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Abstract 

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently 
infected one third of the world’s population. However, conventional TB treatment regimens are no longer sufficient 
to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, 
with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which 
many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty 
acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis 
and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide 
biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, 
MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase 
(LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP 
which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine syn-
thetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs target-
ing ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis 
drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, 
this investigation should provide guidance and support for current and future pharmaceutical development efforts 
against mycobacterial pathogenesis.
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Introduction
Tuberculosis (TB) is the second leading cause of mortality 
among infectious diseases worldwide in the twenty-first 
century, with two million deaths annually [1, 2]. Moreo-
ver, it is estimated that one-third of the world’s popula-
tion harbor a latent TB infection by the Mycobacterium 
tuberculosis (Mtb) complex (including Mycobacterium 
tuberculosis, Mycobacterium africanum, Mycobacterium 
bovis, Mycobacterium caprae, Mycobacterium microti, 
Mycobacterium pinnipedii, and Mycobacterium canet‑
tii) [3]. The incidence of TB has been increasing due to 
several factors, including the HIV epidemic [4], the wide-
spread emergence of drug-resistant Mtb strains [multid-
rug-resistant Mtb (MDR-Mtb), extensively drug-resistant 
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Mtb (XDR-Mtb) and totally drug-resistant Mtb (TDR-
Mtb)] [5–7], as well as the lack of medical/drug compli-
ance. Unfortunately, existing TB treatment regimens have 
not been updated to keep up with these challenges, hence 
are insufficient to tackle these drug-resistant forms. 
Therefore, there is an urgent need to develop new anti-
tuberculosis drugs that are active against drug-resistant 
bacteria but, more importantly, kill persistent bacteria.

Using special virulence factors and/or essential genes to 
develop vaccines, drugs and diagnostic reagents against 
TB is a worthwhile approach. The Mtb H37Rv genome 
consists of 4.4 ×  106 bp (65.6% GC), encoding ~4000 
predicted proteins [8]. These annotated proteins are 
involved in multiple cellular metabolic pathways, includ-
ing DNA or RNA methylation, RNA processing, protein 
processing, lipid synthesis, membrane assembly, cell 
division, and cytoplasmic and membrane transfer steps 
of peptidoglycan synthesis, in which numerous meta-
bolic pathways are closely related to the pathogenicity 
of Mtb. A unique feature of the Mtb genome is that over 
200 proteins (6% of the total) participate in the metabo-
lism of fatty acids, among which approximately 100 are 
predicted to function in the β-oxidation of fatty acids. 
This large number of Mtb enzymes may be related to the 
ability of this pathogen to grow in specific tissues of the 
infected host, in which fatty acids act as the major carbon 
source [9]. Thus, considerable drugs or inhibitors target-
ing the biosynthesis of mycolic acids are reported and 
used in clinical research [10]. For instance, anti-tubercu-
losis drugs isoniazid and ethionamide have been proven 
to inhibit the biosynthesis of mycolic acids (Table 1) and 
exert their function by inactivating the reductase activ-
ity of the enoyl-acyl-carrier protein (InhA). In addition, 
the Mtb genome encodes five separate type VII secretion 
systems (TSSS). Among these five, the secretion system 
Esx-1 is well characterized, and this system could pro-
mote the necrotic death of infected cells and the recruit-
ment of macrophages, allowing the intracellular Mtb to 
be released to the extracellular space and uptaken by the 
freshly recruited adjacent phagocytes, ultimately result-
ing in intracellular bacterial population expansion [27–
30] (Fig. 1). The critical role of the secretion system Esx-1 
has been applied into the attenuated vaccine strain Myco‑
bacterium bovis BCG [31–33].

In this review, we focus on some enzymes that are 
essential for the pathogenicity of TB to summarize their 
structures and structure-based inhibitor/drug design. 
Several enzymes [(e.g., enoyl-acyl carrier protein reduc-
tase (InhA), mycolic acid transports enzyme (MmpL3), 
mycolic acid methyltransferase (MmaA4), and mycolic 
acid cyclopropane synthases (PcaA, CmaA1, CmaA2)] 
that participate in the mycolic acid pathway [34–37], are 
highlighted in this work. Enzymes involved in amino acid 

metabolism [lysine-ε amino transferase (LAT), Isopro-
pylmalate isomerase (LeuD)], lipid metabolism [isoci-
trate lyases (ICLs), pantothenate synthetase (PS)], metal 
uptake (IdeR), energy metabolism [catalase-peroxidase 
(KatG), fumarate hydratase (Rv1098c)], pyrimidine bio-
synthetic [cytidine triphosphate synthetase (PyrG)], and 
transcription regulation (PhoP), as well as the cell secre-
tion [glutamine synthetase (GlnA1)] are also summa-
rized. These enzymes are either therapeutic drug targets 
or potential drug targets.

Tuberculosis therapeutics
Currently, the standard TB treatment regimen for 
drug-susceptible TB consists of a 6–9-month course of 
first-line anti-tuberculosis drugs (isoniazid, rifampicin, 
ethambutol, and pyrazinamide). However, long-term 
therapies are not only significantly toxic, but also fre-
quently lead to poor compliance of patients, and in turn, 
facilitate the development of drug-resistant TB. These 
conventional anti-tuberculosis drugs are insufficient 
to completely eradicate bacteria that remain in a state 
of latent infection. For example, standard TB therapy is 
ineffective in controlling MDR-TB (resistant to at least 
two first-line drugs). Treatment of XDR-TB (character-
ized as MDR-TB with additional resistance to any fluo-
roquinolone and at least one of the three second-line 
prescribed drugs) requires the use of third-line anti-TB 
drugs, which are less effective or have higher side effects 
[38, 39]. TDR-TB infection, the most severe form of 
infection, is caused by Mtb strains that are resistant to all 
of the first- and second-line drugs. To address the issue of 
therapeutic failure, constant attention has been focused 
on this area. The world health organization (WHO) has 
designated Group 5 antibiotics, including repurposed 
drugs and drugs with unclear efficacy or an unclear role 
in the treatment of DR-TB, such as thiacetazone, high-
dose isoniazid, clofazimine, linezolid, amoxicillin plus 
clavulanate, macrolides, carbapenem, and thioridazine 
[40]. In addition to chemotherapy, immunotherapeutic 
approaches (e.g., DNA vaccines, and cytokines) com-
bined with chemotherapy are also providing options for 
the improved treatment of TB [41–43]. The currently 
available anti-tuberculosis drugs, the targets, the mode of 
action, and the genes associated with the drug resistance 
are listed in Table 1, including some drug candidates with 
high anti-tuberculosis potential at clinical trials.

Validated and potential targets of anti‑tuberculosis 
drugs
We focus on enzymes that participate in the cellular 
metabolism of Mtb, including mycolic acid and nucleo-
tide biosynthesis, and metabolism of lipids, amino acids, 
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energy utilization, and metal uptake. Other enzymes, 
such as the transcriptional regulator PhoP, and Glu-
tamine synthetase are also included.

Enzymes involved in cellular metabolism
Enzymes associated with mycolic acid biosynthesis
Mycolic acids (MAs), α-branched β-hydroxylated long 
chain fatty acids  (C70-C90), are major constituents of the 
mycobacterial cell envelope [44, 45]. They may be cova-
lently bound to cell wall arabinogalactan, rendering the 
Mtb cell envelope extremely hydrophobic and imper-
meable to a variety of compounds [46–51], and thus 
function as a physical barrier against the host immune 

system and exogenous antibiotics [52]. In addition, the 
metabolism of MAs is also highly associated with the 
physiology, virulence, and pathogenicity of Mycobacte-
rium [36, 37, 53, 54]. Accordingly, targeting the enzymes 
involved in the metabolism of MAs is an excellent strat-
egy for the development of effective anti-tuberculosis 
agents. At present, several effective anti-tuberculosis 
drugs, such as isoniazid [55], ethionamide, thiacetazone, 
and delamanid, have been shown to inhibit the biosyn-
thesis of MAs.

Fatty acids cannot be scavenged from the host and 
must be synthesized de novo [56]. The biosynthesis of 
MAs begins with the synthesis of saturated  C16–18, 22–26 

Table 1 An overall summary of available anti-tuberculosis drugs and their characteristics

a these drugs are in clinical trials

Drug name Targets Mechanisms of action Genes involved in resistance

Rifampicin RNA polymerase, β subunit Inhibits RNA synthesis [11, 12] rpoB

Isoniazid Enoyl- [acyl-carrier protein] reductase 
(InhA)

Inhibits mycolic acid biosynthesis and 
affects the metabolism of DNA, lipid, 
carbohydrate, and NAD

katG, inhA, ahpC, ndh

Pyrazinamide [13] S1 component of the 30S ribosomal 
subunit

Inhibits translation and trans-translation, 
acidifies cytoplasm

pncA, FAS-I

Ethambutol Arabinosyl transferase Arabinogalactan biosynthesis inhibition embCAB

Kanamycin [14] 30S ribosomal subunit Inhibition of protein synthesis rrs

Amikacin [15] 30S ribosomal subunit Inhibition of protein synthesis rrs

Capreomycin [15] Interbridge B2a Inhibition of protein synthesis rrs, tlyA

Streptomycin S12 and 16S rRNA components of 30S 
ribosomal subunit

Inhibition of protein synthesis rpsL,rrs

Fluoroquinolones [16] DNA gyrase and DNA topoisomerase Inhibition of DNA supercoiling gyrA, gyrB, IfrA

Ethionamide Enoyl- [acyl-carrier protein] reductase 
(InhA)

Inhibition of mycolic acid biosynthesis inhA, etaA/ethA

Cycloserine [17] D-alanine racemase and ligase Inhibits peptidoglycan biosynthesis alrA, ddl

Para-amino salicylic acid [18] Thymidylate synthase (ThyA) and dihy-
dropteroate synthase

Inhibits folic acid and iron metabolism thyA, folC

Clofazimine [19] Exact target not yet known Release of reactive oxygen species (ROS) 
and cell member disruption

Rv0678, and mmpL5

Linezolid [20] 50S ribosomal subunit Inhibits protein synthesis rplC

β-lactam/β-lactamase inhibitors β-lactamases Cell wall disruption via peptidoglycan 
modulation

blaC, Rv0194

Thiacetazone Flavin monooxygenase EtaA Inhibition cyclopropanation of cell wall 
mycolic acids

etaA

Clarithromycin 50S ribosomal subunit Protein synthesis inhibition /

Bedaquiline [21] ATP synthase Inhibition of mitochondrial ATP synthase Rv0678, atpE

Delamanid [22] Exact target unknown Inhibits mycolic acid synthesis and cell 
respiration

Rv3547

Pretomanida [23] Exact target unknown Inhibits cell wall synthesis and 
causes respiratory poisoning

/

Delpazolida 50S ribosomal subunit Protein synthesis inhibition /

Sutezolida 50S ribosomal subunit Protein synthesis inhibition /

SQ109a [24] MmpL3 Inhibits cell wall synthesis /

PBTZ169a [25] DprE1 Inhibits cell wall synthesis /

Q203a [26] Cytochrome bc1 complex Inhibits ATP synthesis /
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fatty acids by the multifunctional fatty acid synthase I 
(FAS-I), which is then extended to  C48–62 by the FAS-II 
multienzyme system. At the same time, it is modified 
by a group of eight S-adenosylmethionine-dependent 
methyltransferases (SAM-MTs) in two distinct posi-
tions (distal and proximal positions on the meromy-
colic chain) [57, 58]. The cis double bonds, which are 
necessary for the process of decorating, may be con-
verted into cyclopropane by MmaA2 and PcaA [36, 59], 
or converted into a trans double bond by UmaA1 [60], 
or hydrated into hydroxylated mycolates by MmaA4 
[53, 57, 61, 62]. The product of MmaA4 can be further 
modified into keto- and methoxy-MAs by MmaA3 or an 
unidentified dehydrogenase [53], respectively. The deco-
rated MAs are finally translocated into the periplasm by 
MmpL3 [63]. Several essential enzymes involved in the 
biosynthesis of MAs (InhA, MmaA4, MmpL3, PacA, 
CmaA1, and CmaA2) that have been identified or may 
become potential targets of anti-tuberculosis drugs are 
highlighted.

Enoyl‑acyl carrier protein reductase (InhA) As a crucial 
biosynthetic enzyme involved in MAs, InhA catalyzes 
the NADH-dependent reduction of long-chain trans-2-
enoyl-ACP in type II fatty acids of Mtb [64, 65]. More 
importantly, the Mtb InhA has no human ortholog [66], 
and as such, there might be less risk of inhibitor toxicity 
occurrence. Therefore, InhA has been developed into a 
well-validated target for the treatment of Mtb, especially 
for the frontline or second line antitubercular drugs 
isoniazid and ethionamide [67]. The apo-InhA struc-
ture is a tetrameric form with a characteristic of short-
chain dehydrogenase/reductase (SDR) (Fig. 2a) [68, 69]. 
Each protomer contains a canonical fold of enoyl-ACP 
reductase, wherein several α-helices and β-strands of 
the central Rossmann fold form a deep crevice [70]. The 
complex structure of InhA with  NAD+ and a  C16 fatty 
acyl substrate demonstrates how each substrate rec-
ognizes InhA (Fig.  2b). The  NAD+ is perpendicular to 
the β-strands of the Rossmann fold. A fatty acyl sub-
strate adopts a general “U-shaped” conformation and 

Fig. 1 Pathogenesis of Mycobacterium tuberculosis. Infection begins when Mtb from aerosols or sputum undergoes phagocytosis in the lung 
reaching tissue-resident alveolar macrophages and dendritic cells. Mtb then undergoes a transient period of unrestricted intracellular replication, 
during which infected cells migrate to local draining lymph nodes. Once there, Mtb can infect other areas of the lungs by infecting other host cells. 
With the onset of cellular immunity, a local proinflammatory response leads to the recruitment of additional monocytes and lymphocytes, which 
in turn cluster around the infected macrophages, forming what is known as a granuloma. Granuloma is a pathological hallmark of tuberculosis, and 
it is thought that Mtb persists in a prolonged state of delayed or arrested replication at this site. If Mtb multiplies too much, the granuloma will not 
be able to control the infection and Mtb will eventually spread to other organs, including the brain. At this stage, Mtb can enter the bloodstream 
or re- enter the respiratory tract to be released causing new infections. The elements in the figure were drawn using biorender online tool (https:// 
biore nder. com)

https://biorender.com
https://biorender.com
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is embedded in a deep substrate-binding crevice com-
posed of several hydrophobic residues (Ala198, Met199, 
Ala201, Ile202, Leu207, Ile215, and Leu218) [71]. The 

hydrogen bond between the thioester carbonyl oxygen of 
a fatty acyl substrate and the side chain hydroxyl oxygen 
of Tyr158 is the only direct hydrogen between the acyl 

Fig. 2 Enzymes associated with mycolic acid biosynthesis. a Overall structure of Enoyl-acyl carrier protein reductase (InhA, PDB ID: 4TRM). b 
Structure of the C16 fatty acyl and NAD+ substrates bound to InhA protein (PDB ID: 1BVR). Hydrogen bonds between the active site of InhA and 
the bound C16 fatty acyl substrate are shown as gray dashes drawn between interacting atoms. c Structure of InhA protein with the INH-NAD 
adduct (PDB ID: 2IDZ). The oxygen O9 of the phosphate of the INH-NAD adduct forms a hydrogen bond with the main-chain nitrogen atom of 
Ile21 and a hydrogen bond with a well-ordered water molecule. The water molecule is part of a hydrogen-bonding network formed by interactions 
between the side-chain oxygen atom of Ser94, the main-chain oxygen of Gly14 and the oxygen atoms O3 and O9 of the INH-NAD adduct. The 
same water molecule is within hydrogen-bonding distance of the main-chain nitrogen atoms of Ile21. d Electrostatic surface of InhA in a complex 
with inhibitor NITD-916. e Cartoon representation of the MmpL3 crystal structure. The subdomain PN and PC intertwine to create a central cavity, 
which connects to three openings, a funnel at the top (PDT), an opening in the front (PDF) and an opening at the back (PDB) of the headpiece. 
TMD, transmembrane domain. f Structure of MmpL3 in a complex with lauryl maltose neopentyl glycol (LMNG). g MmpL3 inhibitor binding 
pocket for SQ109. The four layers of residues surround SQ109 like a cylinder. h Superposition of SQ109-bound, AU1235- bound, ICA38-bound, and 
Rimonabant-bound structures. It shows that all the inhibitors have similar binding positions. The electrostatic potential in all figures was computed 
using the APBS tools in PyMol (http:// www. pymol. org/)

http://www.pymol.org/
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substrate and InhA [71]. Furthermore, several hydro-
gen bonds between the fatty acyl substrate and  NAD+/ 
a water molecule, also contribute to the stability of the 
complex.

The first-line tuberculosis drug isoniazid (INH) has been 
applied in clinical treatment since the 1950s and has 
been validated to target InhA [72]. It is a prodrug, which 
requires the Mtb catalase-peroxidase KatG activation to 
generate its acyl radical or acyl anion form [67], which 
subsequently reacts with the cellular  NAD+, resulting in 
an INH-NAD adduct and consequently interferes with 
the biosynthesis of mycolic acids. This inhibition mech-
anism is also found in other anti-tuberculosis drugs 
such as ethionamide and propionamide [55, 73]. In the 
ternary complex structure of InhA-NAD-INH (Fig. 2c), 
a covalent interaction between the carbonyl carbon of 
the acyl group of INH and the carbon at position four 
of the nicotinamide ring of NAD occurs [72]. The acyl 
group of INH forms π-π stacking interactions with the 
side chain of Phe149. Several hydrogen bonds (between 
the phosphate of the NAD and the Ile21 of InhA and a 
water molecule) together with a hydrogen-bonding net-
work (consisting of Ser94, Gly14 of InhA, O3 and O9 of 
NAD) maintain the stability of the INH-NAD adduct 
[72]. Therefore, the S94A mutation in InhA not only 
reduces the affinity for NADH, but also produces resist-
ance to INH by disruption of the hydrogen-bonding 
network [72].

Multiple INH-resistant clinical strains have been found 
to contain a KatG-associated mutation [74], hence 
exploring direct inhibitors of InhA that do not require 
bioactivation such as isoniazid or ethionamide, is receiv-
ing increased attention. Various effective inhibitors of 
InhA have been screened, identified, and optimized 
through a structure-based approach, such as pyrazole 
derivatives, indole-5-amides [75], alkyl diphenyl ethers, 
triazole-based diphenyl ethers [76, 77], triclosan deriva-
tives [78], diazaborines [79], acrylamides [80], 4-hydroxy-
2-pyridones [65], prothionamide [73], methyl-thiazole 
series [52], and pyrrolidine carboxamides [81]. The bind-
ing sites of these direct InhA inhibitors can be divided 
into several regions: the catalytic or active site, the hydro-
phobic pocket that accommodates the substrate’s long 
alkyl chains, and the solvent-exposed site that is termed 
the size-limited region [52, 82, 83]. In addition, these 
inhibitors can be subdivided into cofactor-independent, 
and cofactor-dependent. The inhibition mechanism of 
some representative inhibitors is described here. A rep-
resentative NADH-dependent inhibitor that occupies the 
enoyl-substrate binding site is NITD-916 which belongs 
to the 4-hydroxy-2-pyridone family [65]. In the ternary 

complexes of InhA-NADH-NITD-916 (Fig. 2d), a variety 
of interactions stabilize the complex structure, includ-
ing π-stacking (between the pyridine ring of NITD-916 
and NADH), hydrogen bonding (between the 4-hydroxy 
group of NITD-916 and the 2′-hydroxyl moiety of 
the nicotinamide ribose sugar, and Tyr158 of InhA), 
and hydrophobic interactions (between the dimethyl 
cyclohexyl group of NITD-916 and the fatty acyl sub-
strate). Distinguished from NITD-916 which binds to the 
InhA-NADH product complex, most direct InhA inhibi-
tors bind to the InhA-NAD product complex, including 
triclosan [75], alkyl diphenyl ethers [76], and pyrrolidine 
carboxamides [81]. Some cofactor-dependent inhibi-
tors such as pyridomycin can simultaneously occupy the 
NADH and lipid substrate-binding pocket of InhA [84, 
85]. In addition, some inhibitors function in a cofactor-
independent manner, such as AN12855 which also occu-
pies both the NADH and substrate binding sites [79].

Mycobacterial membrane protein larger transporters 
(MmpL) MmpL transporter families are responsible 
for transporting fatty acids and other lipids from the 
production site to the cell wall, which is necessary for 
mycobacterial replication and viability [86, 87]. Mycobac-
terial genomes encode 13 MmpL proteins, all of which 
are necessary for the virulence of mycobacteria [88–93]. 
For example, MmpL5 and MmpL7 can effectively elimi-
nate anti-tubercular drugs, including anti-MDR-TB 
drug bedaquiline [94, 95]. As a trehalose monomycolate 
(TMM) flippase, MmpL3 translocates intracellular MAs 
(in the form of TMM) from the cytoplasm to periplasm 
[93, 96], which is a process driven by the proton-motive 
force (PMF) [97]. In the periplasmic space, a mycolate 
chain from one TMM molecule is transferred to another 
molecule to form trehalose dimycolate (TDM; cord fac-
tor), or covalently linked to arabinogalactan-peptidogly-
can layer to produce mycolyl arabinogalactan peptidogly-
can (mAGP) [98, 99]. MmpL3 is essential for shuttling of 
TMM across the cell membrane [90, 93], and the inacti-
vation of MmpL3 by small-molecule inhibitors or genetic 
methods was shown to be bactericidal [63, 100, 101]. 
Thus, MmpL3 is an excellent target for the discovery of 
anti-tubercular drugs [102–107].

Mtb MmpL3 is structurally distinct from all known 
Resistance-Nodulation-Division (RND) protein super-
family members, which is ubiquitous among bacteria, 
archaea, and eukaryotes [8, 90, 108, 109]. Mtb mmpl3, 
encoding for a protein with 61%   sequence identity 
with that encoded by Mycobacterium smegmatis (Msmg) 
mmpl3, can rescue the viability of the Msmg mmpl3 null 
mutant [93]. In addition, many significant insights into 
the interactions between Mtb MmpL3 and its inhibitors 
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are also reported using the Msmg ortholog [103, 110, 
111]. Recently, a C-terminal truncated Mtb MmpL3 (resi-
dues 1 to 753;  MmpL31–753) has been determined by cryo-
electron microscopy (Cryo-EM) (Fig. 2e) [112]. In other 
studies, the proline-rich C-terminal domain (residues 
733 to 1013) of Mtb MmpL3 was prone to proteolysis and 
was not necessary for molecular function [111, 113]. The 
transmembrane domain (TMD) of  MmpL31–753 contains 
12 transmembrane helices (TMs 1–12) organized as two 
sequence-contiguous bundles (TMs 1–6 and 7–12). Two 
periplasmic flexible loops (loop 1 and 2) are connected 
to TMs 1–2 in the N-terminal half of  MmpL31–753 (resi-
dues 37–166), and TMs 7–8 in the C-terminal half of the 
molecule (residues 415–544), respectively, generating 
two periplasmic subdomains PN and PC. Both PN and 
PC subdomains display an α-β-α-β-α-β topology, with 
the first α helix of each contributing to the tertiary struc-
ture of the adjacent loop. A singular periplasmic domain 
(PD) is observed in the interface of PN and PC, which 
acts as the pseudo-symmetry axis of the molecule. Like 
the structure of Msmg MmpL3, Mtb MmpL3 also has a 
large cavity enclosed by the PD, which is presumably 
related to the translocation of TMM [113]. This periplas-
mic central cavity has three distinct apertures orientating 
to the periplasm  (PDF,  PDB, and  PDT), which are gated 
by a combination of charged and hydrophilic residues. In 
the structure of  MmpL31–753, the detergent lauryl malt-
ose neopentyl glycol (LMNG) was immobilized within 
this central cavity in a splayed conformation, where the 
central vestibule sequesters the alkyl chains away from 
the periplasm. The proximate hydrophilic openings  (PDF, 
 PDB, and  PDT) bind to the polar head group of LMNG 
(Fig.  2f ). MmpL3 protein can recognize various lipids, 
including TMM (but not TDM), phosphatidylethanola-
mine (PE), phosphatidylglycerol (PG), phosphatidylinosi-
tol (PI), and cardiolipin (CDL) [111]. All of these adopt 
a segmentation-binding mode like that of LMNG, which 
permits specific molecules to enter or exit. Superimpo-
sition of the complex structures of MmpL3 with differ-
ent lipid substrates revealed that their conformations 
have different periplasmic central cavity volumes, which 
is induced by the rigid movement of subdomain PN, and 
the corresponding rearrangement of several TMs [114].

A series of Msmg MmpL3 inhibitors with diverse chemi-
cal scaffolds have been reported [115–122] and can be 
divided into nine classes, including ethylenediamines 
[24, 115, 123], urea derivatives [93, 124], indolcarboxa-
mides [117, 121, 125], pyrroles and pyrazoles [126], tet-
rahydropyrazolopyrimidine carboxamides [127, 128], 
spirocycles [127, 128], piperidinol derivatives [129, 130], 
benzimidazoles [131], and HC2091 [132]. Some of these 
compounds were observed to synergize with existing 

anti-tubercular drugs [118, 121, 133]. Multiple research 
advancements of the complex structure of MmpL3 and 
its inhibitors indicate that most MmpL3 inhibitors are in 
the central pocket within the TMD and exert their activ-
ity by disrupting hydrogen bonding interactions between 
two conserved Asp-Tyr pairs, resulting in blocking the 
proton motive force that drives substrate translocation. 
An example is SQ109 which clearly illustrates the mecha-
nism of action of these inhibitors. SQ109, an ethylen-
ediamine compound, shows strong bactericidal activity 
against all forms of Mtb, including drug-resistant clinical 
strains [115, 134]. It is a promising preclinical anti-tuber-
culosis drug candidate and has been studied in phase 
2b/3 clinical trials [24]. The crystal structure of MmpL3 
in the complex with SQ109 shows that SQ109 is bound 
to the center of the TMs bundle in an extended confor-
mation (Fig.  2g) [103]. Upon inhibitor binding, most of 
the six C-terminal TMs (TMs 7–12) were induced to 
move away from the center of the TM region, generat-
ing a pocket with a volume of 282 Å3 to accommodate 
SQ109. The interactions between SQ109 and MmpL3 are 
mainly hydrophobic, and the interface between SQ109 
and MmpL3 can be divided into four layers (layer 1–4). 
The geranyl tail is inserted into the upper hydrophobic 
region of the pocket and stabilized by the hydrophobic 
constituents of layer 1 (Ile249, Ile319, Ala637, Val638, 
and Ser301) and layer 2 (Ile253, Ile297, Gly641, Leu642, 
and Leu686). Meanwhile, the side chain of Leu642 moves 
3.1 Å away from the center of the TM bundle, which pro-
vides space for the methyl group protruding from the 
SQ109 backbone. In layer 3, two amide nitrogen groups 
of SQ109 interact with the side chain of Asp645 by hydro-
gen bonds. The adjacent Ser293 participates in the hydro-
gen bonding network, stabilizing Tyr257 and Asp645. 
However, due to the movement of TMs, the hydrogen 
bond (between Asp256 and Tyr646) observed in the 
apo structure disappeared in the complex structure of 
MmpL3 with SQ109. Consequently, both Asp-Tyr pairs 
(Asp256-Tyr646 and Asp645-Tyr257), which are known 
to be involved in the proton-relay network, are broken 
due to the binding of SQ109. The adamantine group of 
SQ109 resides in the hydrophobic bottom pocket (layer 
4), which is surrounded by hydrophobic residues Phe260 
and Phe649. The phenyl groups of Phe260 and Phe649 
undergo significant conformational changes upon SQ109 
binding, and their phenyl ring rotates by 7 Å, forming a 
V-shaped structure, which matches with the adamantine 
group of SQ109.

Aside from SQ109, several inhibitors of MmpL3, includ-
ing AU1235, ICA38, Rimonabant, NITD-349, and SPIRO, 
have shown a strong bactericidal ability against Mtb, and 
have been proven to target MmpL3 [117, 125, 128, 135]. 
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Structures of MmpL3 bound with these inhibitors show 
that these inhibitors bind in the same pocket as that of 
SQ109 (Fig.  2h) [103]. Structurally, all these inhibitors 
have a hydrophobic head and tail, and central nitrogen 
atoms, which form hydrogen bonds with the conserved 
Asp645, destroying the proton relay and thereby block-
ing the proton motive force used for substrate transloca-
tion. However, due to the diversity of the inhibitors’ skel-
etons, the specific interactions of these compounds are 
quite different. For example, the bulky tri-fluorophenyl 
group of AU1235 that occupies the hydrophobic subsite 
on the top of the pocket can generate more hydropho-
bic interactions than does the geranyl tail of SQ109; and 
the distance moved by C-terminal TMs bundle induced 
by inhibitors, as well as the volume of the corresponding 
binding pocket are also different among these inhibitors. 
Notably, a recent study on the mutational landscape of 
drug resistance of Mtb variants shows that most muta-
tion sites are either concentrated or near to (< 10 Å) the 
drug-binding pocket [112]. Therefore, it is suggested that 
alternative inhibitors targeting other domains should be 
developed [112].

Mycolic acid methyltransferase (MmaA4) Compared 
with other SAM-MTs, the structures of apo-MmaA4 and 
MmaA4-SAM complex both contain a typical core SAM-
MT fold [a central seven-stranded β-sheet (β3-β2-β1-β4-
β5-β7-β6) with three helices flanking on each side] and 
several individual components [including an α helical 
at the N-terminal, and a set of four antiparallel α helical 
(α2-α5) between strands β6 and β7] (Fig. 3a) [136, 137]. 
A hydrophobic tunnel of MmaA4 (residues 180 to 216, 
called α2-α3 motif ) protrudes from the protein surface 
to the cofactor binding site and covers α2 and α3 helices, 
and the sequence connecting α3-αE displaying the same 
basic/hydrophobic patches as other SAM-MTs [136, 
138]. This α2-α3 motif has closely related biochemical 
functions to SAM-MTs, such as determining whether 
the decoration reaction occurs at the proximal or distal 
position, accommodating hydrophobic substrates, and 
is compatible with its meromycolate substrate processed 
protein [acyl carrier protein from Mtb (AcpM)] with an 
acidic/hydrophobic patch [138, 139]. The pore size of 
the tunnel is determined by the steric obstruction gener-
ated by three hydrophobic residues, Ile201, Val205, and 
Leu214 [136]. The SAM cofactor locates in a crevice at 
the top of the central β-sheet and is stabilized by the 
polar/van der Waals interaction (Fig.  3b) [136]. SAM-
binding induces the structural rearrangement of the seg-
ment (residues 147 to 154) from the disordered loop to 
the short η1-helix (residues 148 to 150) [136]. In addi-
tion, the superimposed structures of apo-MmaA4 and 
MmaA4-SAM binary complex also demonstrated that 

some unique structural elements only exist in the latter, 
such as the helices ηx at the N-terminus. The above struc-
tural information can be applied to guide the design of 
competitive inhibitors of SAM cofactors and analogues.

By screening a library of fragments, several bound ligands 
(ZT218, ZT260, ZT275, ZT320, ZT424, ZT585, ZT726) 
of MmaA4 have been identified (Fig.  3c). These ligands 
have two binding regions (one located in a deep crevice 
that accommodates substrate/ SAM cofactor, and the 
other located on the surface of protein), and two different 
binding modes (Fig.  3d) [58]. Fragment ZT218, ZT260, 
ZT585, and ZT424 have the same binding mode as the 
SAM cofactor [58, 136]. However, two fragments ZT275 
and ZT320, which are located at the substrate-binding 
site of MmaA4, induce rearrangement of a segment (resi-
dues 147–154 loop) to generate a new conformation, and 
cause the inability of the cofactor to be compatible with 
the MmaA4, which indicates that the allosteric inhibitors 
of MmaA4 can be designed [58]. In the complex struc-
tures of MmaA4 with ZT275/ZT320, the residue Phe148 
of helix η1 is pushed away from its original positions 
(about 10 Å) in the complex structure of MmaA4-SAM, 
and the position of adenine moiety of the cofactor is 
occupied by residues Glu149 and His150 [58]. A similar 
conformational change of the helix η1 is also observed in 
the complex structure of MmaA4-ZT424, and this com-
pound bound to the position of the adenine moiety of 
SAM cofactor by van der Waals interactions [58]. Apart 
from the position of the substrate-binding, fragments 
ZT260, ZT320, and ZT585 can also bind to the different 
regions of MmaA4 surface [58]. Among these three com-
pounds, the planar aromatic ring of ZT260 and ZT320 is 
intercalated between the guanidinium group of the two 
arginine residues, and forms a perpendicular aromatic-
aromatic interaction with the indole moiety of Tyr84; 
while ZT585 is located between two protein molecules 
through van der Waals/hydrogen bonds [58]. Generally, 
based on the structural insights into the above-men-
tioned fragments with MmaA4, chimeric inhibitors with 
improved binding affinities shall be designed.

Mycolic acid cyclopropane synthases Based on the spe-
cific modification at the distal and proximal positions 
of the acyl chain, Mtb MAs can be divided into three 
classes, including α-, keto-, and methoxymycolates [138]. 
The α-mycolates contain a cis cyclopropane ring at both 
positions, while keto- and methoxymycolates have oxy-
genated functional groups at the distal position and a cis 
or trans cyclopropane ring at the proximal position [138]. 
The hydroxylation modification catalyzed by MmaA4 
has been discussed above, and here the cyclopropana-
tion modification is discussed. The cyclopropanation of 
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MAs has been proven to be closely related to the patho-
genicity, persistence, anti-oxidative stress, fluidity, and 
permeability of mycobacterial cell wall [34, 53, 140]. For 
example, the cyclopropanation catalyzed by PcaA (also 
named UmaA2) is essential for the nucleation mor-
phology of Mtb [138]. Outside of PcaA, cyclopropane 
synthases CmaA1 and CmaA2, are also responsible for 
the cyclopropanation of MAs, among which CmaA1 
catalyzes cyclopropanation at the distal position, while 
CmaA2 catalyzes the modification at the proximal posi-
tion, which is similar to PcaA [35, 138, 141, 142]. All 
three proteins are SAM-dependent methyltransferases, 

which catalyze methyl transfer through the general acid 
and base mechanism.

These three cyclopropane synthases share 50–75% 
sequence identity with several other homologous MA 
methyltransferases (including MmaA1–4, UmaA1 [8, 
138]), one of which CmaA1 is the search model for 
structural analysis of MmaA4 protein determined by 
molecular replacement [136]. Superimposition of the 
structures of CmaA2, PcaA, and CmaA1 illustrates 
that there is little difference in their overall fold, and 
all contain a core seven-stranded antiparallel β sheet 

Fig. 3 Enzymes participating in the specific modification of mycolic acid. a Structure of MmaA4 (PDB ID: 2FK7). b Structure of MmaA4-SAM (PDB ID: 
2FK8). The electrostatic potential was computed using the APBS tools in PyMol (http:// www. pymol. org/). c, d Structure of MmaA4-inhibitors (PDB 
ID: 7Q2B-H). e Superposition of CmaA1, CmaA2 and PcaA (PDB ID: 1KP9, 1KPI, 1L1E). f Structure of CmaA1-SAH-CTAB/DDDMAB (PDB ID: 1KPG, 1KPH)

http://www.pymol.org/
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(β3-β2-β1-β4-β5-β7-β6) with α helices flanking either 
side (Fig. 3e). Given its characteristics and common fea-
ture, CmaA1 is a representative to describe how these 
cyclopropane synthases recognize their cofactor and lipid 
substrates. The ternary structures of CmaA1-SAH-CTAB 
and CmaA1-SAH-DDDMAB share the same overall fold 
as that of apo-CmaA1, excluding residues 137 to 144, and 
the first 20 residues at the N-terminal end [138]. When 
the ternary complex is formed (Fig.  3f ), the fragment 
(residues 137 to 144) undergoes a conformational change 
from a flexible loop to a  310 helix, and this helix forms a 
narrow channel, making the cofactor and lipid substrate 
binding sites connected [138]. The changed conforma-
tion pushes the β5-α11 loop (residues 170 to 210) away 
from the cofactor binding site (5–10 Å), which leads to 
the lipid-binding pocket being closer to the surface and 
makes it shallower [138]. The cationic substrates with an 
alkyl chain are filled in the hydrophobic/basic tunnel in 
a U-shaped conformation. Only hydrophobic interac-
tions occur between the protein and the lipid substrate. 
However, multiple sets of hydrogen bonds and van der 
Waals interactions stabilize the cofactor on the top of 
the central β-sheet. Residues involved in the interac-
tions between protein and cofactor or lipid substrates are 
conserved among these three mycolic acid cyclopropane 
synthases. The α9 helix, the only distinct region among 
the three cyclopropane synthases, is involved in the for-
mation of the entry point of the lipid-binding pocket 
and may be related to the position of cyclopropanation 
modification in MAs acyl chain [138]. This speculation is 
based on the fact that the α9 helix forms a planar surface 
in the proximal enzymes (CmaA2 and PcaA), but forms a 
domed, protruded surface in the distal enzyme (CmaA1). 
The planar surface is more conducive to the binding of 
acyl carrier protein and subsequent catalytic reaction.

Enzymes involved in Lipid metabolism

Isocitrate lyases (ICLs) Given that conventional anti-
mycobacterial drugs have little effect on the persistent 

bacteria, it is urgent to identify novel targets that are 
highly associated with persistent infection, to develop 
new antimycobacterial agents. During the chronic stages 
of Mtb infection, lipids (especially odd-chain fatty acids 
and cholesterol) are preferentially utilized as the pri-
mary carbon source [143–146], simultaneously trigger-
ing a corresponding metabolic shift from tricarboxylic 
acid (TCA) cycle to glyoxylate shunt and methylcitrate 
cycle [147, 148]. Glyoxylate shunt and methylcitrate cycle 
exist in most prokaryotes, lower eukaryotes, and plants, 
but not in vertebrates [149]. The essential magnesium-
dependent isocitrate lyase (two isoforms, ICL1 and ICL2) 
is a key enzyme for two pathways [147, 150–152]. These 
two isocitrate lyases reversibly catalyze the retro-aldol 
cleavage of isocitrate and methylcitrate to form glyoxy-
late and pyruvate, respectively, as well as the same prod-
uct succinate. Then, acetyl-CoA is added to the metabo-
lite glyoxylate to form malate through malate synthase 
(encoded by the gene glcB [153]). ICLs are essential for 
Mtb survival [147, 150], because the activity of ICLs 
increases dramatically as the cells reach the stationary 
phase [154], and when Mtb infects human inflammatory 
macrophages, its mRNA level also increases [155–157]; 
disruption of icl leads to the growth impairment of Mtb 
[157]. Additionally, it was validated that ICLs are associ-
ated with bacterial virulence [151], and antibiotic toler-
ance [158]. Taken together, the essentiality of ICLs and 
the absence of homologous enzymes in humans make 
them attractive therapeutic targets against latent infec-
tions [159–161].

Though ICL1 and ICL2 share 27% sequence identity, their 
overall structures are quite different [162, 163]. ICL1 is a 
homo-tetramer (Fig. 4a), and each subunit consists of 14 
α-helices and 14 β-strands. The core of the structure con-
sists of eight α helices (α4-α11) and eight β-strands (β2-
β5, β8, β12-β14), forming an α/β-barrel [(βα)2α(βα)5β] 
[162]. Two adjacent subunits are connected to each other 
by the exchange of C-terminal regions containing helices 
α12 and α13. ICL1 possesses an active site loop (residues 
185 to 196), which contains a conserved catalytic motif 

Fig. 4 Enzymes associated with cellular lipid metabolism. a Structures of ICL1 homotetramer (Left, PDB ID: 1F61) and ICL2 (Right, PDB ID: 6EDW). 
ICL2 forms an elongated structure with C-terminal dimers at each end of the structure. b Striking structural rearrangement of ICL2 upon binding 
to acetyl- CoA (PDB ID: 6EE1). In both a and b, each monomer is shown in different color. c The dimeric association of the C-terminal domains 
in the ligand-free (top) and acetyl-CoA-bound (bottom) ICL2. Acetyl-CoA is shown as sticks. d Left: structure of the ternary complex of the ICL1 
with glyoxylate (GA) and 3-nitropropionate (shown as succinate, SA) (PDB ID: 1F8I). Right: Schematic diagram of ICL interactions with glyoxylate 
and succinate. e Structure of ICL1 in a complex with 3-bromopyruvate (PDB ID: 1F8M). Pyruvyl moeity (purple) is formed by covalently binding 
3-bromopyruvate to C191 of ICL1. f Structure of pantothenate synthetase (PS, PDB ID: 3COV). A side view of the dimer structure shows that it 
resembles the shape of a butterfly. g Structures of PS in a complex with different substrates (ATP, pantoate, pantoyl adenylate, AMP and β-alanine), 
respectively. h-j Structure of PS in a complex with different inhibitors. Inhibitor 1, 5′-O-{[(2R)-2-hydroxy-3,3-dimethylbutanoyl]sulfamoyl}adenosine; 
Inhibitor 2, (5-methoxy-2-{[(5-methylpyridin-2-yl)sulfonyl]carbamoyl}-1H-indol-1-yl)acetic acid; Inhibitor 3, 2-(2- (benzofuran-2-Ylsulfonylcarbamo
yl)-5-methoxy-1H-indol-1-yl)acetic acid. The electrostatic potential in all figures was computed using the APBS tools in PyMol (http:// www. pymol. 
org/)

(See figure on next page.)

http://www.pymol.org/
http://www.pymol.org/
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Fig. 4 (See legend on previous page.)
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K189KCGH193. More structural details are described 
below in the complex structures of ICL1 with various 
inhibitors. Unlike ICL1, there are a few studies related 
to the structure of ICL2. ICL2 packs as a homo-tetramer 
with an elongated conformation (Fig.  4a) [163]. Each 
protomer is made up of two distinct domains, a catalytic 
N-terminal domain (residues 1 to 592), and a regulatory 
C-terminal domain (residues 607 to 766), connected by 
a flexible linker (residue 591 to 602). The N-terminal 
domain consists of an α/β-barrel central structure (simi-
lar to ICL1) and a unique helical substructure (α10-α16; 
residues 278–427). The C-terminal domains from two 
subunits associate with each other at each end of the 
ICL2 structure, assembling into a barrel-like structure. 
Additionally, ICL2 also has an active site loop contain-
ing residues Lys213 to His217. The activity of ICL2 is 
activated by the binding of acetyl-CoA or propionyl-CoA 
[163], along with a remarkable structure rearrangement 
in the binding process [163]. In the complex structure 
of ICL2/ acetyl-CoA (Fig.  4b-c), the C-terminal domain 
from one monomer moves 77 Å towards the center of 
ICL2, and rotates about 176°, forming a new dimer with 
the C-terminal domain from the opposite monomer 
[163]. This allosteric activation induced by acetyl-CoA or 
propionyl-CoA is a crucial mechanism during persistent 
infection with lipids as the primary carbon source.

A series of ICL1 inhibitors have been reported, rang-
ing from small molecules to peptides [164–171], such 
as 3-bromopyruvate [170], 3-nitropropionate (shown as 
succinate, SA) [171], and 2-vinyl-D-isocitrate (2-VIC) 
[167]. Most of these can be classified as covalent inhibi-
tors, with an advantage that they do not easily promote 
bacterial drug resistance [172–174]. Some inhibitors, 
including 2-VIC, are pro-drugs, and require a base-cat-
alyzed retro-aldol cleavage by ICL1 to form an interme-
diate. Generally, these inhibitors adopt the same inhibi-
tion mode that covalently modifies the active site residue 
Cys191 to form a covalent adduct, thus trapping the 
enzyme in a closed configuration, and the solvent can-
not access the active site [162]. Here, 3-bromopyruvate 
and 3-nitropropionate are taken as examples to describe 
their inhibition mechanism, these two inhibitors are 
good compounds for the structure-based drug design. 
In the ternary complex structure of ICL1 (C191S)/gly-
oxylate (GA)/SA (Fig.  4d), GA is coordinated by the 
active site  Mg2+ and several hydrogen bonds with resi-
dues Ser91, Gly92, Trp193, and Arg228. One carboxylate 
of 3-nitropropionate (3-nitropropionate was replaced 
by succinate in the Fourier density map) makes specific 
hydrogen bonds with residues Asn313, Glu295, Arg228, 
and Gly192, while the second carboxylate forms hydro-
gen bonds with Thr347, Asn313, Ser315, and Ser317 

[171]. The C2 and C3 methylene carbons of 3-nitropro-
pionate are stacked with residues Trp93, Thr347, and 
Leu348. In the complex structure of ICL1/3-bromopyru-
vate (Fig. 4e), the pyruvyl moiety makes hydrogen bonds 
with residues His193, Asn313, Ser315, Ser317, Thr347, 
and a water molecule, as well as a covalent linkage with 
Cys191, resulting in an ICL1-inhibitor covalent adduct. 
In this complex structure, solvent molecules occupy the 
glyoxylate-binding site. Inhibitors induced conforma-
tional changes. In the apo structure of ICL1, the active 
site loop (residues 185–196) preferentially maintains an 
open and solvent-accessible conformation [162], where 
Cys191 is positioned at a considerable distance away 
from other catalytic residues. Upon binding the inhibi-
tor, significant conformational changes take place in two 
regions. Firstly, the active-site loop moves 10–15 Å and 
adopts a closed, solvent-inaccessible conformation [162], 
thus preventing the substrate from approaching the cata-
lytic site. However, there is enough space for the inhibi-
tor to migrate and react with Cys191 in the closed active 
site. Secondly, the last 18 residues (residues 411 to 428) at 
the C-terminus of the adjacent subunit move and lie on 
the top of the active site loop, further locking it into the 
closed conformation.

Some other special properties of remaining covalent 
inhibitors are summarized below. 2-VIC was cleaved by 
ICL1 to produce an enzyme-bound Michael acceptor, 
2-vinylglyoxylate (2-VG), which subsequently combines 
with Cys191 to form a reversible, covalent adduct [167]. 
Additionally, 2-VIC has a time-dependent inactivation 
effect on ICL2. Itaconate, structurally analogous to suc-
cinate, covalently inhibits two ICL isoforms by catalyzing 
the conjugate addition at the cysteine residue (Cys191 
of ICL1 and Cys215 of ICL2) [175]. To overcome some 
defects of these inhibitors, such as low cell permeability, 
toxicity, and easy elimination or reversal of inhibition in 
the presence of free thiols (e.g. DTT and glutathione), 
more durable covalent inhibitors of ICLs are explored. 
Examples include (2R,3S)-2-hydroxy-3-(nitromethyl)-
succinic acid (5-NIC) and cis-2,3-Epoxy-succinic acid 
(cis-Eps). 5-NIC undergoes retro-aldol cleavage to form 
glyoxylate and 3-nitropropionic acid (3-NP) [161], and 
the latter reacts with the Cys191 of ICL1 to form a more 
stable and irreversible ICL1-thiohydroxamate adduct 
[161]. cis-Eps, the most potent irreversible covalent 
inhibitor of ICL1 yet discovered, can bind to the succi-
nate subsite of ICL1 and form a covalent adduct with the 
proximity of Cys191 [176].

Pantothenate synthetase (PS) Pantothenate (vitamin 
B5) is a necessary precursor for the biosynthesis of coen-
zyme A (CoA) and acyl carrier proteins (ACP). These 
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two proteins play crucial roles in numerous cellular pro-
cesses, such as energy and fatty acid metabolism [177, 
178]. Microorganisms and plants are capable of de novo 
pantothenate synthesis, while mammals can only obtain 
this fundamental nutrient through their routine diet 
[179]. Consequently, the pantothenate biosynthetic path-
way provides potential targets for antimicrobial agents 
[9, 180]. The pantothenate biosynthetic pathway consists 
of four steps, catalyzed by the product of panB, panC, 
panD, and panE genes respectively [181, 182]. The pan‑
BCDE cluster encodes ketopantoate hydroxymethyltrans-
ferase, pantothenate synthetase (PS), aspartate-1-decar-
boxylase, and ketopantoate reductase, respectively. PS 
catalyzes the final step of pantothenate biosynthesis, a 
magnesium-ATP-dependent condensation of pantoate 
with β-alanine to generate pantothenate. There are two 
consecutive reactions: from ATP and pantoate to form 
an enzyme-bound intermediate (pantoyl adenylate), and 
then the intermediate is nucleophilically attacked by 
β-alanine to produce pantothenate and AMP [183, 184]. 
Pantothenate biosynthesis is necessary for the virulence 
of Mtb, and it was found that Mtb pantothenate auxo-
trophy with panC (Rv3602c) and panD (Rv3601c) gene 
defects was highly attenuated in mice infection models 
[185]. And an attenuated Mtb strain, with both panCD 
and the primary attenuating mutations of the Bacilli Cal-
mette-Guérin (BCG) strain removed, was investigated as 
a potential human vaccine candidate to prevent TB [186]. 
Therefore, there is a growing interest in using Mtb PS as 
an antitubercular target, and a series of methods have 
been used to find the inhibitors of this enzyme [187, 188].

The dimer structure of Mtb PS is butterfly-shaped, which 
is similar to the structure of E. coil PS enzyme (Fig.  4f ) 
[177, 189]. Each subunit is composed of two domains: a 
large N-terminal domain (residues 1 to 186) employing 
a Rossmann fold, and a smaller two-layered C-terminal 
domain (residues 187 to 290) with a helical layer on top 
of a three-stranded antiparallel β-sheet. The enzymatic 
active-site cavity is located in a cleft between strands 
β2 and β6 and is partially covered by β-strands from the 
C-terminal domain. This closed conformation contrasts 
with the open form of the E. coil PS, whose C-terminal 
domain is typically away from the active-site cavity 
[189]. A flexible region (residues 74 to 88) forms a wall 
to the active site cavity (termed flexible wall), while it 
becomes ordered upon binding of the reaction interme-
diate bound, thus serving as a gate to the active-site cav-
ity. Additionally, four arginine residues (Arg198, Arg132, 
Arg273, Arg278) form a positively charged region cover-
ing the active-site cavity, which might be used to manipu-
late the negatively charged substrates [177].

Aside from the residues on the flexible wall, no signifi-
cant conformational changes are observed between the 
structures of apo Mtb PS and its various complexes. 
Notably, different crystal packing environments lead to 
different substrate occupancy at two active sites [177, 
190]. The complex structures of PS with five ligands 
(ATP, pantoate, pantoyl adenylate, AMP, β-alanine) are 
referred to describe their interactions with the enzyme 
(Fig. 4g). (1) Substrate ATP is tightly bound to the bot-
tom of the active-site cavity through hydrophobic and 
hydrogen bonding interactions. Its adenine group is 
flanked by Gly46 and Lys160, where the N1 and N6 
atoms make hydrogen bonds with the main-chain atoms 
of Val187 and Met195/Val187, respectively. The N3 
atom faces the hydrophobic side chains of Val184 and 
Leu50. The hydroxyl groups of ribose make hydrogen 
bonds with the side chain of Asp161 and several main 
chain atoms from the bottom of the active-site cavity 
(including Gly158, Phe156, and Pro38). The phosphate 
groups turn back towards the top of the active-site 
cavity and are located near the N-terminal end of heli-
ces α2 and  3107. Its α-phosphate forms water-mediated 
hydrogen bonds with Met40, Gly41, and His47; β- and 
γ-phosphate groups form salt bridges with Lys160 and 
Arg198, respectively. The bridging oxygen between the 
α- and β- phosphates makes a hydrogen bond with the 
Met40. The cofactor magnesium ion binds to the ATP 
and has a perfect octahedral coordination with three 
ligands from oxygen atoms of the phosphate groups 
and the other three from water molecules. (2) Another 
substrate, pantoate, occupies the hydrophobic pocket 
within the active-site cavity, and its carboxyl oxygen is 
close to the α-phosphorus atom of ATP, allowing for in-
line nucleophilic attack. The pantoate molecule is tightly 
bound through hydrogen bonds (with the side chains of 
Gln72 and Gln164) and hydrophobic interactions (with 
side chains of Pro38, Phe157, and Met40). (3) The reac-
tion intermediate pantoyl adenylate is tightly bound to 
the bottom of the active-site cavity in an almost linear 
conformation, suggesting that non-reactive analogs 
of pantoyl adenylate are effective inhibitors of the PS 
enzyme. The binding mode of pantoyl adenylate is equal 
to that of the pantoate and the adenosine group of ATP. 
Its α-phosphate group forms a covalent bond with the 
carboxyl group of pantoate moiety, and a hydrogen bond 
with the amide nitrogen of Met40, simultaneously. (4) 
The binding modes of product AMP are similar to those 
of ATP. However, the phosphate group of AMP has tor-
sional flexibility and is slightly rotated with respect to 
the α-phosphate of ATP. (5) The phosphate group of 
pantoyl adenylate probably acts as an anchor for the ini-
tial binding of β-alanine by providing hydrogen-bonding 
and/or favorable charge-charge interactions [177, 190]. 
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The upper part of the active-site cavity is occupied by 
β-alanine, but its binding affinity is weaker than that of 
the other molecules. Its amino group makes water-medi-
ated hydrogen bonds with the phosphate group of the 
intermediate, and its carboxyl group makes a hydrogen 
bond with the side chain of Gln72, fixed by the Asn69 
through a hydrogen bond. In addition, its carboxyl group 
forms charge-charge interactions and π-electron interac-
tions with the side chains of Arg198 and His135.

Currently, the research on PS inhibition mainly 
focused on the synthesis of non-reactive analogues of 
the reaction intermediate [191, 192], or the identifi-
cation of hits by high-throughput screening coupled 
with structure-based validation [193–198]. The inhibi-
tion mechanism of several inhibitors is discussed here. 
(1) 5′-O-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]-sul-
famoyl-adenosine (inhibitor 1), an analogue of pantoyl 
adenylate, exhibits dissociation and inhibition con-
stants in a nanomolar scale [191]. The binding mode of 
this inhibitor is nearly identical to that of pantoyl ade-
nylate (Fig.  4h) [191, 199], and its adenine and ribose 
moiety make the same interactions as that of pantoyl 
adenylate. In addition, its sulphonamide group inter-
acts with the side chain of His44 and the backbone 
amide of Met40. An ordered network of water mole-
cules, which is found around the sulphonamide group, 
mediates hydrogen bonds between the carboxylate 
moiety of Asp161 and the sulphonamide and carbonyl 
group of inhibitor 1. The terminal hydroxyl group 
forms hydrogen bonds with the side chains of Gln72 
and Gln164, and its replacement with an amine would 
significantly weaken the binding affinity. (2) (5-meth-
oxy-2-[(5-methylpyridin-2-yl) sulfonyl] carbamoyl-
1H-indol-1-yl) acetic acid (inhibitor 2) derived from 
the fragment-growing of compound 5-methoxyindole 
[197, 200], is an ATP-competitive inhibitor of Mtb PS. 
It occupies the P2 site (used for the binding of pyroph-
osphate and β-alanine) of Mtb PS, and its OMe group 
and sulfone oxygen make hydrogen bonds with the 
backbone nitrogen of Val187, and both the backbone 
amide group of Met40 and the side chain of His47, 
respectively (Fig.  4i). (3) 2-[(1-benzofuran-2-ylsulfo-
nyl) carbamoyl]-5-methoxy-1H-indol-1-yl-acetic acid 
(inhibitor 3) [197], is a product of fragment-linking of 
5-methoxyindole and 1-benzofuran-2-carboxylic acid 
[201, 202]. The binding mode of indole acyl sulfona-
mide moiety of inhibitor 3 is similar to that of inhibitor 
2. The benzofuran group is found at the P1 site (used 
for the binding of pantoate), and its carboxyl group 
makes hydrogen bonds with the Met40 and His47 of 
the enzyme (Fig. 4j) [197] and could also function as a 
pantoate-competitive inhibitor.

Enzymes involved in amino acid metabolism

Lysine‑ε amino transferase (LAT) Mtb has a remarkable 
capacity for persistence in the human host, causing latent 
infection in a quarter of the world’s population [203]. As 
an abnormally expressed gene during the stationary and 
non-replicating persistence phase of Mtb, LAT is upreg-
ulated by 41.86 times in in  vitro models of tuberculosis 
[204–206]. A large number of research results have dem-
onstrated the essential role of LAT in contributing to the 
long-term persistence of Mtb, and it may be listed as a 
fascinating potential target for latent tuberculosis [207]. 
Functionally, this enzyme is a pyridoxal-5′-phosphate 
(PLP)-dependent type II aminotransferase [208], which 
participates in the metabolism of L-lysine in a variety of 
organisms and catalyzes reversible transamination reac-
tions from L-lysine to α-ketoglutaric acid, producing 
piperidine-6-carboxilic acid and L-glutamate [209–211].

The structure of apo-Mtb LAT is a homodimer, which 
is maintained by polar interactions and water-mediated 
interactions between the interface [212]. The overall 
fold of Mtb LAT is conserved across many other mem-
bers of this enzyme family [209, 213], which consists 
of a large and small domain with the co-factor sand-
wiched between them (Fig. 5a). The active site of LAT 
is composed of residues from both subunits, includ-
ing Glu243, Arg422, Gln274, Lys300, Arg170, Phe167, 
Thr330, and Asn328, among which the latter two come 
from the symmetry-related subunit. In the internal 
aldimine (PLP-bound) form of LAT, PLP is located in 
a pocket created by several residues from two mono-
mers (Gly128, Ala129, Phe167, His168, Glu238, 
Asp271, Val273, Gln274, and Lys300 from one subu-
nit; Ser329 and Thr330 from another subunit). Various 
contacts occur between PLP and the enzyme, including 
the Schiff base linkage with the active site Lys300, the 
hydrogen bonding between N1 of PLP and conserved 
Asp271, and hydrogen bonding between the phosphate 
moiety of PLP and Thr330, Gly128, Ala129, and several 
water molecules. To accommodate the lysine substrate, 
the PLP moiety rotates by about 14° around N1. A simi-
lar conformational change also occurred in the PMP 
(pyridoxamine 5′-phosphate)-bound LAT complex 
structure (Fig. 5b). In the structure of LAT in complex 
with PLP and lysine substrate (external aldimine form), 
the lysine occupies a pocket created by Val63, Lys300, 
Ser329, and Thr330 through bidentate hydrogen bonds 
with Arg170, and forms a stable internal N-C covalent 
bond with PLP. Then, the Schiff base linkage between 
PLP and Lys300 is broken and replaced by the Lys300-
Thr330 interaction. Subgroup II aminotransferases 
adopt a characteristic “Glu243 switch” mechanism in 



Page 15 of 36Yan et al. Molecular Biomedicine            (2022) 3:48  

substrate selection and reaction specificity. In the com-
plex structure of LAT-lysine-PLP, Glu243 shields the 
positively charged Arg422 by making a salt bridge with 
this residue, and its  Cγ and  Cδ atoms also engage in 
van der Waals interactions with the  Cδ and  Cε atoms of 
the substrate. All of these interactions prevent interac-
tions between the carboxylate group of the substrates 
and Arg422 and prevent the undesired transamination 
at the α-amino group of the substrate, thus providing 
substrate specificity. Compared with the external form 
of LAT, a significant conformational change of Glu243 
is observed in the complex structure of LAT bound 
with C5 substrates (L-Glutamate or α-ketoglutarate, 
KGA) (Fig.  5c). The Glu243-Arg422 interaction is dis-
rupted and substituted by an open configuration, which 
is favorable for the binding of C5 substrates. Structur-
ally, the α-carboxylate group and γ-carboxylate group 
of α-ketoglutarate interacts with Arg422 and Arg170, 
respectively. The interactions with the conserved 
Asn328 and several water molecules are also con-
tributing to the stability of the C5 substrate. In these 

structures of LAT, variable numbers of water molecules 
are observed in the enzyme’s active site, which has 
been proposed to play an essential role in the stability 
of complex structures.

The crystal structure of LAT bound to substrates has 
been  explored for structure-based drug discovery. Sev-
eral hit inhibitors of LAT have been reported, including 
a thiazole derivative [214], a 2-aminomethyl piperidine 
derivative [215, 216], and benzothiazole-based inhibi-
tors [217]. The binary structure of LAT/2-aminomethyl 
piperidine derivative [(2S)-1-methyl-2-(2S,4R)-2-methyl-
4-phenylpentyl-piperidine, L18] inhibitor demonstrates 
that this inhibitor imitates the binding of C5 substrates 
(Fig.  5d) [215]. Further, the docking results of remain-
ing potential inhibitors of LAT also demonstrate that all 
these compounds occupy the active-site cavity and have 
approximately the same binding mode as the ligand [214, 
217]. In addition, all these compounds exhibit effective 
activity against dormant tuberculosis, similar to some 
drug candidates, such as (8-Hydroxy quinoline) [218], 

Fig. 5 Enzymes associated with amino acid metabolism. a Structures of lysine-ε amino transferase (LAT) in the internal aldimine form (PDB ID: 
2CIN) and external aldimine form (PDB ID: 2CJD). PLP, pyridoxal-5′-phosphate. b, c Electrostatic surface of LAT in complex with substrate PMP (PDB 
ID: 2CJG) and KGA in the external aldimine form (PDB ID: 2CJH), respectively. PMP, pyridoxamine 5′-phosphate; KGA, α-ketoglutarate. d Electrostatic 
surface of LAT in complex with inhibitor L18 (PDB ID: 2JJG). L18, (2S)-1-methyl-2-[(2S,4R)-2-methyl-4-phenylpentyl]piperidine. e N-terminal structure 
of isopropylmalate isomerase (LeuD1–186, PDB ID: 3H5H). The electrostatic potential in all figures was computed using the APBS tools in PyMol 
(http:// www. pymol. org/)

http://www.pymol.org/
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capreomycin [219], proteasome inhibitor oxathiazole-
2-one derivative, 5-nitrothiazole derivatives [220] and 
some alanine dehydrogenase inhibitors against non-rep-
licating Mtb [221].

Isopropylmalate isomerase (LeuD) Bacteria can biosyn-
thesize all twenty proteinogenic amino acids, including 
the nine essential amino acids required for the growth 
of mammals [222]. Among these amino acids, the bio-
synthetic pathways of three branched-chain amino acids 
(BCAAs L-isoleucine, L-leucine, and L-valine) are more 
effective than other amino acids. Only eight conserved 
enzymes are sufficient for the biosynthetic pathway of all 
three BCAAs, including four branched-chain aminotrans-
ferases (IlvB/N, IlvC, IlvD, IlvE) that are conserved in the 
synthesis of all three BCAAs. Additional three enzymes 
that only participate in the synthesis of L-Leucine (LeuA, 
LeuC/D, and LeuB), and IlvA is only involved in L-iso-
leucine biosynthesis. The BCAAs are necessary for the 
growth and survival of Mtb [223, 224], and enzymes par-
ticipating in the biosynthetic pathway of BCAAs have been 
proposed as potential drug targets [222]. The advantages 
of targeting these enzymes are obvious. Firstly, the absence 
of similar pathways in mammals may reduce the toxicity of 
related drugs. Secondly, the inhibition of BCAAs not only 
impacts the metabolism of essential amino acids, but also 
affects some other pathways that use BCAAs. Therefore, 
the inhibition of enzymes within the BCAA biosynthetic 
pathways are thought to be a “death by a thousand cuts” 
strategy against pathogenic organisms [222]. Conversely, 
the destruction of genes involved in these pathways may 
result in stunted growth and infection damage [225, 226], 
so these special gene-auxotroph strains may be used as 
vaccines to prevent future pathogenic infection. For exam-
ple, the deletion of leuD of Mtb produces an attenuated 
strain, which could protect wild-type mice from virulent 
Mtb infection, and its degree of protection was approxi-
mately the same as that of M. bovis BCG [27, 227]. Besides, 
a double auxotroph strain (∆panCD∆leuCD) is even more 
protective than ∆leuD alone [222]. Mtb LeuC and LeuD 
form a heterodimer to exert enzymatic activity in catalysis 
of the stereospecific conversion from α-isopropylmalate to 
β-isopropylmalate, requiring an iron-sulfur cluster ([4Fe-
4S]) in its catalytic center [228].

Up to now, the complex structure of Mtb LeuCD has 
not been determined. Only several C-terminal trunca-
tions of LeuD have been reported, including  LeuD1–156, 
 LeuD1–168, and  Leu1–186 (Fig.  5e) [229]. Mtb LeuD 
shares a 15% sequence identity with the C-terminal 
domain of mitochondrial aconitase, and its overall fold 
is a twisted β/β/α three-layer sandwich. There are two 

flexible fragments in LeuD. One is the substrate rec-
ognition loop (residues 30–37), wherein the residue 
Arg32 may play a critical role in substrate recognition 
by forming hydrogen bonds with the γ-carboxylate of 
α-isopropylmalate. The other includes substrate inter-
action residues (Gly74-Ser75-Ser76-Arg77) around the 
GSSR sequence motif. In addition to LeuD, the struc-
tures and mechanisms of Mtb LeuA [230], LeuB [231], 
and IlvE [232, 233] have also been well characterized.

Enzymes involved in metal uptake

Iron‑dependent regulator (IdeR) Metals play vital roles 
in many important biological processes, especially serv-
ing as virtually indispensable cofactors, affecting the 
viability and growth of living organisms. Iron is one such 
essential cofactor. Higher organisms obtain iron in tight 
complexes through iron storage and transport proteins 
(e.g. transferrin, lactoferrin, and ferritin). To get enough 
iron from their environment, bacteria have evolved an 
iron-uptake system, which is based on a variety of low 
molecular weight iron chelators known as siderophores, 
such as mycobactin and exochelin of Mtb [234]. In 
Gram-negative bacteria and certain Gram-positive bac-
teria with low GC content, the regulation of iron uptake 
is usually carried out by the ferric uptake regulator Fur, 
while in other Gram-positive bacteria and archaea with 
high GG content, iron homeostasis is usually controlled 
by its functional homologue IdeR (iron-dependent regu-
lator) [235–239]. When intracellular iron levels reach 
the threshold value, the iron-activated IdeR binds to the 
operator regions of target genes to inhibit the transcrip-
tion of these genes by blocking the incoming RNA poly-
merase, preventing the iron concentration from increas-
ing to reach toxic levels [238–240]. Under the condition 
of metal starvation, the metal-free IdeR is inactive, and all 
iron uptake genes are activated. In Mtb, approximately 40 
genes involved in iron uptake and metabolism are regu-
lated by IdeR [238, 241]. For instance, in response to high 
intracellular iron concentration, the activated Mtb IdeR 
binds to the operator of mbtA‑mbtJ gene cluster involved 
in the biosynthesis pathway of mycobactin [238, 242], 
thereby inhibiting the transcription of mbtA‑J genes, as 
well as the synthesis of mycobactin, and the uptake of 
iron. Conversely, the activated IdeR also functions as a 
transcriptional activator for the expression of some iron-
storage genes, such as bfrA and bfrB [238, 243]. In addi-
tion to the IdeR, Mtb has another representative metal-
loregulator MntR (Rv2788) [238, 244], which functions 
as a manganese-dependent transcription repressor, and 
is related to manganese homeostasis. Compared with the 
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less defined MntR, the biological and structural charac-
teristics of IdeR has been described in detail, and it has 
been regarded as an attractive anti-tuberculosis drug tar-
get for decades [239, 243, 245].

Mtb IdeR is a functional and structural homologue to the 
diphtheria toxin repressor (DtxR) from Corynebacterium 
diphtheriae, which can be substituted for each other in 
complementary experiments [246–249]. Apo-IdeR is 
very flexible, and it has a preferred monomer form over 
the dimer form [241, 250]. Extensive interactions occur 
between the two subunits of the IdeR homodimer. Each 
subunit consists of three domains, an N-terminal DNA-
binding winged helix-turn-helix (wHTH) motif (resi-
dues 1–74; Domain 1), a dimerization domain (residues 
75–140; Domain 2) consisting of three α-helices, and a 
C-terminal SH3-like domain (residues 151–230; Domain 
3) consisting of six β-strands and three α-helices [251, 
252] (Fig.  6a). A long helix (H4) connects Domain 2 
and Domain 3. Compared with the other two domains, 
Domain 3 has low sequence conservation. It is structur-
ally inserted into the groove between Domain 1 and 2 as a 
wedge and plays a significant role in stabilizing the active 
conformation of IdeR by providing ligands for metal-
binding sites [251]. When activated cations are present, 
IdeR undergoes a complicated activation process, includ-
ing metal-binding, dimerization, and coordination with 
specific promoter sequences of the targeted genes [250, 
253, 254]. Distinguished from the apo structure of IdeR, 
conformational changes of two HTH motifs (especially 
two putative DNA-binding helices H3 and H3’; 6–9° rota-
tion) are observed in the metal-activated IdeR. Overall, 
two DNA-binding helices get closer, and this confor-
mational change is believed to be critical for these heli-
ces to be inserted into the major grooves of DNA [251, 
255, 256]. In addition to the typical  Fe2+ cofactor, several 
other divalent ions can also act as co-activators of IdeR 
in vitro, such as  Co2+,  Ni2+,  Mn2+,  Cd2+, and  Zn2+ [246]. 
Several structures of IdeR bound with different metal 
ions  (Co2+,  Ni2+,  Zn2+) have been determined. Except 
for some slight differences, these structures are nearly 
identical [241, 251, 255, 256]. In the crystal structure of 
metal-activated IdeR, there are two metal-binding sites, 
both are located at the interface between Domain 1 and 
Domain 2 (designated metal-binding site 1 and 2), with 
Domain 2 providing most of the ligands for the two 
metal-binding sites. Metal-binding site 1 is pentavalently 
coordinated by the side chains of residues His79, Glu83, 
and His98 from Domain 2, and side chains of Glu172 and 
Gln175 from Domain 3, and some non-protein ligands (a 
phosphate or sulfate ion, as well as a variable number of 
water molecules) [257, 258], forming a twisted octahedral 
geometry. Similar to metal-binding site 1, metal-binding 

site 2 is coordinated by six ligands, including the side 
chains of residues Met10, Clu105, His106, and Cys102, 
the main chain carbonyl oxygen of Cys102, and a water 
molecule that is linked to Leu4 of the N-terminal penta-
peptide [253, 257]. Two metal-binding sites are bridged 
by hydrogen bonds (2.5 Å) formed by Glu105 and His79, 
so that each site can sense the effects of the other site. 
In some structures of activated-IdeR, the third metal 
(cobalt)-binding site located on the surface of Domain 
3 was also observed, and this metal is coordinated by 
His219, His223, and four water molecules.

The conformational changes of IdeR resulting from metal 
ion binding primes IdeR to bind DNA. In the struc-
tures of nickel or cobalt-activated IdeR complex with 
mbtA‑mbtB operator DNA, two homodimers of IdeR 
are bound to the opposite side of the DNA duplex, form-
ing a “double-dimer” complex, in which the DNA duplex 
adopts a distorted B-DNA conformation with three com-
plete helical turns, and metal-binding sites 1 and 2 com-
pletely occupied (Fig.  6b). Extensive contacts (hydrogen 
bonds, salt bridges, and van der Waals contacts) occurred 
between IdeR and the deoxyribose phosphate back-
bone and nucleotide bases of DNA. Most residues of 
IdeR involved in the interactions with DNA are mainly 
clustered in the HTH motif (residues 27–50), and this 
conserved motif inserts into the major groove of DNA, 
which is similar to other DtxR repressors. In addition, the 
wing of the HTH motif interacts with the DNA backbone 
on the minor groove edge, thus clamping the backbone 
between the wing and the first helix of the HTT motif. 
In the IdeR-DNA complex structure, a “p1s2C3T4a5” (p1: 
purine; s2: cytosine or guanine; C3: cytosine; T4: thymine; 
a5: adenine) base recognition pattern is regarded as the 
basis of key interactions between each IdeR protomer 
and DNA [251]. Two essential residues (Ser37 and Pro39) 
move by 1–3 Å to protrude into the major groove of 
DNA, and specifically interact with the T4 base through 
van der Waals contacts [251]. Residue Pro39 also inter-
acts with nucleotide bases (at consensus positions + 3 
and + 8) via additional van der Waals interactions. In 
addition, Gln43 forms many van der Waals contacts with 
various nucleotide bases on fingerprint positions p1 and 
s2 of the DNA [251]. Briefly, IdeR recognizes and utilizes 
the thymine base on position T4 as anchor points for 
base-specific recognition, and Gln43 of IdeR makes non-
specific interactions with nucleotide bases on fingerprint 
positions p1 and s2 [251]. This structural information is of 
great value for structure-based drug discovery.

To date, there is no reported structure of IdeR in complex 
with inhibitors. Only several inhibitors [(I-8 (NSC65748), 
I-20 (NSC281033), I-21 (NSC30600), I-34 (NSC662444), 



Page 18 of 36Yan et al. Molecular Biomedicine            (2022) 3:48 

Fig. 6 Enzymes associated with metal uptake and energy metabolism. a Structure of a subunit of IdeR homodimer (PDB ID: 1FX7). Domain 1, the 
N-terminal DNA-binding winged helix-turn-helix (wHTH) motif; domain 2, the dimerization domain; domain 3, the C-terminal SH3-like domain. b 
Structure of DNA- binding IdeR (PDB ID: 2ISZ). c Structure of small molecules potentially inhibiting IdeR activity and their respective IC50 values. d 
Structure of catalase-peroxidase (KatG) homodimer in a complex with heme (PDB ID: 2CCA). The heme is surrounded by six conserved residues, 
among which Arg104, Trp107, and His108 in a pocket distal to the heme, and His270, Trp321, and Asp381 in a pocket proximal to the heme. e 
Sites of INH binding to KatG (Left) and a chemical structure of isoniazid (INH, Right). The anti- tuberculosis pro-drug INH is required to be activated 
to form a bactericidal molecule (IN-NAD+ adduct) by KatG, and then targets the enoyl-acyl carrier protein reductase (InhA), which is responsible 
for biosynthesis of cell wall component mycolic acid. f Overall structure of the homotetrameric fumarate hydratase (Rv1098c, PDB ID: 4APA)). The 
dashed circles indicate the location of the four active sites, and the solid circles indicate the location of the two allosteric sites. g A depiction of 
Rv1098c active site when formate or L-malate (slate spheres) is bound. Apo-Rv1098c is shown in gray, while the N- and C-terminus of substrate 
(formate or L-malate)-bound Rv1098c are shown in greencyan and pink, respectively. Upon binding of formate or L-malate, the C-terminal domain 
of the subunit (purple) rotates into the closed conformation. h Superposition of apo (gray, PDB ID: 4APA), meso-tartrate-bound (slate, PDB ID: 
4ADM) and inhibitor 7-bound (pink, PDB ID: 5F91) Rv1098c. Binding of meso-tartrate causes the active site of Rv1098c to be occupied, whereas 
binding of inhibitor 7 causes the C-terminus of the subunit to rotate into the open conformation
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I-39 (NSC673342), and I-42 (NSC12453)] of IdeR have 
been identified by initial virtual screening and later sets 
of biochemical validation (Fig.  6c) [245]. All 6 com-
pounds show inhibitory activity on the DNA binding 
function of IdeR, among which I-20 and I-42 exhibit the 
most efficient inhibition ability  (IC50 value is 2.4 μg/ml 
and 1 μg/ml, respectively). In the initial molecular dock-
ing, the structural information of IdeR was utilized, and 
the above-mentioned essential residues (Ser37, Pro39, 
and Gln43) and their adjacent residue (Ser42) was des-
ignated as the grid center (docking site) for docking the 
filtered NSC database. The predicted key interactions 
between IdeR and I-20 include hydrogen bonds formed 
between the benzyl ring or the carboxylic acid of I-20 
and the carboxyl group of Gln43 and the amino group of 
Ser37, respectively [245]. It is predicted that Compound 
I-42 forms a hydrogen bond and a hydrogen bond net-
work with the hydroxyl group of Ser42 and two amino 
groups of Arg60, respectively [245]. Previous studies on 
DtxR showed that almost all mutations that destroy the 
DNA-binding properties are located on the metal bind-
ing site or helix H3. Therefore, potential inhibitors target-
ing these regions can be screened.

Enzymes involved in energy metabolism

Catalase‑Peroxidase (KatG) During pathogenic infec-
tion, catalase-peroxidases protect aerobic microorgan-
isms from oxidative damage. As the only catalase in Mtb, 
the heme-dependent catalase-peroxidase KatG degrades 
hydrogen peroxide  (H2O2) and organic peroxides to 
escape the attack of reactive oxygen intermediates from 
the host [259, 260]. Aside from catalase and non-specific 
peroxidase activity, KatG concurrently possesses manga-
nese peroxidase, oxidase, INH-hydrazinolysis, and isoni-
cotinoyl (IN)-NAD synthase activities [261, 262]. INH, 
an anti-tuberculosis pro-drug, needs to be activated by 
KatG to form a bactericidal molecule (IN-NAD+ adduct) 
and then target InhA. It has been reported that over 60% 
of known INH-resistant mutations are associated with 
katG [263–266], and other non-lethal mutations are 
found within inhA [267]. Therefore, understanding the 
relationship between INH-mediating mutations in KatG 
and their effects on the structure and mechanism of INH 
activation is critical to settle the growing incidence of 
INH-resistant TB infection.

The structure of KatG has been determined by X-ray 
crystallography [268] or cryo-EM [269], and its struc-
ture is similar to peroxidases in many bacteria and 
plants (Fig.  6d) [270–272]. The homo-dimeric structure 
is predominantly α-helical, with two domains in each 

protomer. The N-terminal domain is homologous to the 
C-terminal domain, while only the former domain con-
tains b-type heme, which is essential for enzyme func-
tion. This heme is pentacoordinated and surrounded by 
six conserved residues, among which Arg104, Trp107, 
and His108 are in a pocket distal to the heme, and 
His270, Trp321, and Asp381 in a pocket proximal to the 
heme. The homodimer is linked by a hook-like structure 
composed of the N-terminal residues of both protom-
ers [268]. Two important structural elements for enzy-
matic activity are listed below. The first one is a cova-
lently linked MYW catalytic triad, which consists of three 
conserved residues, Met255, Tyr229, and Trp107, and 
is required for catalase activity [273–275]. The second 
is a substrate entry channel, of which the bottleneck is 
delimited by residues Asp137 and Ser315 (the diameter 
of the bottleneck is 3.6 Å), resulting in a steric restriction 
for access to the heme active site. Although many studies 
have shown that the activation of INH depends on high-
valent (ferryl) heme in KatG, the confirmed binding site 
of INH within KatG has not been identified to date. This 
may be related to the transient and dynamic interaction 
of INH and KatG, which leads to a widespread distri-
bution of binding site. Recently, a cryo-EM structure of 
KatG bound to INH revealed several potential binding 
sites of INH (designated as site 1, site 2, site 3) (Fig. 6e). 
Structurally, the addition of INH did not perturb KatG’s 
heme site, and the heme environment of KatG-INH com-
plex was the same as that of apo-KatG. Site 1 exists in 
both subunits and is situated at the entrance to the dis-
tal heme pocket (δ-edge of the heme). This binding site is 
close to residues Ser315 and Asp137, both of which were 
reported to regulate the activation of INH [276, 277]. Site 
2 also exists in both subunits, and it is situated near the 
γ-edge of the heme. The third INH binding site is only 
observed in protomer B and is situated toward the dimer-
dimer interface, and two amino acids implicated with 
INH resistance (Gly299 and Trp300) are adjacent to this 
binding site [265, 266, 278].

Finally, in order to explore how KatG mutation affects the 
activation of INH, several typical INH-resistance mutant 
residues near the edge of heme (such as Ser315Thr [279, 
280], Asp137Ser [276], Trp107Arg, Thr275Pro [281]) 
are described. Firstly, most prevalent INH-resistant 
Mtb strains carry  KatGS315T, and their INH affinity to 
 KatGS315T is lower than that of WT KatG (about 40-fold) 
[282]. Compared with the structure of WT KatG, the 
significant conformational change of  KatGS315T results 
in the size of the bottleneck in the substrate chan-
nel to become reduced from 3.6 Å to 2.7 Å [276, 283], 
which is induced by the methyl group of Thr315. Con-
trarily, the  KatGD137S mutant exhibits greatly improved 
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INH-activation catalysis ability compared to that of WT 
KatG (Km value; 192 μM vs 17.5 μM) [284]. In the struc-
ture of the  KatGD137S mutant, an expanded entry channel 
was observed (4.6 Å). Therefore, the change in size of the 
bottleneck in the substrate channel of KatG may increase 
or decrease the INH peroxidation activity. Secondly, as 
a catalytic residue, the replacement of Trp107 causes 
the loss of catalase activity [266], while it still retains 
the peroxidase activity. Within the cryo-EM structure 
of  KatGW107R, each homodimer of protein has only one 
bound heme. There is no heme in the protomer A, and 
there is obvious structural disorder near the heme bind-
ing site. This heme deficiency caused by the Trp107Arg 
mutation could be supplemented by exogenous heme 
supplements (aminolevulinic acid and hemin chloride) 
[269]. Likewise, another INH-resistance mutation (Thr-
275Pro) also leads to a lower heme occupancy.  This 
structural information provides an in-depth insight into 
INH resistance.

Fumarate hydratase (Rv1098c) According to respec-
tive structural characteristics, the ubiquitous fumarate 
hydratase (fumarase), which catalyzes the reversible con-
version from fumarate to L-malate during the TCA, may 
be classified into two subgroups: class I (homo-dimeric) 
and class ΙΙ (homo-tetrameric) [285]. Unlike other bac-
teria, Mtb has only one fumarase (Rv1098c), making it 
a vulnerable and attractive therapeutic target for drug 
development against Mtb [8, 223, 286]. However, the high 
sequence identity (53%) and the same active site shared 
between human fumarase and Mtb fumarase pose a chal-
lenge in developing anti-tuberculosis drugs targeting this 
enzyme [287].

The overall structure of Rv1098c displays a symmetric 
homo-tetramer conformation, which shares significant 
structural similarity with other members of the class II 
fumarase superfamily [288] (Fig.  6f ). Each dumbbell-
shaped subunit contains three domains: an N-termi-
nal domain (residues 1 to 137), a large central α-helix 
domain (residues 138 to 393), and a small C-terminal 
domain (residues 394 to 466). A central, elongated 
20-helix bundle is created by five tightly packed helices 
at the center of each subunit, and is capped by two small 
N-terminal and C-terminal domains, which are also 
predominantly composed of α-helices. Four symmetry-
related active sites of fumarase are positioned at a cleft, 
which is formed by residues from three subunits and 
covered by a “SS loop” (residues Pro316-Val325). It has 
been demonstrated that this loose loop plays a crucial 
role in ligand binding and enzymatic activity [289, 290], 
especially the catalytic residue Ser318 [288]. Compared 
with the apo structure of Rv1098c, both the complex 

structure of Rv1098c/L-malate or Rv1098c/fumarate 
undergo a remarkable conformational change, includ-
ing the swing of SS-loop and a rigid-body movement 
(inward bending by about 34°) of the C-terminal domain, 
which leads to the closure of the active sites (Fig.  6g). 
Structurally, only two ligands were observed in the four 
available enzyme active sites. One of the substrate mol-
ecules forms a series of hydrogen bonding interactions 
with Ser104, Thr106, Ser138, Ser139, and Asn140 of 
subunit A, with Thr186 and His187 of subunit B, and 
Ser318, Ser319, Lys324, and Asn326 of subunit C, while 
the other one forms equivalent hydrogen bonds with the 
corresponding residues of subunits B, A, D [288].

Several inhibitors of Rv1098c have been identified [291], 
including competitive and allosteric inhibitors. A well-
known competitive inhibitor of fumarases is meso-tar-
trate. In the crystal structure of Rv1098c with meso-tar-
trate (Fig. 6h), the meso-tartrate molecules are bound at 
two enzyme active sites in a manner similar to the bind-
ing of substrates. On the other hand, the first allosteric 
inhibitor of Rv1098c, designated as inhibitor 7 ([N-(5-
(azepan-1-ylsulfonyl)-2-methoxy-phenyl)-2-(4-oxo-3,4-
dihydrophthalazin-1-yl) acetamide]), was identified by 
combination with high-throughput screening and struc-
ture validation [292]. This inhibitor shows a high selec-
tive inhibitory ability of Mtb fumarase, but has no effect 
on the human homolog [292]. In addition, inhibitor 7 
could inhibit the growth rate in Mtb H37Rv strain in a 
dose-dependent manner. In the structure of Rv1098c in 
complex with inhibitor 7, two identical non-conservative 
allosteric sites (site 1 and site 2) were observed at the 
interface of two C-terminal domains of subunits A (C) 
and B (D). However, only allosteric site 1 was fully occu-
pied, and site 2 may be related to crystal contact. The 
π-π stacking (between the two core phenyl rings of two 
inhibitors) and several other contacts, such as hydrogen 
bond and stacking interactions (between the inhibitors 
and surrounding residues), collectively anchor these 
two inhibitor molecules in this allosteric site, which is 7 
to 20 Å away from each of the two nearest active sites. 
The binding of inhibitor 7 results in a dramatic confor-
mational change, where the C-terminal domain rotates 
outward to align with the substrate-free enzyme (in 
the open conformation). This conformational change 
induced by the allosteric inhibitor is distinguished from 
that of substrate- or competitive inhibitor-binding, 
where the C-terminal domain rotates inward for 34° 
compared with the unbound form of Rv1098c. There-
fore, these selective inhibitors drive significant confor-
mational changes of Rv1098c, and then competitively 
prevent the substrate and inhibitor from binding at the 
neighboring active sites by locking the subunits in the 
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open conformation. Other allosteric inhibitors (inhibi-
tor 1 and its derivates) have also been reported [291]. 
Similarly, these inhibitors dimerically bind to the allos-
teric site of Rv1098c, and lock the nearest active site in 
an open conformation. These lead compounds could be 
optimized by studying structure-activity relationships. 
On the other hand, the hit compounds should have bac-
tericidal activity against Mtb.

Enzymes involved in nucleotide biosynthesis

Cytidine triphosphate synthetase (PyrG) The high-
energy compound cytidine triphosphate (CTP) is 
involved in various metabolic processes and impacts cell 
growth as well as ATP [293]. PyrG, ATP-dependent CTP 
synthetase, is responsible for catalyzing the amination of 
uridine triphosphate (UTP) to form CTP in the last step 
of the pyrimidine nucleotide biosynthesis pathway [294]. 
In Mtb, pharmacological inhibition of PyrG could inter-
fere with DNA/RNA biosynthesis, and other nucleotide-
dependent metabolic processes, such as the biosynthesis 
of fatty acids, carbohydrates, amino acids, and cAMP or 
c-di-AMP [295]. PyrG, the essential gene within Mtb, has 
been regarded as a potential drug target [295, 296].

The structure of apo-PyrG consists of an N-terminal ami-
doligase (ALase) domain (referred to as the synthetase 
domain; residues 1 to 278), and a C-terminal glutamine 
amido-transferase (GATase) domain (residues 299 to 552) 
(Fig. 7a) [295]. The two domains are composed of nearly 
identical Rossmann-like folds, which are connected by 
an interdomain linker (residues 279–298). However, the 
presence of bound molecules (UTP, or UTP/ATP analog 
AMP-PCP/glutamine analog 5-oxo-L-norleucine) change 
the oligomeric state of PyrG from monomer to tetramer. 
The ATP- and UTP-binding pockets located on the con-
cave surface of PyrG are defined by residues from two 
and three adjacent subunits, respectively (Fig. 7b-c). The 
active site of PyrG glutaminase is indicated by the char-
acteristic GATase catalytic triad (Cys393-His524-Glu526) 
[294, 295, 297]. In addition, a putative ammonia diffu-
sion channel, which is located between the active site of 
glutaminase and the amidoligase domain, provides an 
entrance point for exogenous ammonia.

Two thiophenecarboxamide derivatives, compound 
7,947,882 [5-methyl-N-(4-nitrophenyl)-thiophene-2-carbox-
amide] and 7,904,688 [3-phenyl-N-(4-piperidin-1-ylphenyl)-
carbamothioyl-propanamide], which require activation by 
the monooxygenase EthA, may kill Mtb by inhibiting PyrG 
[295]. The EthA-activated metabolite of compound 7,947,882 

(compound 11,426,026) could directly inhibit the activity of 
PyrG. Docking the compound 11,426,026 into PyrG indi-
cates that it only recognizes the ATP-binging site of PyrG, 
in which the  phenyl ring forms π-π stacking with Arg223, 
and its nitro group forms hydrogen bonds with Ala253 and 
Asp252 [295]. In addition, a series of 4-(pyridine-2-yl)-thia-
zole derivatives also have the ability to inhibit PyrG [298]. All 
these compounds appear to function as competitive inhibi-
tors of the ATP binding site. Interestingly, some recent stud-
ies showed that two prodrugs 7,947,882 and 7,904,688, and 
the compound 11,426,026 have a second target, the panto-
thenate kinase PanK, which participates in the biosynthesis 
of coenzyme A [299, 300]. Therefore, this suggests that these 
direct PyrG and PanK inhibitors should be used as lead com-
pounds of multi-target antitubercular drugs, and these two 
proteins are potentially to be as a “double-tool” for hit com-
pound screening [299].

Transcriptional regulators
Response factor PhoP
In bacteria, groups of two-component signal transduc-
tion systems (TCSs) mediate various signal processes 
(e.g. sporulation, transformation competence, mem-
brane transport, stress response, and virulence), which 
are absent in mammals [301, 302]. Most TCSs consist of 
a sensor histidine kinase and a response regulator (RR), 
wherein histidine kinase senses environmental signals 
and auto-phosphorylates on a conserved histidine resi-
due, transferring the phosphate group to a conserved 
aspartate residue of cognate RR, thus regulating gene 
transcription to generate cellular response [232]. Mtb 
encodes 30 TCSs, including 11 systems and 7 histidine 
kinases or RRs [8, 233], among which the PhoP-PhoR 
system has the greatest impact on Mtb virulence [303–
305]. The absence of the phoP or the phoR severely weak-
ens the virulence of Mtb strains [306–309], and these 
attenuated strains are being developed into live vaccines 
[310, 311]. In the PhoP-PhoR system, PhoR functions 
as a transmembrane histidine kinase to transmit envi-
ronmental signals, and PhoP regulates transcription by 
binding to protomer DNA of corresponding genes [312, 
313]. Mtb PhoP may regulate the expression of more than 
110 genes [307], especially those related to lipid biosyn-
thesis [307, 314]. Therefore, exploring the mechanism of 
the PhoP-PhoR system and the structural information 
of its components will contribute to the development of 
antituberculosis drugs.

Mtb PhoP is a member of the OmpR/PhoB subfam-
ily, which is the largest subfamily of RRs [232, 315]. This 
protein contains two distinct domains, an N-terminal 
receiver domain (residues 1–138) and a C-terminal 
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Fig. 7 Proteins associated with nucleotide biosynthesis and transcriptional regulation. a Tetrameric structure of cytidine triphosphate synthetase 
PyrG-apo (PDB ID: 4ZDI). The N-terminal synthetase (ALase) domain is positioned at the center of the tetramer while the C-terminal glutaminase 
(GATase) domain is pointing outwards. b, c Electrostatic surface of PyrG in a complex with nucleotides and analogs, i.e. either UTP or UTP/AMP-PCP. 
d Structure of PhoP. PhoP (PDB ID: 3R0J) dimerizes through α4-β5-α5 of the receiver domain with a 2-fold symmetry. The N- and C-termini for 
both subunits are marked with N and C, respectively. e Structure of PhoP-DNA complex. Ribbon diagram of the PhoP- DNA complex (PDB ID: 
5ED4) shows a tandem PhoP dimer binding to a directly repeating DNA sequence. The two PhoP subunits are designated A and B, with subunit A 
binding to the first TCA CAG C motif that is directly repeated, while B binds to the second motif. The subunits A and B are represented by cartoon 
and electrostatic surfaces, respectively. f Oligomeric structure of GlnA1 (PDB ID: 1HTQ) is a double symmetric structure formed by hexamers in an 
asymmetric unit. Each subunit - subunit interface has 12 active sites. g Electrostatic surface of GlnA1 in a complex with MSO-P and ADP (PDB ID: 
2BVC). h Electrostatic surface of GlnA1 in complex with MSO-P, PA and Pi (PDB ID: 2WHI). The electrostatic potential in all figures was computed 
using the APBS tools in PyMol (http:// www. pymol. org/)

http://www.pymol.org/
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DNA-binding domain (also known as effector domain; 
residues 150–247) (Fig.  7d). The receiver domain con-
sists of a central five-stranded parallel β-sheets (β1-β5), 
sandwiched by helices on both sides [316]. An acidic 
pocket composed of several acidic residues (Asp27, 
Asp28, Glu29, and Asp71) was presented at the C-ter-
minal ends of strands β1 and β3. In this pocket, the resi-
due Asp71 is responsible for phosphorylation [313]; and 
it is hydrogen bonded by the conserved residue Lys121, 
which may contribute to dephosphorylation/phospho-
rylation reactions [317]. There is still confusion about 
how phosphorylation of the receiver domain regulates 
the DNA-binding activity of PhoP through its effector 
domain. One prevalent view considers that the phospho-
rylation of the receiver domain promotes or stabilizes 
PhoP dimerization, thus bringing the effector domain 
near the DNA direct repeat [318–322]. The phosphoryl-
ated PhoP forms a dimer through the α4-β5-α5 face of 
the receiver domain, and is stabilized by multiple interac-
tions (including π-electron stacking, charge-charge inter-
actions, salt bridges, and hydrogen bonds). Conversely, 
the conformational changes of switch residues Thr99 and 
Tyr118 were considered to be the response of phospho-
rylation. Upon phosphorylation, the side chain of Thr99 
is oriented away from the acidic pocket, and Tyr118 is in 
an inward conformation facing toward the phosphoryla-
tion site. Contrarily, Tyr118 is in outward conformation 
in the unphosphorylated active dimers [317]. The side 
chain of Tyr118 also participates in the interactions of the 
dimer interface [317].

Compared with the receiver domain, the effector 
domain shows a great degree of flexibility. The isolated 
effector domain exists primarily as a monomer in solu-
tion, but forms a hexamer ring in crystal via tandem 
association between adjacent protomers, and two hex-
amers are linked by the crystallographic 2-fold symmetry 
to generate a dodecamer [323]. The effector domain con-
sists of three α-helices flanked by two β-sheets, includ-
ing a four-stranded antiparallel β-sheet (β6-β9) at the 
N-terminus, and a three-stranded antiparallel β-sheet 
formed by the C-terminal β-hairpin (β11-β12) and a 
short strand between helices α6 and α7. This effector 
domain has a typical winged helix-turn-helix fold of the 
OmpR/PhoB subfamily of RRs [323], in which the helix-
turn-helix motif is formed by helices α7 and α8, and the 
wing motif is formed by the C-terminal β-hairpin turn. 
A long and flexible loop connects the receiver and effec-
tor domain together. This loop is necessary for phospho-
rylation-dependent DNA binding [312], and may play a 
role in phosphorylation signaling between two domains 
[313, 317, 324].

Distinguished from the structure of apo-PhoP, a sym-
metric receiver domain dimer connects to a tandem 

effector domain dimer [317], a new conformation of the 
PhoP-DNA complex has been found [325]. In the struc-
ture of the PhoP complex with DNA (Fig.  7e), a DNA 
duplex was bound to a highly synergistic tandem dimer 
(both receiver and effector domains were in tandem asso-
ciation). Two effector domains interact with DNA in the 
same way, and their contact areas with DNA are nearly 
identical. The effector domain binds to DNA by recog-
nizing direct repeats of 7 bp motifs with a 4 bp spacer. 
Structurally, the outward-facing side chains of residues 
(Asn212, Val213, Glu215, Ser216, Tyr217, and Tyr220) 
in the sequence-recognition helix α8 interact with the 
base of TCA CAG C motif in the major groove of DNA 
through hydrogen bonds, π-π stacking, hydrophobic, 
and van der Waals interactions [323]; and the residues 
(Arg237, Gly238, Thr235) of wing structure interact with 
the adjacent minor groove. This binding pattern of DNA 
is consistent with the electrostatic potential on the pro-
tein surface. The electrostatic potential of the recognition 
helix and the wing residues is extremely positive, while 
most of the remaining parts are negatively charged or 
neutral, which cause the protein to orient to initially bind 
to the DNA duplex. Collectively, this available structural 
information provides preliminary insight for the develop-
ment of inhibitors against PhoP.

Other potential targets
To date, approximately 200 secreted proteins are detected 
in the  Mtb culture medium [326]. Several filtrate pro-
teins (GlnA1, Esat6/CF-10 [327], LpqH, HspX) [141, 
328] found in the early stages of infection are also prom-
ising targets for anti-tuberculosis drugs. Besides, some 
other potential targets are also listed in this manuscript 
(Table 2).

Glutamine synthetase (GlnA1)
Glutamine synthetase GlnA1 (also called γ-glutamyl: 
ammonia ligase) catalyzes the condensation of ammo-
nium and glutamate to generate glutamine, whose activ-
ity depends on ATP and divalent cations (magnesium or 
manganese ions) [356]. Multiple metabolites of GlnA1 
(glutamine, glutamate, and poly-L-glutamate-glutamine) 
play important roles in the nitrogen metabolism, and 
osmoregulation; and also serve as the essential constitu-
ent of the cell wall of mycobacteria [357, 358]. Therefore, 
GlnA1 is a promising anti-tuberculosis target.

The apo structure of GlnA1 is a dodecamer stacked by 
two hexamers face to face [356] (Fig. 7f ), and the active 
sites of GlnA1 are formed by two adjacent subunits 
(referred to as “bifunnel”). After binding of metal ions 
and ATP, GlnA1 converts from a relaxed (inactive) to a 
taut (active) state [356, 359]. Compared to the relaxed 
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Table 2 Overview of potential targets of anti-tuberculosis agents

No. Genes
(Rv numbers)

Protein name Description

1 pks13
(Rv3800c) [329]

Polyketide synthase Pks13 Synthesis of mycolic acid

2 Rv1885c Chorismate mutase (MtbCM) [330] Synthesis of shikimate (rearrange chorismate to 
prephenate)

3 alr
(Rv3423c)

Alanine racemase [331] Synthesis of cell wall (racemase L-alanine into 
D-alanine)

4 glfT1 (Rv3782) glfT2 (Rv3808c) Galactofuranosyl transferase, GlfT [332] Biosynthesis of galactan

5 rmID
(Rv3266c)

dTDP-6-deoxy-L-lyxo-4-hexulose reductase, 
RmID [333]

Biosynthesis of L-rhamnosyl

6 eccB3
(Rv0283)

EccB3 [334] A component of the ESX-3 type VII secretion 
system

7 aspS
(Rv2572c) [329]

Aspartyl-tRNA synthetase, AspS Protein translation

8 fadD32
(Rv3801c) [335]

Fatty acyl-AMP ligase, FadD32 Synthesis of mycolic acid (links the FAS and PKS 
mycolate pathways)

9 dfrA
(Rv2763c)

Dihydrofolate reductase DHFR [336] Synthesis of nucleic acid

10 accD4
(Rv3799c)

AccD4-containing acyl-CoA carboxylase [337] Biosynthesis of mycolic acids

11 fabH
(Rv0533c) [338]

3-oxoacyl-ACP synthase III, FabH Synthesis of mycolic acid (responsible for initia-
tion of FAS II fatty acid biosynthesis)

12 mabA/fabG1
(Rv1483)

β-ketoacyl-ACP reductase, MabA [339] A complex group of enzymes responsible for the 
production of very long fatty acid derivatives

13 coaA
(Rv1092c) [340]

Pantothenate kinase (PanK) Biosynthesis of CoA (catalyzes the first and rate-
limiting step of the CoA biosynthesis)

14 aroK
(Rv2539c)

Shikimate kinase [341] Biosynthesis of chorismate

15 ahpD
(Rv2429) [342]

Alkylhydroperoxidases AhpC and AhpD Catalyzes the reduction of alkylhydroperoxides 
to alcohols

16 ribH
(Rv1416) [343]

Lumazine synthase (LS) Biosynthesis of riboflavin (catalyzes the forma-
tion of 6,7-dimethyl-8-D-ribityl-lumazine)

17 nrdR
(Rv2718c)

Ribonucleotide reductases [344], Catalyzing the formation of deoxyribonucleo-
tides from ribonucleotides

18 ligA-D
(Rv3014c, Rv3062, Rv3731, Rv0938)

DNA ligase [345] Replication of DNA

19 tmk
(Rv3247c)

Thymidine monophosphate kinase (TMPKmt) 
[346]

Phosphorylate thymidine monophosphate to 
thymidine diphosphate

20 atpA-atpH
(Rv1308, Rv1304, Rv1311, Rv1310, Rv1305, 
Rv1306, Rv1309, Rv1307)

ATP synthase [347] Production of ATP

21 ndh
(Rv1854c)

NADH-menaquinone oxidoreductase [348] Biosynthesis of menaquinone

22 alas, argG, argS, aspS, cysS1, gltS, glyS, hisS, ileS, 
leuS, lysS, lysX, metS, pheS, pheT, proS, serS, thrS, 
trpS, tyrS, valS, acs, menE, birA, mshC, panC, 
guaA, nadE, mbtA, mbtB, mbtE, mbtF, nrp, 
fadD1–19, fadD21–26, fadD27–36 [349]

Adenylate-forming enzymes (AEs) [349] Activation of carboxylic acids to intermediate 
acyladenylates

23 dprE1
(Rv3790) [350]

Flavoenzyme DprE1 Cell wall synthesis (catalyzes the epimerization 
of decaprenyl-phospho-ribose to decaprenyl-
phospho-arabinose)

24 gyrA (Rv0006), gyrB (Rv0005) DNA gyrase [351] DNA replication (regulates DNA topology)

25 clpP1(Rv2461); clpP2 (Rv2460c )[352] Clp protease (ClpP1 and ClpP2) Degradation of misfolded or damaged proteins

26 prsA
(Rv1017c) [353]

Phosphoribosyl pyrophosphate synthetase Biosynthesis of phosphoribosyl-1-pyrophos-
phate

27 hspX or acr
(Rv2031c)

HspX [354] An alpha-crystallin-like protein, which associates 
with the growth suppression of Mtb
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state, the most striking difference is a three-residue reg-
ister shift of the β-strand consisting of Glu214, Lys215, 
and Glu219 [359]. Glutamate analogues, L-methio-
nine-SR-sulfoximine (MSO), and phosphinothricin have 
been shown to selectively inhibit GlnA1 and disrupt the 
development of bacterial cell walls and consequently 
inhibit the growth of Mtb [357], but do not affect non-
pathogenic mycobacteria or nonbacterial microorgan-
isms [357]. In the structure of the GlnA1 complex with 
phosphorylated-MSO (MSO-P), Mg, and ADP [359], 
ADP and MSO-P are located on both sides of the “bifun-
nel”, and three metal ions (n1, n2, n3) participate to sta-
bilize the complex (Fig. 7g). Some purine analogues (e.g. 
1-[(3,4-dichlorophenyl) methyl]-3,7-dimethyl-8-mor-
pholin-4-yl-purine-2,6-dione) termed as PA, and 2-tert-
butyl-4,5-diarylimidazoles which act as ATP-competitive 
inhibitors of GlnA1 have been identified [358, 360]. In 
both the crystal structure of GlnA1/PA, and GlnA1/
PA/MSO-P/Mg (Fig.  7h), which represent the active 
and inactive conformation of GlnA1, respectively, PA 
occupies the position of ADP-ribose [358]. The binding 
mode of PA with Mtb GlnA1 is different from that of the 
human GlnA1, in which the dichlorophenyl group of the 
PA will clash with the side chains of Trp130 and Arg262 
of human GlnA1 [358]. Likely, PA can be reasonably used 
as a lead compound to design potent and selective inhibi-
tors. In addition, using special antisense oligonucleotides 
to interfere with the activity of GlnA1 has also been pro-
posed to treat tuberculosis [361].

Conclusion and prospect
Although TB chemotherapy and the BCG vaccine are 
readily available, tuberculosis still causes considerable 
morbidity and mortality annually across the globe, high-
lighting an urgent need for new medicine against Mtb, 
especially resistant and/or persistent strains. New thera-
peutic strategies may arise from a better understanding 
of the molecular basis of the metabolic pathways. Thus, 
it necessitates the identification of essential genes or vir-
ulence factors of Mtb, which are significant for the sur-
vival and growth of the bacilli. Furthermore, mechanistic 
insights into the multiplication and intracellular persis-
tence of Mtb within the infected host are also required.

Here, this review summarized several validated and 
promising drug targets, exploring their structure and 
structure-based drug/inhibitor designs. Those enzymes 
are involved in multiple cellular metabolic pathways, 
including fatty acid biosynthesis, and some other path-
ways (the metabolism of lipids, amino acids, energy 
utilization, metal uptake, nucleotide biosynthesis, and 
transcriptional regulation). All these essential enzymes 
are closely related to the pathogenesis and drug resist-
ance of mycobacteria. Anti-tuberculosis drugs target-
ing these essential genes would provide an opportunity 
for us to develop novel, structurally diverse and prom-
ising compounds to eradicate the TB disease. In this 
work, we also listed two enzymes that are related to 
the persistent phase of Mtb, Isocitrate lyases (ICL1 and 
ICL2) and Lysine-ε aminotransferase (LAT). These two 
enzymes are abnormally expressed during the persis-
tence phase of Mtb, and drugs targeting these targets 
are expected to solve the problem of persistent TB 
infection.

Acknowledgments
Not applicable.

Code availability
Not applicable.

Authors’ contributions
W. C conceived the manuscript. W. Y. wrote the initial draft of the manuscript. 
Y. Z. and C. D. drew figs. C. D., G. Z. and Arnaout, T. participated in the revision 
of manuscript. All authors have read and approved the final manuscript.

Funding
This work was funded by the National Natural Science Foundation of China 
for Distinguished Young Scholars (No.32225001), the National Natural Science 
Foundation of China (No. 32071236) the 1.3.5 Project for Disciplines Excellence 
of West China Hospital, Sichuan University (ZYYC20005), and the National 
Natural Science Foundation of China (No. 81930125).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Authors have confirmed the final edition of the manuscript and approved to 
publish.

Table 2 (continued)

No. Genes
(Rv numbers)

Protein name Description

28 hupB
(Rv2986c)

Nucleoid-associated protein HU [355] Contributes to the maintenance of chromo-
somal structure and the global regulation of 
DNA transactions
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