has antitu-
mor activity in patients with advanced solid tumors [313].

Cilengitide treatment decreases adhesion to vitronec-
tin and fibronectin and reduces the expression of TGF-
B-induced fibronectin genes, as well as the accumulation
of mRNAs for fibronectin and collagen type I. However,
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cilengitide does not inhibit the development of pulmo-
nary fibrosis in vivo [314]. Pharmacological inhibition of
integrin utilizing cilengitide in vivo decreases angiogene-
sis but worsens biliary and septal fibrosis, despite its anti-
fibrogenic effect on hepatic stellate cells [315, 316].

Other small-molecule inhibitors targeting TGF- sign-
aling pathways, such as GFH018 and PF06952229, are
under clinical evaluation for patients with lung cancer,
breast cancer, and prostate cancer (Table 2).

Antisense oligonucleotides (ASOs)

Trabedersen

Trabedersen (AP12009) is a synthetic phosphorothioate
antisense oligodeoxynucleotide blocking the production of
TGF-B2. Trabedersen has therapeutic potential in malig-
nant brain tumors, skin tumors, pancreatic cancer, and
colorectal cancer [317]. Trabedersen reduces the secretion
of TGF-B2, inhibits cell proliferation and migration, and
reverses TGF-f2-mediated immunosuppression in pan-
creatic cancer. In addition, trabedersen significantly inhib-
its tumor growth and lymph node metastasis in pancreatic
cancer [318]. In a phase II clinical trial for recurrent high-
grade glioma, superior efficacy is observed for trabedersen
over chemotherapy. This positive risk-benefit assessment
demonstrates its clinical use in high-grade glioma [319].

ISTH0036
ISTHOO036 is an antisense oligonucleotide selectively tar-
geting TGF-P2 signals [320]. In a phase I study involving
patients with primary open angle glaucoma who receive
trabeculectomy, single-dose ISTH0036 administration at
the time of trabeculectomy results in intraocular pressure
values persistently less than 10mmHg during the three-
month postoperative period [15]. Future phase II clini-
cal trials are needed to assess repeat dosing for up to one
year for constant antifibrotic effects. It is critical for clini-
cal trials to assess the efficacy of ISTH0036 as an antifi-
brotic agent that inhibits glaucoma pathophysiological
mechanisms by selectively suppressing TGF-p2 [321].
Other TGEF-P antisense oligonucleotides, including
TASO-001, STP705, and TRK250, are under evaluation
in clinical trials (Table 2).

Vaccine-based therapy

Belagenpumatucel-L

Belagenpumatucel-L (Lucanix ') is a nonviral gene-
modified allogeneic whole tumor cell vaccine express-
ing the antisense strand of the TGF-f2 gene. This
approach is well tolerated in a phase II study of Belgel-
L for non-small cell lung cancer [322]. During therapy,
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baseline circulating tumor cells are associated with
overall survival [14]. In a phase III trial for non-small
cell lung cancer, there is a difference in overall and pro-
gression-free survival between the belagenpumatucel-
L group and the placebo group [323]. As the phase III
trial of belagenpumatucel-L for stage III/IV non-small
cell lung cancer does not meet the primary end point,
further studies are needed to select patients who may
benefit from this vaccine [324].

Vigil

Vigil (Gemogenovatucel-T, FANG'", IND14205) is an
autologous compound consisting of a plasmid encod-
ing granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) and a bifunctional short hairpin RNAi
(bishRNAi) targeting furin convertase, leading to
downregulation of TGF-B1 and P2. There is a phase
I study for advanced cancer, and this trial shows that
Vigil is successful in 42 of 46 patients, of whom 27
receive over one vaccine. There are no serious adverse
events after treatment [325]. The three-year follow-
up of Vigil in 12 patients with metastatic advanced
Ewing’s sarcoma reveals a one-year survival of 73% for
Vigil-treated patients compared to 23% in the placebo
group. The overall survival is 17.2 months between the
Vigil (median overall survival of 731 days) and placebo
groups (median overall survival of 207 days) [326].

In advanced ovarian cancer, an induction of the circu-
lating activated T-cell population is observed in the Vigil
group [327]. In the phase IIB (VITAL) trial for stage III/
IV ovarian cancer, utilizing Vigil as maintenance immu-
notherapy is well tolerated. However, the primary end-
point is not met after the treatment (NCT02346747)
[328]. However, Vigil is demonstrated to have clinical
benefit for ovarian cancer with homologous recombi-
nation proficient. The recurrence-free and overall sur-
vival are improved in the Vigil group compared to the
placebo group [329]. The three-year follow-up of Vigil
for patients with homologous recombination-proficient
ovarian cancer still shows durable activity in both recur-
rence-free and overall survival [330]. The gene expres-
sion profile suggests that Vigil’s overall survival benefit
is correlated with elevated expression of MHC-II and
positive IFN-y ELISPOT in patients with recurrent
ovarian cancer [331]. When combined with atezoli-
zumab in relapsed ovarian cancer patients, the median
overall survival is not reached. However, patients har-
boring BRCA™ suggest an improved overall survival
benefit. Thus, a continued investigation of combination
therapy with Vigil-1st and atezolizumab is needed for
patients with BRCAY' [332, 333].
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Conclusions and perspectives
The multifunctional cytokine TGF-B regulates inflam-
matory progression, differentiation, proliferation, and
wound healing during homeostasis. Dysregulated
TGE-p promotes EMT and immunosuppression dur-
ing tumorigenesis and fibrosis. Therefore, there is
increasing interest in targeting TGF-p signals. In addi-
tion, TGE-B-targeted therapies, including neutralizing
antibodies and TGF-p ligand traps for ligand elimina-
tion, small-molecule receptor kinase inhibitors, ASOs
and vaccine-based therapy, have achieved comparable
results in preclinical trials to treat tumors, fibrosis, and
other diseases. However, few of these anti-TGF-$ com-
pounds are in phase III clinical trials because of the dif-
ferent roles of TGF-p in different cancer stages and the
poor stability and side effects of anti-TGF-p drugs [3].
The role of TGF-B in tumorigenesis and progression
is different and complex. Multiple types of research
indicate that TGF-p becomes a tumor suppressor at an
early stage. In contrast, at a late stage, overexpressed
TGE-p promotes the formation of EMT, TME, immu-
nosuppression, and CAFs. It is difficult but essential
to determine whether a patient’s TGF-p is a promo-
tor or a suppressor. More research should be ongoing
to identify which tumor types or fibrosis could benefit
from targeting TGF-p therapies. In addition, combina-
tion strategies could also solve cardiovascular adverse
effects [334], poor stability in vivo [335], and some
other side effects promoting poor therapeutics. In
conclusion, progress in detecting the universal mecha-
nisms of TGF-P in specific tumor subtypes and diverse
stages of cancer, as well as other diseases, and explor-
ing appropriate combination dosing regimens to reduce
side effects are essential and prospective.
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