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Abstract 

The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, 
regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the 
host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, 
progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the 
composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. There-
fore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as 
explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also 
demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota 
and its generated metabolites and related signaling pathways. Given that information, we summarized the latest 
advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, 
and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising 
treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut 
microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions 
in the development of therapeutic treatment as well as the prevention of CVDs.
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Introduction
Trillions of microorganisms colonize the anaerobic and 
nutritious environment in the gut to form a healthy intes-
tinal physiological ecosystem [1]. These communities 
are regarded as “gut microbiota”, and the sum total of all 
microorganism genomes in the gut, including their DNA 
sequences and other genetic information, are together 
called “gut microbiomes” [2]. Most intestinal microbial 
communities in the human intestinal tract are bacteria 
with complex structures [3]. There are more than 1,000 

species of intestinal bacteria, and the number reaches 
approximately 1014. The ratio of bacterial number to 
human cell number ranged from 10:1 to 1:1 [4]. It also 
contains 100-fold more genes than our own genome [5], 
which is called the second genome of the human body 
[6]. In terms of the types of intestinal bacteria, the gut 
microbiota is mainly composed of Firmicutes, Bacteroi-
detes, Proteobacteria and Actinobacteria, and this com-
position is relatively stable in healthy individuals but not 
in patients with cardiovascular diseases (CVDs) or other 
diseases [2, 7, 8]. Among those gut microbiota, Firmi-
cutes and Bacteroidetes in the large intestine account for 
about 90% of the total number of gut microbiota, and the 
ratio is a vital health indicator reflecting the condition of 
health and is also associated with the incidence of CVDs 
[9]. In addition, the gut microbiota maintains a symbi-
otic or antagonistic relationship with its host to form a 
dynamic and balanced microbial system.
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To date, establishing a clear and direct relationship 
between gut microbiota and corresponding diseases 
may be challenging due to the mixture of other non-host 
genes from viruses, fungi, and archaea [10]. Fortunately, 
advanced sequencing technologies including 16S rRNA 
and metagenome, have been used with blood or fecal 
samples to determine pathogenic non-host genes [11]. 
More importantly, the diversity and metabolites of nor-
mal gut microbiota are closely related to human health, 
and the imbalanced gut microbiota plays an important 
role in the occurrence and development of human dis-
eases, in which the impact of gut microbiota on CVDs 
receives increasing attention [2].

In this review, we summarized the latest literature 
in order to explore the role of gut microbiota in physi-
cal conditions, pathological dysbiosis, and metabolites 
participating in the occurrence, development, and the 
treatment of CVDs. Herein, we systematically described 
the influence of gut microbiota on health, including its 
main function and material metabolism, and then dis-
cussed the influence of major metabolites produced by 
gut microbiota on several common cardiovascular risk 
factors and the main CVDs in depth, thereby gaining a 
comprehensive understanding of the pathogenesis and 
mechanism of CVDs. Eventually, we also reviewed and 
elaborated evidence about promising methods such as 
diet intervention, for the prevention and treatment of 
CVDs, and more importantly, targeting gut microbiota 
and its metabolites will be a novel method for the preven-
tion and treatment of CVDs.

The role of the gut microbiota in health 
and diseases
Studies have shown that the fetus was exposed to bacte-
ria before birth [12] and the anaerobic bacteria colonize 
the fetus during pregnancy [13]. The traditional concept 
is that the uterus is a sterile environment, and after the 
fetus is born, the intestinal microbiota is gradually colo-
nized due to breast milk and other food feeding [14]. 
As time goes on, the abundance and diversity of gut 
microbiota increased in the neonatal period [15], and in 
early childhood, the diversity gradually formed and sta-
bilized [16]. Consequently, in healthy individuals, these 
microbes compete and restrict each other to maintain a 
normal dynamic equilibrium state [17].

The bacteria living in the human gut are also called 
commensals. Some beneficial commensal microbes 
could repair the normal function of the intestinal bar-
rier and exert anti-inflammatory effects, such as Akker-
mansia muciniphila (A. muciniphila), Faecalibacterium 
prausnitzii, and Roseburia intestinalis, et  al. [18]. These 
commensal microbes make up about 20% of the total 
gut microbiota. They are indispensable for maintaining 

the physiological function of adult tissues and organs by 
synthesizing a variety of vitamins, participating in food 
digestion, producing lactic acid, promoting intestinal 
peristalsis, inhibiting the growth of pathogenic micro-
biota, and activating the immune system [19]. For exam-
ple, one of the most important commensal microbes in 
the human gut is Bifidobacterium, a strictly anaerobic 
gram-positive bacterium [19], which assists the human 
body in the digestion and absorption of nutrients, resists 
the invasion of harmful bacteria, improves the immune 
function of the body, secretes molecules to regulate 
immune function, and participates in the metabolism 
of substances in the intestine [20, 21]. Besides, another 
common commensal microbe, A. muciniphila, a gram-
positive bacterium, reduces insulin sensitivity and is 
inversely associated with the development of obesity and 
diabetes [22]. Furthermore, Clostridium butyricum can 
produce butyric acid, improve insulin sensitivity, produce 
satiety, and reduce the content of adipose tissue [23, 24].

Additionally, other commensal bacteria such as Escher-
ichia coli, Lactobacillus, Streptococcus, Helicobacter 
pylori, segmented filamentous Bacteria, and enterotoxi-
genic B. fragilis are called pathobionts [25]. They make 
up about 70% of the total gut microbiota and interact 
with the host to regulate the immune response [25]. They 
are harmless under physical conditions [26], and have 
a potential pathogenic influence on the host following 
changes in the environment [27]. However, in the case of 
immune dysfunction and other pathological conditions, 
these pathobionts can greatly proliferate in a short time 
period, or translocate from the intestine to other parts of 
the body to be pathogenic [28].

Given that the gut microbiota is essential in human 
health, changes in the composition and function of the 
gut microbiota may result in the development of dis-
eases [29]. Due to the influence of host genes, diet, anti-
biotic use, lifestyle, drugs as well as other factors [30], the 
composition and diversity of gut microbiota gradually 
change with interindividual variation [30, 31]. For exam-
ple, a high-fat diet leads to an increase in the Firmicutes 
to Bacteroidetes ratio [32]. When the composition and 
proportion of gut microbiota change, inflammation and 
metabolic abnormalities can be induced, which contrib-
ute to the development of different diseases [33, 34]. Dys-
biosis of gut microbiota refers to changes in the number, 
species and composition of gut microbiota [35]. In recent 
years, gut microbiota dysbiosis has been shown to be crit-
ically involved in health and has emerged as a potential 
pathogenesis for various diseases, such as inflammatory 
bowel disease, cancers, and CVDs [36, 37]. Moreover, gut 
dysbiosis is also a driver of metabolic inflammation and 
metabolic dysregulation, which serve as a key feature of 
metabolic diseases [38]. For instance, the translocation of 



Page 3 of 50Wang et al. Molecular Biomedicine            (2022) 3:30 	

intestinal bacteria to the blood and liver through the por-
tal venous system together with its metabolites are able 
to stimulate the release of inflammatory factors, and pro-
mote the occurrence of non-alcoholic fatty liver as well as 
hepatitis [39]. Moreover, it has been reported that the gut 
microbiota also plays an important role in CVDs [40, 41], 
which has aroused our great interest.

Herein, we introduce the main function of gut micro-
biota interacting with the host by regulating the intestinal 
mucosa barrier and immune homeostasis, and metabo-
lism of nutrients (glucose, lipids, and protein) to explore 
the role of gut microbiota in health. Then, we provide 
information on how the gut microbiota promotes the 
development of diseases, especially CVDs.

The gut microbiota regulates normal physiological 
functions
The gut microbiota maintains a normal intestinal mucosal 
barrier
Studies showed that the interaction between the gut 
microbiota and host is crucial for the host to maintain 
normal intestinal and physical function [42], involving 
the maintenance of intestinal barrier integrity, the growth 
and regulation of the immune system, and normal home-
ostasis [43, 44]. Commensal bacteria play an impor-
tant role in regulating multiple physiological functions, 
including modulating the host’s gut mucosal barrier 
function, maintaining intact tight mucosal junctions, and 
regulating normal mucosal immunity [45]. One of the 
most important functions of the gut microbiota is estab-
lishing the normal intestinal mucosal barrier with other 
components in the host intestine [46]. The intestinal 
mucosal barrier is mainly composed of the intestinal epi-
thelial cell junction complex and its secretions, immune 
cells, and gut microbiota [47]. The complete intestinal 
mucosal barrier can effectively block the colonization 
and invasion of pathobionts and maintain the stability of 
the intestinal environment [48, 49].

The gut microbiota in healthy people can influence 
intestinal epithelial cells to prevent the destruction of 
intestinal mucosa [50, 51]. It was found that butyrate 
derived from gut microbiota can regulate the repair of 
intestinal mucus barrier by activating the macrophage/
wingless and int-1 (Wnt)/extracellular regulated protein 
kinase (ERK) signaling pathways which effectively sepa-
rating the body from intestinal pathogens [52]. Other 
researchers further found that Bifidobacterium brevis 
could reduce dextran sodium sulfate-induced apoptosis 
of intestinal epithelial cells and reduce intestinal inflam-
mation, which indicated that gut microbiota could pro-
tect intestinal mucosa by reducing apoptosis of intestinal 
epithelial cells [53]. Oral administration of commensal 
bacteria such as Bifidobacterium could also improve the 

function of intestinal barrier and inhibit the growth of 
pathobionts [54].

Furthermore, tight junctions are an important connec-
tion mode of intestinal epithelial cells and are considered 
to be a key component, which controls paracellular trans-
port of semipermeable barriers in the small intestine and 
large intestine [55]. It was demonstrated that the expres-
sion level of intestinal epithelial tight junction protein 
regulatory factor zonulin was significantly increased in 
hypertensive patients with gut microbiota disorder [56]. 
Meanwhile, gut microbiota can also enhance the forma-
tion of tight junctions and regulate the permeability of 
intestinal epithelium [57, 58].

At present, it is generally believed that dysbiosis of 
the gut microbiota is an important factor affecting the 
integrity of the intestinal barrier [59]. Previous studies 
showed that the dysbiosis of the gut microbiota could 
lead to the rapid proliferation of intestinal pathogenic 
bacteria, and the pro-inflammatory factors released by 
them seriously damaged the structure and function of 
the intestinal barrier, and it also promoted the occur-
rence and development of diseases in the digestive sys-
tem as well as metabolic system [60, 61]. Furthermore, 
the dysbiosis of the gut microbiota triggers intestinal 
mucosal barrier damage, leading to inflammation and 
disordered nutrient metabolism [62]. Overactivated 
inflammation caused by microbiota dysbiosis dis-
rupts normal intestinal mucosal barrier function, and 
increases intestinal permeability to promote bacterial 
translocation, leading to endotoxemia and inflammation, 
thereby increasing the risk of CVDs [62].

The gut microbiota helps to maintain the immune 
homeostasis
The homeostasis between the gut microbiota and the 
host is a major modulator of the evolution in the mam-
malian immune system and the maturation of immu-
nologic tissues [63]. In addition to barrier function, 
gut microbiota is closely related to health and dis-
eases through regulating immune processes [64]. With 
advances in scientific and technological approaches for 
investigating the microbiota, study have revealed that the 
dynamic crosstalk between the host gut and microbiota 
is crucial for maintaining immune homeostasis [65]. The 
intestinal mucosal immune system is considered to be the 
largest immune component in the body, and is function-
ally related to the intestinal microbiota [66].

Recent evidence has demonstrated the importance of 
the gut microbiota in the formation and development 
of the immune system. The gut microbiota has pro-
found effects on the formation of lymphoid tissue and 
the development of the immune system [67]. It stimu-
lates the development of intestinal-associated lymphoid 
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tissues, activates lymphocytes, and regulates the produc-
tion of immunoglobulin A to defend against pathogens 
[27, 68]. The structural components of gut microbiota 
such as lipopolysaccharide (LPS), flagella, and pepti-
doglycan, can interact with receptors on human cells to 
stimulate and guide the host immune response [69]. For 
instance, LPS binds to Toll-like receptor (TLR) 4, flagella 
binds to TLR5, and peptidoglycan binds to TLR2 [70], 
triggering the expression of a large number of down-
stream inflammatory factors, thereby affecting the car-
diovascular system [71]. Specially, LPS can interact with 
different receptors to induce inflammation and immune 
responses to increase intestinal permeability and CVDs 
susceptibility (Fig. 1).

Moreover, Nod-like receptors (NLRs) are also impor-
tant pattern recognition receptors that are very impor-
tant for the maintenance of the intestinal microecology 
and mucosal barrier [72]. Except for the TLR family, the 
role of the NLR family in CVDs susceptibility has now 
received increasing attention. The NLR family contains 
nucleotide-binding oligomerization domain 1 (NOD1), 
nucleotide-binding oligomerization domain 2 (NOD2) 
as well as NOD, leucine-rich repeat (LRR), and Pyrin 

domain-containing protein 3 (NLRP3) [73]. LPS released 
by gut microbiota can further promote the expression 
of NLRP3 [74]. In fact, after binding to its ligand, NLRs 
can induce the expression of cytokines and chemokines 
through the activation of nuclear factor kappa-B (NF-κB) 
pathway or mitogen-activated protein kinase (MAPK) 
pathway, and further induce the immune inflammatory 
response [75].

Importantly, studies found that the occurrence of 
CVDs was also involved in the immune response medi-
ated by the NLR family [76, 77]. For example, athero-
sclerotic plaques in LDLR−/− NOD 1/2−/− mice showed 
less lipid deposition and macrophage aggregation, sug-
gesting that lack of NOD 1/2 may reduce the occurrence 
of atherosclerosis [78]. Moreover, the peptidoglycan 
components in bacteria can bind to NOD1 and NOD2, 
which in turn mediate the occurrence of the inflamma-
tory response, and further leads to atherosclerosis [77]. 
Besides, inflammation induced by the NLRP3 inflamma-
some plays a role in the interaction between gut micro-
biota and cardiometabolic diseases. For instance, the 
NLRP3 deficient obese mice had altered composition of 
the gut microbiota, decreased TMAO and LPS levels, 

Fig. 1  The gut microbiota helps maintaining the balance of the mucosal barrier and immune homeostasis (created with BioRender.com). In the 
healthy gut, the intact mucosa barrier and tight junction prevent the translocation of gut microbiota, while gut microbiota dysbiosis causes disease. 
Under the leaky gut caused by dysbiosis, the gut microbiota translocases into the blood; the components of microbiota such as LPS activate TLRs 
and NLRs induce inflammation, endotoxemia, and immune dysregulation, resulting the development of CVDs. Abbreviations: JAM, junctional 
adhesion molecules; LPS: lipopolysaccharide; TLRs: Toll like receptors; NLRs: Nod-like receptors
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as well as downregulated hepatic steatosis and myocar-
dial energy metabolism [79]. Nevertheless, another study 
reported that NOD TLR4 −/− mice developed higher 
body weight, hyperlipidemia, severe insulin, and glucose 
intolerance, lower circulating SCFAs levels, higher levels 
of Bacteroidetes, lower levels of Firmicutes in the large 
intestine, as well as fewer SCFAs-associated gut micro-
biota, all of which may promote the development of insu-
lin-deficient diabetes [80].

Given that the gut microbiota is important in the 
regulation of immune homeostasis, many studies have 
reported an association between the gut microbiota and 
the occurrence, and the treatment of immune-related 
diseases such as inflammation, cancers, and autoim-
mune diseases [81]. For example, among metastatic 
melanoma patients receiving immunotherapy, the diver-
sity and composition of the gut microbiota differed sig-
nificantly between responders and non-responders, and 
the function of the gut microbiota differed between the 
two groups [82]. Several interventions targeting gut 
microbiota, such as SCFAs supplementation and micro-
biota transplantation, have shown beneficial therapeutic 
efficacy for the treatment of inflammatory bowel disease 
[36, 83, 84]. Additionally, the gut microbiota also triggers 
immune dysregulation and chronic low-grade inflamma-
tion to promote the development of CVDs [85].

The gut microbiota modulates the neuroendocrine system
Additionally, it has been reported that the intestinal 
microbiota plays a very crucial role in the neuroendocrine 
system, which is correlated to the gut-brain axis [86, 87]. 
As the major neuroendocrine system, the hypothalamic–
pituitary–adrenal (HPA) axis regulates various patho-
physiological processes in response to inside and outside 
stressors. It is increasingly recognized that the establish-
ment of intestinal microbiota in early life can impact the 
development as well as the function of nervous system, 
especially regulating neuroendocrine function [86, 87]. 
In neonatal germ-free mice, colonization with B. infantis 
[88], and Bifidobacterium [89] could attenuate the high 
sensitivity of the HPA axis [88] and establish functional 
neural circuits [89]. The imbalanced microbiota may fail 
to execute metabolic functions [90], brain function and 
neuromodulators [91]. The regulation of neurohumoral-
immune not only promotes the development of neuro-
logical diseases, but also promotes the occurrence and 
development of CVDs via the HPA axis and renin-angi-
otensin system (RAS) [92]. For example, dysregulation of 
the gut-brain axis was associated with hypertension [93]. 
Interestingly, the gut microbiota can be called “an endo-
crine organ” that biologically regulates host metabolism 
[94], for affecting the host’s endocrine system by altering 
the functional metabolism of important hormones such 

as leptin, ghrelin and cortisol [95]. These hormones also 
have a great impact on human health and may cause dis-
eases under abnormal circumstances.

In fact, changes in the function of gut microecology 
and gut microbiota may cause the occurrence and exac-
erbation of various diseases. It was found that dysbio-
sis of the gut microbiota may lead to decreased cardiac 
function and increased cardiomyopathy as well as cardiac 
insufficiency [2], which is of great significance in pre-
dicting CVDs and also has important predictive signifi-
cance for the prognosis of adverse cardiovascular events. 
The gut microbiota has been reported to be associated 
with CVDs and its corresponding risk factors, such as 
obesity [96], diabetes mellitus [97], and insulin resist-
ance [98]. These risk factors may affect the composition 
and the diversity of gut microbiota [99]. In addition, gut 
dysbiosis is also linked to inflammation, oxidative stress, 
platelet activity, thrombosis and atherosclerosis, which 
contribute to the progression of CVDs [100]. The pos-
sible mechanism of gut microbiota dysbiosis related to 
CVDs includes its role in increasing intestinal perme-
ability and triggering inflammation via the LPS/TLR4 as 
well as NLRP3 pathways, thereby ultimately contributing 
to the development of CVDs [101]. In short, the inflam-
mation directly triggers by gut microbiota is one of the 
possible mechanisms of CVDs susceptibility, and mate-
rial metabolism affected by gut microbiota was proposed 
to play a role as well [102].

The gut microbiota participates in material metabolism
In the human body, the gut microbiota can act on the 
metabolic system of the human body by participating 
in the metabolites of various nutrients [103–105]. The 
digestion and absorption of glucose, lipids, and amino 
acids by the intestinal tract supply the body with energy 
which in turn perform various life activities. The gut 
microbiota participates in food digestion and fermenta-
tion processes to regulate the energy harvesting process, 
and this helps to maintain the metabolic homeostasis 
and plays specific functions in host nutrient metabolism 
[106]. Moreover, it can utilize the provided metabolites to 
synthesize a variety of amino acids and vitamins to sup-
plement required nutrients for the growth of the human 
body [107].

When the gut microbiota is dysregulated and the 
composition changes, the balance of glucose metabo-
lism, lipid metabolism and protein metabolism are all 
destroyed, which leads to a series of changes in the pro-
duction of corresponding metabolites (Fig.  2). These 
metabolites could maintain human health. Moreover, the 
concentration change in metabolites is associated with 
various diseases [108–110]. One of the crucial metabo-
lites of glucose metabolism regulated by gut microbiota 
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is short chain free acids (SCFAs) [111], which take part 
in the development of CVDs [112]. With the decreasing 
of SCFAs-generating gut microbiota, the homeostasis of 
glucose metabolism would be disrupted to promote the 
risk of obesity, diabetes, and other CVDs [113, 114]. Of 
note, other important metabolites of lipid metabolism 
generated by gut microbiota, bile acids (BAs) and tri-
methylamine-N-oxide (TMAO), are suggested to regu-
late the occurrence and development of CVDs [108–110]. 
Furthermore, undigested protein is first decomposed into 
amino acids under the action of intestinal bacteria [115]. 
There are many types of amino acid metabolites, but only 
a few of them have been studied thus far. Various amino 
acids can be deaminated and trans-aminated by intestinal 
bacteria to produce a variety of α-keto acids or α-hydroxy 
acids with different structures, and then undergo a series 
of complex redox reactions to produce a variety of prod-
ucts, mainly branched-chain amino acids (BCAAs), 
indoles, and phenolic compounds generated by aromatic 
amino acid metabolism and H2S generated by sulfur-con-
taining amino acids [116, 117]. Excitedly, the metabolites 
of protein and amino acids are also associated with the 
development of CVDs. For example, the levels of BCAAs 
are associated with body composition and inflamma-
tory factors [118]. Moreover, it has been reported that 

an imbalance in the ratio of BCAAs to tryptophan and 
threonine leads to increased appetite, and then increases 
the risk of obesity [119].

Herein, in this section, we take the metabolism of glu-
cose, lipid, and amino acids as examples to hint at how 
gut microbiota produce metabolites in the process of 
material metabolism to modulate health and diseases, 
especially CVDs.

The gut microbiota regulates glucose metabolism 
through the production of SCFAs
Recently, many studies have reported that the gut micro-
biota has an impact on host nutrient metabolic health 
to trigger some diseases, especially the glucose metabo-
lism [120]. In general, the gut microbiota was reported to 
regulate postprandial glucose after dietary intake [120]. 
However, the postprandial blood glucose level induced by 
different diets could also impact the composition of gut 
microbiota [121]. SCFAs is the main metabolite in the 
glucose metabolism and a high-fiber plant-based diet was 
reported to increase SCFAs-producing microbiota [122]. 
Besides, diet interventions, including a green-Mediterra-
nean diet, and SCFAs supplementation may reshape the 
gut microbiota [123–125].

Fig. 2  The gut microbiota participates in material metabolism to produce metabolites (created with BioRender.com). The gut microbiota can affect 
the metabolism of glucose, lipids, and proteins by generating a series of metabolites and activating downstream signaling pathways. Abbreviations: 
SCFAs: short-chain fatty acids; BAs, bile acids; TMAO: trimethylamine N-oxide; BCAAs: branched-chain amino acids; GPR, G protein-coupled receptor; 
Olfr78: olfactory receptor 78; NF-κB: nuclear factor kappa-B; BSH: bile salt hydrolase; FMO3: flavin monooxygenase 3; FXR: farnesoid X receptor; TGR5: 
Takeda-G-protein receptor 5; mTORC1: mammalian target of rapamycin complex 1
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Mechanically, current studies suggest that SCFAs 
may exert their functions through acting as energy 
substrates and maintaining metabolic integration by 
a variety of different downstream regulatory mecha-
nisms, such as G-protein-coupled receptors (GPRs) 
with GPR41/Recombinant Free Fatty Acid Receptor 
(FFAR3), GPR43/FFAR2, GPR109A, Olfactory Recep-
tors 78 (Olfr78) in endocrine cells of the gut wall [126], 
as well as histone deacetylases (HDACs) [127, 128] 
(Fig.  2). GPR41 regulates host energy acquisition and 
promotes the catabolism of glucose and lipids [129]. The 
decreased SCFAs may cause less activated GPR41 and 
higher levels of energy uptake [129]. In addition, it has 
also been reported that the lower production of SCFAs 
in gut microbiota would increase the host’s capability of 
obtaining energy from the diet [130]. SCFAs from bacte-
rial fermentation promote the secretion of glucagon-like 
peptide 1 (GLP-1) and peptide YY (PYY) through GPR43 
and GPR41 from intestinal L cells [131–133]. GLP-1 
increased pancreatic insulin secretion, and inhibited the 
production of glucagon. Deletion of GLP-1 abolished the 
beneficial effects of prebiotics on weight gain, glucose 
metabolism, and inflammatory pathway activation [134]. 
Moreover, PYY increases satiety, reduces food intake, 
inhibits intestinal motility, and increases the intestinal 
transit rate [129].

Particularly, SCFAs also have anti-inflammatory func-
tions. It was reported that the butyrate and propionate 
can inhibit the tumor necrosis factor (TNF) and NF-κB 
signaling pathways [135]. These may be because that 
SCFAs can inhibit the activity of HDAC, inactivate the 
NF-κB pathway and decrease the expression of inter-
leukin-2 (IL-2), IL-6, and TNF-α, which further control 
inflammation [113]. Meanwhile, butyrate increases the 
acetylation of H3 histone in the Forkhead box protein 
P3 (FOXP3) promoter by inhibiting HDAC4 [136], thus 
promoting Treg differentiation, affecting G1-phase-
specific cyclins, and further resulting in the markedly 
inhibited proliferation of vascular smooth muscle cells, 
thereby inhibiting myocardial fibrosis and improving 
heart function [137].

The gut microbiota has an impact on lipid metabolites
It is well known that the balance of cholesterol is closely 
related to human health, and disorder of cholesterol 
balance leads to cardiovascular and metabolic diseases 
[138]. For example, low-density lipoprotein (LDL) choles-
terol is ingested by macrophages to form foam cells and 
eventually leads to atherosclerosis, while high-density 
lipoprotein (HDL) can promote reverse cholesterol trans-
port and play a cardiovascular protective role [139]. In 
recent years, gut microbiota is reported to be associated 

with levels of circulating triglycerides and HDL choles-
terol [140].

Although the mechanisms by which the gut micro-
biota regulates lipid metabolism have not been fully 
clarified, BAs and TMAO have been well suggested to 
regulate lipid metabolism [108, 109]. Some gut microbi-
ota can oxidize cholesterol in the intestine into choles-
tenone via cholesterol oxidase to accelerate cholesterol 
degradation [141, 142]. They can also participate in the 
metabolism of BAs, to achieve the indirect metabolism 
of cholesterol [143].

BAs, as by-products of cholesterol metabolism, are the 
main organic component of bile and are synthesized in 
hepatocytes [144]. Cholic acid (CA) and chenodeoxy-
cholic acid (CDCA) are primary BAs directly synthesized 
from cholesterol; secondary BAs include deoxycholic 
acid (DCA), lithocholic acid (LCA), ursodeoxycholic 
acid (UDCA) and their glycine and taurine conjugated 
forms [145]. BAs are excreted into the intestine to aid in 
the digestion and absorption of lipids and combine with 
farnesoid X receptor (FXR) and takeda-G-protein recep-
tor 5 (TGR5) [146] (Fig. 2). There is a strong biochemi-
cal relationship between BAs and gut microbiota. Some 
gut microbiota in healthy people can convert conjugated 
BAs into free BAs, and can transform BAs into secondary 
BAs with the help of bile salt hydrolase (BSH) and cho-
lesterol 7-alpha hydroxy-lase (CYP7A1) [147], so as to 
reduce blood cholesterol by affecting the enterohepatic 
circulation of BAs [148, 149]. Besides, the gut microbiota 
affects the metabolism of BAs by regulating the activ-
ity of BSH to reduce LDL cholesterol levels [150]. BAs 
have bacteriostatic properties and an antimicrobial effect 
[151, 152]. BAs destroy the integrity of the bacterial cell 
membrane and thereby change the intestinal microecol-
ogy [153]. BAs also prevent bacteria from overgrowth 
and decrease inflammation [154]. More importantly, BAs 
are also closely associated with CVDs [155]. For example, 
BAs levels in the feces of patients with CVDs are different 
from those in healthy individuals [156]. And BAs have 
been reported to regulate vascular tension and affect ion 
exchange on cardiomyocyte membranes, suggesting that 
regulating BAs by gut microbiota might be a treatment 
for CVDs [157, 158].

In addition, phosphatidylcholine can be hydrolyzed 
into choline in the intestine in vivo, and the gut micro-
biota can convert choline into trimethylamine (TMA) 
[94, 159]. After being absorbed by the intestinal tract, 
TMA is further transported to the liver and oxidized into 
TMAO by liver flavin monooxygenase 3 (FMO3), which 
plays an important role in human health and CVDs [94, 
159]. TMAO also reduces reverse cholesterol transpor-
tation, and changes BAs composition [160]. Some stud-
ies genetically manipulated hepatic FMO3 to modulate 
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lipid homeostasis [161], suggesting a major role of gut 
microbiota in lipid metabolism. Furthermore, changes in 
TMAO levels have been found in metabolic diseases such 
as fatty liver and hyperlipidemia, suggesting that lipid 
metabolism mediated by gut microbiota plays an impor-
tant role in the occurrence and development of diseases 
[162, 163].

The correlation between gut microbiota and protein 
metabolism: the importance of small molecule metabolites
Under physical conditions, the gut microbiota maintains 
the balance of protein and amino acid metabolism [116, 
117]. For example, fermentation of dietary polyphe-
nols (mainly hydroxycinnamic acid and steroids) by gut 
microbiota (e.g., Enterobacter, Bifidobacterium, Clostrid-
ium) produces bioactive compounds composed of phe-
nolic acids that can be absorbed by the gut [164].

BCAAs are essential amino acids that cannot be syn-
thesized in the human body and are obtained from food, 
including leucine, isoleucine, and valine [165]. Red meat 
and dairy products are rich in BCAAs and synthesized by 
intestinal bacteria such as Enterococcus, Enterobacter, Bis 
Fidobacterium, and Clostridium botulinum [166]. Their 
structures are characterized by branched chains, which 
refer to one carbon in the center connected to three or 
more carbon atoms [167]. BCAAs are associated with 
insulin resistance, which is the main mechanism of the 
development of cardiometabolic disease [168] (Fig. 2).

Aromatic amino acids including tyrosine, trypto-
phan, and phenylalanine are metabolized into indole 
and phenols by certain intestinal anaerobic bacteria, 
such as Bacteroidetes, Lactobacillus, Bifidobacterium, 
Clostridium, and Peptostreptococcus [169]. Trypto-
phan is decomposed into indole, indoleacetic acid, 
indole-3-lactic acid, 3-methylindole (skatole) and other 
indole compounds under the action of tryptophanase. 
Tryptophanase is the key enzyme that generates indole 
[170]. The activity of the enzyme is easily induced by 
the substrate tryptophan, so when the amount of tryp-
tophan changes in the colonic environment, the con-
tent of indole will fluctuate greatly [170]. Of note, the 
metabolic products of aromatic amino acids generated 
by gut microbiota have a great impact on the pathol-
ogy of cardiometabolic diseases [171]. For example, 
indole propionic acid is associated with insulin sensi-
tivity and appears to reduce the risk of diabetes [171]. 
Moreover, the gut microbiota metabolizes dietary tryp-
tophan to indoxyl, which further generates indoxyl 
sulfate through sulfonation. Excessive accumulation 
of indoxyl sulfate causes cardiomyocyte damage and 
increases thrombus formation [172]. Another phenol 
compound, 4-methylphenol, can inhibit the differentia-
tion of 3T3-L1 preadipocytes into mature adipocytes, 

induce apoptosis and reduce glucose uptake [173]. In 
addition, benzoic acid is an aromatic carboxylic acid 
synthesized by colonic microorganisms by metaboliz-
ing dietary aromatic compounds [174]. Plasma benzoic 
acid levels were found to be elevated in the rat model of 
polygenic diabetes [174].

Sulfur-containing amino acids such as cysteine and 
methionine produce sulfides under the action of intes-
tinal bacteria, which are mainly produced by the desul-
furization reaction of intestinal bacteria [175]. Studies 
have found that bacteria such as Escherichia coli, Sal-
monella, Clostridium and Enterobacter aerogenes in the 
large intestine can lyse sulfur-containing amino acids 
[176]. Some bacteria in the human intestine use sulfate as 
a substrate to produce a large amount of H2S, which has 
various functions such as protecting cells, relaxing blood 
vessels, regulating blood pressure and reducing heart 
rate [40]. And H2S is also important in the protection of 
CVDs [177, 178].

In summary, the gut microbiota generates a series of 
bioactive metabolites to interact with host metabolism 
[179]. These metabolites mainly include SCFAs, primary 
and secondary BAs, TMAO, and so on [41]. Among these 
metabolites, some exert synergistic effects to promote 
host health by stimulating the parasympathetic nervous 
system to control glucose metabolism [180]. For example, 
SCFAs interact with human hormones such as GLP-1 
and PYY to effect energy uptake and the development 
of obesity [41]. SCFAs are beneficial for regulating appe-
tite and energy intake, and preventing the formation of 
atherosclerosis [181]. Other metabolites, such as TMAO 
and phenylacetylglutamine (PAGln), may be toxic [182, 
183]. For example, TMAO may be proatherogenic to 
promote the process of thrombosis and atherosclerosis, 
thereby increasing the risk of cardiovascular events [64]. 
Patients with CVDs had lower levels of SCFA generation 
and higher levels of TMAO production due to the change 
in gut microbiota [184]. Furthermore, TMAO causes vas-
cular endothelial damage and promotes the production 
of atherosclerotic plaques [182]. TMAO can also increase 
the release of intracellular calcium ions, enhance the 
reactivity of platelets, and increase the risk of thrombo-
sis to increase CVDs susceptibility [182]. Besides, PAGln 
enhances platelet reactivity and thrombosis, leading to 
CVDs [185]. Taken together, mounting evidence suggests 
that changes in gut microbiota metabolites are part of the 
crucial mechanisms by which the gut microbiota regu-
lates the occurrence and development of CVDs.

The gut microbiota and cardiovascular risk factors
The function of the gut microbiota is closely related 
to the risk of CVDs. Specifically, an impaired mucosal 
barrier, overactivated inflammation, and immune 
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dysfunction are crucial steps in the development of 
CVDs triggered by gut microbiota dysbiosis. The struc-
tural constituents of gram-negative bacteria, such as LPS, 
are the main reason for endotoxemia and impaired intes-
tinal mucosal barrier function [186]. It has been reported 
that LPS is important in the development of cardiometa-
bolic diseases [187, 188]. Moreover, studies showed that 
the high-fat diet could result in decreased intestinal levels 
of gram-positive Bifidobacteria and increased LPS-con-
taining gut microbiota which further leads to obesity, the 
main risk factor for CVDs [187, 188]. Importantly, con-
tinuous subcutaneous infusion of LPS showed a tendency 
to cause the change of glucose metabolism and the pat-
tern of weight gain was similar to that seen when taking 
a high-fat diet [189, 190]. Therefore, intestinal dysbiosis 
and the corresponding change in metabolites lead to 
abnormal nutrient metabolism, insulin resistance, and 
increased adipose tissue storage, which increases the risk 
of cardiovascular risk factors such as obesity and diabe-
tes [2]. Herein, we take obesity and diabetes as examples 

to explain the effect of gut microbiota on cardiovascular 
risk factors (Fig. 3).

The gut microbiota and obesity
Obesity is a public health concern worldwide, and is 
attributed to increased energy intake and reduced energy 
expenditure. With the increasing sedentary lifestyle and 
diets with high fat as well as high lipid levels, the preva-
lence of obesity has increased over the last few years with 
a relatively fast growth rate all over the world [191]. In 
the latest researches in recent years, gut microbiota dys-
biosis has been reported to have a close correlation with 
the occurrence of obesity [187]. The richness of micro-
bial genes and microbiota load decreased in patients with 
obesity [192]. Besides, metagenomic analysis suggested 
increased energy harvest in the gut microbiome of obese 
mice, which further supported the altered microbiota 
composition associated with obesity [22, 130]. Except 
for the change in the composition, the reduced microbial 

Fig. 3  The gut microbiota dysbiosis and its metabolites promote the development of cardiovascular risk factors (created with BioRender.com). 
The dysbiosis and metabolites of gut microbiota promote the development of obesity and diabetes by increasing myocardial lipotoxicity, diabetic 
cardiomyopathy, and cardiac insufficiency. SCFAs interact with GPR41/GPR43 to release GLP-1 and PYY, and thus to reduce food intake and weight 
gain. BAs combine with FXR and TGR5 to regulate glucose metabolism by influencing the release of GLP-1, but their role in obesity and diabetes 
is controversial. BCAAs regulate mTORC1 and FOXA2-FGF21 to promote insulin resistance. Furthermore, LPS regulates TLRs and NLRs to induce 
inflammation. Abbreviations: SCFAs: short-chain fatty acids; BCAAs: branched-chain amino acids; BAs: bile acids; LPS: lipopolysaccharide; TGPR, 
G-protein-coupled receptors; GLP-1: glucagon-like peptide 1; PYY: peptide YY; mTORC1: mammalian target of rapamycin complex 1; FOXA2: 
forkhead box protein A2; FGF: fibroblast growth factor; FXR: farnesoid X receptor; TGR5: takeda-G-protein receptor 5; TLRs: Toll like receptors; NLRs: 
Nod-like receptors
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diversity and the metabolites of microbiota are also asso-
ciated with obesity [193].

The dysbiosis of gut microbiota in obesity
Mounting evidence has shown that patients with obe-
sity have a change in the composition of the gut micro-
biota. In obesity, the increased gut microbiome included 
the phylum Molluskum of Firmicutes [194], Actinobacte-
ria, as well as Firmicutes and Bacteroidetes ratios [195]; 
the decreased gut microbiome included Akkermansia, 
Faecalibacterium, Oscillibacter, and Alistipes [193]. 
More importantly, studies indicated that some types of 
microbes could be regarded as biomarkers for metab-
olism-related CVDs. For example, it has been reported 
that Dorea formicigenerans, Dorea longicatena and Col-
linsella aerofaciens are associated with obesity, and Lach-
nospiraceae is associated with lipid cardiovascular risk 
factors [196]. Besides, Anaeroplasma and Haemophilus 
are negatively associated with cholesterol and triglycer-
ides and positively associated with HDL [197]. Patients 
with hyperlipidemia have a lower proportion of Anaero-
plasma and Haemophilus in the gut [197]. Moreover, the 
ratio of Firmicutes to Bacteroidetes was also positively 
associated with obesity [198].

However, considering that most studies about the role 
of gut microbiota and obesity are cross-sectional studies 
or association studies, whether obesity disrupts the bal-
ance of gut microbiota or the gut microbiota dysbiosis 
leads to obesity is unknown. Studies have attempted to 
answer this question by transplanting pathogenic micro-
biota into germ-free mice. A previous experimental study 
found that obesity developed after transplantation of 
penicillin-selected microbiota to germ-free mice [199], 
which suggested that gut microbiota might be the driving 
factor for obesity. In our opinion, further studies should 
focus on exploring the species that play a leading role in 
contributing to the occurrence of obesity.

The metabolites of gut microbiota in obesity
Changes in the composition of gut microbiota increase 
the risk of obesity, including increasing inflammation, 
insulin resistance, adiposity deposition, and the capability 
of harvesting energy from food [200]. Obesity is associ-
ated with the changes in serum metabolites [193], mainly 
including metabolites of SCFAs, BCAAs, and BAs.

SCFAs regulate the metabolic hemostasis to promote obe-
sity  SCFAs are metabolites of dietary fibers and resist-
ant starch fermented by gut microbes [201]. The SCFA-
producing microbiota are important for cardiovascular 
health [202]. And SCFAs also directly affect the risk of 

CVDs, by regulating inflammation, insulin secretion, 
immune response, intestinal barrier integrity, and energy 
metabolism [203].

Clinical studies have shown different results regarding 
the concentration of SCFAs in blood, intestine, and feces 
in patients with obesity [204]. Some studies reported that 
patients with obesity had decreased SCFAs-generating 
gut microbiota and decreased levels of SCFAs in the 
intestine [204]. Oppositely, other studies suggested that 
patients with obesity had higher levels of SCFAs in their 
intestine and feces than healthy participants [205]. They 
showed that higher fecal SCFAs levels with less efficient 
SCFAs absorption into blood were associated with obe-
sity and cardiometabolic dysregulation [205]. In a nut-
shell, these observations suggest that more studies are 
needed to explore the role of SCFAs in obesity.

SCFAs may prevent obesity by regulating the homeosta-
sis of glucose and lipid metabolism. For instance, acetate 
decreases appetite and nutrient intake [206]. Propion-
ate activates intestinal gluconeogenesis by a gut–brain 
neural circuit to promote energy balance [203]. Butyrate 
provides energy for colon cells, maintains the integrity 
of intestinal walls, and improves the insulin response, 
which activates gluconeogenesis to maintain the balance 
of glucose and energy through the cAMP pathway [203]. 
And one study indicated that oral butyrate intake pre-
vents obesity and insulin resistance [207]. Furthermore, 
the role of SCFAs in metabolic hemostasis is related to 
other factors. Adenosine monophosphate activating pro-
tein (AMPK) is a heterotrimeric enzyme that stimulates 
liver and muscle fatty acid oxidation pathways [208]. 
SCFAs promote the activity of AMPK and improve its 
ability to oxidize fatty acids [208]. Last, SCFAs can affect 
the development of dyslipidemia [209]. SCFAs increase 
the expression of fasting-induced adipose factor (FIAF), 
a circulating lipoprotein lipase inhibitor [210], by activat-
ing peroxisome proliferator-activated receptor (PPAR-γ) 
[211, 212], thereby decreasing the activity of lipoprotein-
ases and inhibiting lipolysis in adipose tissues [209]. This 
process promotes the storage of lipids and the forma-
tion of adipose tissue, thus promoting the occurrence of 
obesity.

The association between BAs and the risk of obesity  Sev-
eral studies have suggested that different BAs profiles 
are closely related to obesity [213]. It was reported that 
12-hydroxylated (12-OH) BAs such as CA and DCA 
increase obesity susceptibility, while non-12-OH BAs 
such as CDCA, UDCA and LCA reduce obesity sus-
ceptibility [146, 213]. Mice with higher levels of non-
12-OH BAs gained weight slowly and had less metabolic 
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disturbance, while the rapidly gaining weight mice had 
significantly lower levels of non-12-OH BAs such as 
UDCA [213]. UDCA intake significantly reduced weight 
gain and metabolic disturbances induced by high-fat diet 
[213]. Another study also provided evidence that a high-
fat diet caused obesity by increasing the levels of 12-OH 
BAs. In a rat model, high-fat diet caused increases in the 
total BAs, DCA and taurodeoxycholic acid (TDCA) in 
plasma and liver tissues, and increases in DCA in intes-
tinal tissues and feces [214]. Therefore, changing the pro-
portion of 12-OH BAs and non-12-OH BAs may have an 
impact on the risk of obesity [215].

It remains unclear how the gut microbiota and BAs 
profiles interact with each other and whether the 
interaction is associated with obesity [147]. Mice fed 
BAs exhibited obesity and a composition change in 
the obesity-associated gut microbiota, which is simi-
lar to high-fat diet-fed mice [216, 217]. Under a high-
fat diet, the concentration of intestinal BAs increases, 
and the composition of gut microbiota alternates [216]. 
For example, the increased BAs are the main reason 
for the marked increase in the abundance of the Fir-
micutes to Bacteroidetes ratio [216]. Another study has 
shown that BAs and a high-fat diet promote the growth 
of Bilophila wadsworthia in mice, and secondary BAs 
produced by Bilophila spp. have been shown to induce 
obesity [216]. What’s more, it has been reported that 
the low capacity of microbiota to metabolize Tauro-β-
muricholic acid, a primary BA, might increase the risk 
of obesity and insulin resistance [218, 219]. Therefore, 
BAs profiles affect the composition of gut microbiota, 
and gut microbiota also regulates the production and 
ratio of different BAs to play an important role in obe-
sity susceptibility.

Additionally, studies have also demonstrated that BAs 
reduce obesity susceptibility by increasing the expres-
sion and activity of uncoupling protein 1 (UCP1) and 
increasing energy expenditure by GLP-1 [220, 221]. 
For instance, BAs increased the expression of UCP1 
in brown adipocytes via TGR5 to enhance the release 
of GLP-1 [222]. Thus, there is an interrelated complex 
relationship between BAs and obesity. It is essential to 
assess the role of changes in the composition of BAs in 
the downstream signaling pathways of the host recep-
tors to gain a greater mechanistic understanding of 
obesity susceptibility.

BCAAs promote insulin resistance to induce obe-
sity  Patients with obesity had increased BCAAs that 
contribute to the development of obesity-associated 
insulin resistance [165, 223]. In fact, it is controversial 

about the mechanism of BCAAs-related insulin resist-
ance [224]. Insulin resistance induced by high-fat and 
supplemental BCAAs feeding was accompanied by 
chronic phosphorylation of mammalian target of rapa-
mycin (mTOR), c-Jun N-terminal kinases (JNK), and 
insulin receptor substrate (IRS)1 Ser307 [224]. BCAAs 
inhibit white fat browning and promote obesity-related 
metabolic disorders [225]. Some studies have suggested 
that the role of BCAAs is related to mammalian target 
of rapamycin complex 1 (mTORC1) [226]. And BCAAs 
are potent mTORC1 agonists, and a lifelong BCAAs-
restricted diet downregulates mTORC1 signaling, 
reduces frailty, and prolongs lifespan in wild-type male 
mice [227]. Nevertheless, another study found that the 
metabolic effects of a low BCAAs diet did not require 
inhibiting the expression and activity of hepatic mTORC1 
[227].

The gut microbiota and diabetes
In addition to the clear relationship between gut micro-
biota and the occurrence of obesity, gut microbiota has 
also been associated with the development and progno-
sis in patients with diabetes [125]. Diabetes are associ-
ated with a relative or absolute insufficiency of insulin, 
or insulin resistance, which results in metabolic distur-
bance of carbohydrates, lipids, and proteins [228]. In 
China, the number of diabetic patients has reached 114 
million, accounting for 1/3 of the total number of dia-
betic patients all around the world [229]. Type 2 diabetes 
(T2D) accounts for more than 95% of the total diabetes 
population [230]. Recently, researchers have pointed out 
that gut microbiota may play an important role in the 
occurrence and development of T2D [125, 231]. Thus, 
exploring the relationship between gut microbiota and 
T2D may provide new ideas for clinical research and 
treatment.

The dysbiosis of gut microbiota in diabetes
The changes in microbiota and the increased abun-
dance of facultative pathogens are already present 
in patients with new-onset diabetes, suggesting that 
microbiome instability is associated with cardiovascu-
lar risk factors [232]. Bacteroidetes are detected in chil-
dren genetically predisposed to type 1 diabetes (T1D) 
[233]. Regarding T2D, patients were characterized by 
a decrease in several butyrate-producing bacteria and 
an increase in many opportunistic pathogens [234]. For 
example, patients with T2D have reduced Clostridium 
butyricum in the gut, a main butyrate-producing bac-
teria [235, 236]. Lower concentrations of butyrate pro-
ducing microbiota have been observed in fecal samples 
of patients with T2D [22]. Moreover, Lactobacillus is 
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positively correlated with fasting blood glucose and 
glycated hemoglobin levels, while Clostridium is nega-
tively correlated with fasting blood glucose and gly-
cated hemoglobin levels [237]. Patients with T2D have 
significantly higher levels of Lactobacillus in fecal sam-
ples than healthy individuals [238]. These data suggest a 
strong association between gut microbial dysbiosis and 
the pathology of diabetes.

The metabolites of gut microbiota in diabetes
Multiple metabolites including SCFAs, BAs, and BCAAs, 
have been postulated to link the potential association 
between altered gut microbiota and T2D. Specific species 
such as Faecalibacterium prausnitzii have been observed 
to produce anti-inflammatory cytokines and chemokines, 
thus alleviating inflammation and increasing insulin sen-
sitivity [239]. And some intestinal bacteria from other 
genera have been reported to produce pro-inflammatory 
cytokines, which may increase the development of insu-
lin resistance [240]. In short, the dysbiosis of gut micro-
biota would lead to the damaged function of β-cell and 
islet chronic inflammatory response by changing the 
component of SCFAs, BCAAs, and BAs, thereby affect-
ing glucose and fat metabolism, eventually leading to the 
occurrence of diabetes [241].

SCFAs regulate glucose metabolism to affect diabe-
tes  Insufficient dietary fiber intake is considered to be 
an important risk factor for diabetes [242]. The decrease 
in the production of SCFAs counts for an important rea-
son here [243]. Modulation of dietary SCFAs is thought 
to reshape the gut microbiota in diabetes and amelio-
rate diabetes [125]. SCFAs increase fatty acid oxidation 
and energy expenditure to decrease the risk of suffering 
from T2D [234]. Of note, T2D patients have lower lev-
els of butyrate-generating bacteria [243]. Butyrate could 
promote the secretion of postprandial insulin; and the 
increase in fecal propionic acid was associated with an 
increase in T2D risk [243]. In oral glucose tolerance test, 
a high butyrate-producing microbiota was associated 
with an improved insulin response (indicating improved 
β-cell function), and butyrate concentration was directly 
related to postprandial insulin sensitivity [244]. Besides, 
in signal transduction regulation, butyrate could also 
inhibit HDAC expression in juvenile diabetic rats to 
modulate the p38/ERK/MAPK signaling pathway, which 
ultimately prevents β-cell apoptosis and improves glu-
cose homeostasis [245].

SCFAs influence blood glucose levels [246] and are asso-
ciated with the regulation of intestinal gluconeogenesis 
[203]. Two SCFAs, propionate and butyrate, promote 

the secretion of postprandial insulin and activate intes-
tinal gluconeogenesis control [203]. Butyrate activates 
the gene expression of intestinal gluconeogenesis by the 
cAMP pathway, while propionate is a substrate for intes-
tinal gluconeogenesis, and approximately 50% of the pre-
ferred precursor for gluconeogenesis is propionate [203]. 
Bacterial fermentation of dietary fiber produces large 
amounts of succinate, which improves blood glucose 
by activating intestinal gluconeogenesis control [203]. 
Elevated postprandial plasma butyrate concentration is 
associated with increased abundance of Intestinimonas 
butyriciproducens and A. muciniphila [244, 247]. There-
fore, regulating the levels of SCFAs production may be a 
promising approach to the regulate the development of 
diabetes.

The role of different composition of BAs in diabetes  BAs 
are steroid carboxylic acids mainly derived from choles-
terol through the action of CYP7A1, and their main func-
tion is to digest and absorb lipids and fat-soluble vitamins 
in the small intestine [248]. The gut microbiota can also 
affect health by modulating the metabolic levels of total 
BAs, DCA and LCA, either by metabolizing bile salts 
or modulating downstream signaling pathways of BAs 
[153]. Most gut microbiota have BSH activity [249]. For 
example, Firmicutes have CYP7A1, which most intestinal 
microorganisms do not have [250]. Bacteroides can oxi-
dize, epimerize and esterify BAs at the same time [234].

The gut microbiota can affect the occurrence of diabe-
tes by affecting the composition and metabolism of BAs, 
as well as their binding to FXR and TGR5 receptors. 
An excess of secondary BAs produced by dysregulated 
gut microbiota can stimulate intestinal parietal cells to 
secrete a large amount of serotonin, thereby increas-
ing blood glucose levels [251]. In patients with diabetes, 
changes in gut microbiota composition may alter the 
ratio of primary BAs to secondary BAs [252]. However, 
from the impaired fasting glucose level to impaired glu-
cose tolerance, and finally to T2D, the specific changes in 
gut microbiota and BAs pools at different stages of this 
process have not been fully studied.

Previous results have indicated that the metabolic regula-
tion of BAs may be associated with T2D but the specific 
changes in BAs and the related mechanisms remain to be 
studied [253]. It is also unclear how the different types 
of BAs change in patients with T2D. A study also sug-
gested that patients with T2D had no change in plasma 
total BAs, but had an increase in DCA and a decrease 
in CDCA in plasma [254]. Another study found that the 
plasma total BA concentration in patients with T2D was 
not significantly different from that of healthy people 
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[255]; however, the concentration of DCA in the plasma 
of patients with T2D was significantly higher than that of 
healthy controls [255]. The mechanism may be that FXR 
and TGR5 are inhibited during insulin resistance, and 
the most effective natural ligands of the receptors, DCA 
and CA, are compensatorily increased [255]. Besides, 
circulating BAs levels including DCA, TCA, TDCA, and 
glycodeoxycholic acid, are positively associated with the 
risk of T2D, while taurohyodeoxycholic acid is negatively 
associated with diabetes [256]. This may be due to the 
fact that hydrophobic BAs isoforms (such as DCA) have 
been shown to be involved in inflammation and endo-
plasmic reticulum stress with glucose dysregulation, and 
hydrophilic BAs isoforms (such as tauroursodeoxycholic 
acid) have been shown to prevent inflammation and 
enhance insulin sensitivity [257].

Postprandial BAs profiles are correlated with postpran-
dial lipids, waist circumference, and body mass index 
(BMI), suggesting that changes in BAs metabolism in 
response to a high-energy diet may reflect healthy or 
unhealthy metabolic phenotypes [258]. In fact, the gut 
microbiota can regulate glucose metabolism by regu-
lating the interaction between BAs and FXR and TGR5 
signaling [112]. In the regulation of signaling pathways, 
primary BAs can stimulate FXR on pancreatic β-cells in 
order to promote insulin release. Then, the activation 
of FXR signaling can stimulate ileal secretion of FGF19. 
FGF19 has insulin-like effects that regulates BAs synthe-
sis by reducing CYP7A1 expression, inhibiting glucose 
production, and inducing glycogen synthesis. And FGF19 
can inhibit the phosphorylation of cAMP response ele-
ment binding protein (CREB), thereby reducing hepatic 
gluconeogenesis, promoting hepatic glycogen produc-
tion, and inhibiting GLP-1 release [259–261]. In addition, 
FGF19 can also activate the RAS/ERK pathway which 
promotes the phosphorylation of glycogen synthase 
kinase (GSK) α and β, and enhances the activity of glyco-
gen synthase, which can increase hepatic glycogen syn-
thesis [262].

Nevertheless, the role of FXR in diabetes is controversial. 
Although study has reported that upregulating FXR in 
diabetic mice can significantly improve hypercholester-
olemia [263], other study found that inhibition of intes-
tinal FXR can reduce hepatic gluconeogenesis, promote 
the secretion of GLP-1, and reduce body weight [264]. 
Therefore, whether upregulating or inhibiting FXR sign-
aling is an innovative approach in the control of blood 
glucose in patients with T2D needs further research.

In addition, secondary BA can stimulate TGR5, pro-
moting the release of GLP-1 from enteroendocrine cells 

[220]. And activation of TGR5 further improves glycemic 
control and energy homeostasis [265, 266]. Moreover, 
BAs inhibit the activation of the NLRP3 inflammasome 
through the TGR5-cAMP- protein kinase A (PKA) axis, 
and block LPS-induced systemic inflammation as well as 
T2D-related inflammation [267, 268]. Taken together, it 
is necessary to carry out dynamic tracking research on 
intestinal microbiota and BAs pools, so as to facilitate the 
development of targeted therapy for downstream signals 
of BAs.

BCAAs promote insulin resistance to trigger diabe-
tes  Another important mechanism of gut microbiota 
related to diabetes is the modulation of BCAAs. Evidence 
indicates that gut microbiota can change the decomposi-
tion of protein as well as the level of BCAAs in plasma 
[269]. BCAAs and their metabolites are the most sig-
nificant factors distinguishing normal from abnormal 
metabolism [270]. Plasma BCAAs levels of T2D patients 
are higher than those with normal blood glucose, and 
BCAAs levels are positively correlated with the homeo-
stasis model-assessed insulin resistance index [271]. 
Studies have suggested that elevated blood BCAAs con-
centrations are associated with an increased risk of T2D 
and insulin-resistance, and elevated BCAAs caused by 
dysmetabolism are important risk factors for T2D [272, 
273]. Additionally, BCAAs also serve as biomarkers that 
monitor the treatment effect of T2D [274].

It is well investigated that BCAAs have a significant 
positive correlation with blood glucose, blood lipids, 
and the insulin resistance index, and can be used as 
potential biomarkers for the early prediction of diabe-
tes [275]. One study indicated that three BCAAs (leu-
cine, isoleucine, and valine), and two aromatic amino 
acids (phenylalanine and tyrosine) were significantly 
increased 10  years before the onset of diabetes [275]. 
The increased BCAAs-induced insulin resistance was 
associated with the presence of Prevotella copri and 
Bacteroides vulgatus [269]. The major groups of gut 
bacteria that biosynthesize BCAAs are Prevotella copri 
and Bacteroides vulgatus, and the insulin resistance 
caused by elevated BCAAs levels is associated with 
the presence of these two bacteria [269]. Of note, feed-
ing Prevotella to mice indicated that Prevotella could 
induce insulin resistance, resulting in increased BCAAs 
levels as well as glucose intolerance [269].

The mechanism by which BCAAs induce insulin resist-
ance is still not fully understood. The rise of BCAA levels 
is found to regulate glycolipid metabolism, cause insu-
lin resistance, and increase the risk of T2D [272]. Other 
animal experiments have shown that elevated BCAAs 



Page 14 of 50Wang et al. Molecular Biomedicine            (2022) 3:30 

are transferred to skeletal muscle, and are interfered 
with lipid metabolism, which causes the accumulation 
of lipid metabolites and ultimately leads to skeletal mus-
cle insulin resistance [276]. Additionally, BCAAs are the 
key regulatory factor of mTORC1. It activates mTORC1 
and ribosomal protein S6 kinase beta-1 (S6K1) by induc-
ing the phosphorylation of IRS1, blocking the insulin 
signaling pathway, and eventually causing insulin resist-
ance [277]. However, 2 other studies have shown that 
BCAAs may exert their functions without mTORC1 [119, 
278]. One study reported that the metabolites of BCAAs, 
3-hydroxy isobutyrate, could cause insulin resistance 
by promoting skeletal muscle sprouting [278]. Another 
study reported that a diet rich in BCAAs can cause over-
eating, obesity, and shortened lifespan, which was not 
related to the mTOR signaling pathway in the liver but is 
mainly due to hyperphagia [119].

It is currently controversial whether supplementa-
tion with BCAAs would increase circulating BCAAs, 
thereby increasing the risk of diabetes [279]. And reduc-
ing BCAAs intake promotes fat mass loss and insulin 
sensitivity in mice with obesity [280]. A high BCAAs 
diet causes excessive feeding, mainly due to excessive 
appetite. Adding threonine to balance the composition 
of amino acids in the diet can inhibit food intake [119]. 
Nevertheless, some studies have found that supplemen-
tary BCAAs, such as isoleucine and leucine, can improve 
insulin resistance and reduce weight to lower the risk of 
obesity and diabetes [281–283]. The inconsistency may 
be due to the individual state of energy excess or energy 
deficiency. In terms of an excessive energy state, such as 
in patients with obesity or diabetes who have an impaired 
ability to degrade BCAAs, BCAAs and related metabo-
lites accumulate in circulation to reduce insulin sensi-
tivity and cause insulin resistance [284]. In most elderly 
people with inadequate energy or athletes who maintain 
good fitness habits, BCAAs can improve the form of 
metabolism [285]. In these people, BCAAs decomposi-
tion metabolism is increased by regulatory factors such 
as peroxisome proliferator-activated receptor-α coac-
tivator (PGC-1α) and PPARα, so that BCAAs levels are 
maintained in a steady state, which ultimately promotes 
glucose intake and insulin sensitivity [285]. This was sup-
ported by the study of Newgard, who pointed out that 
dietary intake of BCAAs might interact with a high-fat 
diet to induce abnormal metabolic phenotypes such as 
insulin resistance [224]. Mice fed BCAAs alone did not 
develop insulin resistance. However, when mice were fed 
a high-fat diet supplemented with BCAAs, they devel-
oped insulin resistance [224]. This study suggested that 
BCAAs only lead to insulin resistance in the presence of 
excess energy intake [224]. Therefore, more studies are 

needed to explore the supplementation with BCAAs and 
insulin resistance as well as the development of cardio-
vascular risk factors.

The role of the gut microbiota in CVDs
A healthy gut microbiota can resist the invasion of for-
eign pathogenic microorganisms by constructing a 
mucosal barrier and maintain the stability of the intesti-
nal environment as well as microecological balance [286]. 
When the species, proportion and number of gut micro-
biota are normal, the original gut microbiota can produce 
colonization resistance, preventing the reproduction of 
pathogenic bacteria and settlement [287, 288].

However, under certain circumstances, pathobionts 
can translocate from the gut mucosa to the systemic 
circulation, leading to systemic inflammation and del-
eterious effects in CVDs progression [289]. It has been 
found that oral bacteria, including Streptococcus and 
Vernonella, have increased ectopic colonization in the 
intestines of patients with T2D, coronary artery disease 
(CAD), and inflammatory bowel diseases [290].

In recent years, many researches demonstrated that gut 
microbiota could promote the development of cardiovas-
cular risk factors and then further promotes the devel-
opment of CVDs. After all, one of the mechanisms by 
which gut microbiota dysbiosis is associated with CVDs 
is the impaired intestinal mucosal barrier function and 
increased intestinal permeability under the interaction 
between LPS and host receptors [291–293].

In fact, LPS plays an important role in mediating 
inflammatory responses in  vivo through TLRs [294]. 
TLRs are important mediators of the innate immune 
system. Previous studies have shown that atheroscle-
rotic arteries express TLRs, and the activation of TLRs, 
specially TLR2 and TLR4, has a certain influence on ath-
erosclerosis [295]. Furthermore, LPS induces endothelial 
cell injury, stimulates the oxidative metabolism of mono-
cytes, and causes LDL oxidation in order to induce the 
transformation of macrophages into foam cells, which 
further promote the development of atherosclerosis 
[296]. LPS binds to its binding protein to form the com-
plex and is recognized by TLR4 on the surface of immune 
cells, followed by neutrophil infiltration and the accumu-
lation of inflammatory factors (TNF-α, IL-1, IL-27, etc.), 
which increases the risk of atherosclerosis [297, 298]. LPS 
can activate the TLR4-mediated pathway including the 
nicotinamide adenine dinucleotide phosphate (NADPH)/
reactive oxygen species (ROS)/endothelial nitric oxide 
synthase (eNOS) and MAPK/NF-κB pathways, leading to 
endothelial dysfunction and vascular inflammation [69]. 
Notability, the concentration of plasma LPS has been 
reported to be positively correlated with hypertension 
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[56]. And the dysbiosis of gut microbiota and oxida-
tive stress can promote the oxidation of LDL to oxLDL, 
which can inhibit the expression of eNOS, further lead-
ing to vasoconstriction and promoting the occurrence of 
hypertension [299–301].

Despite these important advances in understanding 
the underlying mechanisms and signals in modulating 
atherosclerosis and hypertension [302], the effect and 
mechanism of LPS in CAD have not been fully explored. 
However, at least in some recent studies, an increas-
ing potential for LPS biosynthesis in the microbiota in 
patients with CAD has been reported [303, 304]. The 
increased production of LPS biosynthesis in the micro-
biota has been reported to predict adverse cardiovascular 
events in patients with CAD, which may increase intes-
tinal permeability [304]. Following antibiotic treatment, 
gut bacterial translocation, LPS-induced systemic inflam-
mation, and cardiomyocyte injury in MI mice were allevi-
ated [304]. However, in a separate study, the circulating 
markers of gut related inflammation LPS binding protein 
and soluble CD14 were modulated by neither n-3 PUFA 
supplementation nor diet intervention [305]. In addition 
to the LPS of gut microbiota affecting the occurrence and 
development of CVDs, the dysbiosis of gut microbiota 
and the changes of its metabolites are also closely asso-
ciated with CVDs. Hence, further studies are needed to 
clarify the associations between gut microbe-derived LPS 
and CVDs, aiming to develop promising targeted thera-
pies for CAD. Next, we further elaborated the role of gut 
microbiota in common CVDs by disease classification.

The gut microbiota and hypertension
The pathogenesis of hypertension is complicated and 
influenced by environmental and genetic factors [306]. 
Effective antihypertensive therapy can reduce target 
organ damage and further improve quality of life [307]. 
Studies showed that the gut microbiota could produce 
a large number of metabolites through the absorp-
tion and decomposition of nutrients, which in turn 
affect the occurrence and development of hypertension 
(Fig.  4)  [308, 309]. Therefore, reducing the dysbiosis of 
gut microbiota and regulating their metabolites may have 
the potential to lower the blood pressure [310].

The dysbiosis of gut microbiota in hypertension
The most significant characteristic of gut microbiota 
in hypertensive patients is the decrease in microbial 
diversity, richness and the uneven distribution [309]. 
Researchers conducted 16S amplicon sequencing on 
fecal samples from patients with hypertension, and 
used Bayesian network analysis to find the relationship 

between blood pressure and the abundance of gut micro-
biota. The results showed that changes in blood pressure 
could affect bacterial abundance [311]. Moreover, Nath-
alia Santos Magalhães et al. reviewed the changes in gut 
microbiota in hypertensive patients, in which Klebsiella, 
Desulfovibrio and Prevotella increased, while Blautia, 
Butyrivibrio, Clostridium, Enterococcus, Faecalibacte-
rium, Oscillibacter, Roseburia, Bifidobacterium, and Lac-
tobacillus decreased [312].

In addition, the abundance of gut microbiota is associ-
ated with salt sensitivity in hypertension. It was reported 
that moderate high salt stimulation reduced the survival 
of Lactobacillus in the intestine and increased TH17 cells, 
which could lead to an increase in blood pressure [313]. 
Besides, gut microbiota has been found to promote angi-
otensin II-induced hypertension by supporting monocyte 
chemoattractant protein 1/IL-17 driven vascular immune 
cell infiltration and inflammation [314]. Therefore, the 
dysbiosis of gut microbiota may have an impact on the 
development of hypertension.

The metabolites of gut microbiota in hypertension
Dysbiosis of gut microbiota can further lead to changes 
in metabolites, which are complex in regulating blood 
pressure [315]. So far, SCFAs and TMAO are the main 
research objects, and BAs and H2S have also been par-
tially reported [159, 316].

SCFAs regulate the blood pressure by different path-
ways  SCFAs are well reported to regulate blood pres-
sure by GPR41 and Olfr78 [317, 318]. It was reported 
that the systolic blood pressure of GPR41 knockout mice 
was higher than that of wild-type mice [319]. Olfr78 can 
participate in the activation of the sympathetic nerve, the 
formation of hypertension and the increase in carotid 
body activity [318]. Besides, the plasma renin activity in 
Olfr78-KO mice was lower than that in wild type mice, 
which may be induced by high levels of SCFAs activation 
[317, 320]. In short, gut microbiota may play a crucial 
role in the regulation of hypertension through SCFAs-
mediated mechanisms, and SCFAs have the potential to 
be a therapeutic target for hypertension.

TMAO increases the risk of hypertension  The concen-
tration of circulating TMAO is positively correlated with 
the risk of hypertension and people with high concentra-
tions of circulating TMAO are more likely to suffer from 
hypertension [321, 322]. In animals with normal blood 
pressure, TMAO has no direct effect on blood pressure, 
but can prolong the action time of hypertension induced 
by angiotensin II [323]. However, the specific molecular 
mechanism of the effect of TMAO on blood pressure is 
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not completely clear. Previous research revealed that 
TMAO increased blood pressure by upregulating inflam-
matory gene expression and pathways in human aortic 
endothelial cells and vascular smooth muscle cells [324]. 
In fact, the effect of TMAO on blood pressure is mainly 
related to lipid and glucose metabolism and inflamma-
tion, which is similar to the pathogenesis of atheroscle-
rosis caused by TMAO [240]. After all, persistent hyper-
tension can lead to endothelial cell damage and lipid 
deposition, which can lead to atherosclerosis [325]. How-
ever, the specific molecular mechanism of the effect of 
TMAO on blood pressure needs further exploration.

BAs and H2S play roles in the development of hyperten-
sion  At present, there are few studies on the effect of 
BAs on blood pressure, and results are not completely 
consistent. One study found that BAs could decrease 
aldosterone and increase corticosterone in blood ves-
sels, which could induce hypertension [326], but another 
study suggested that BAs acted directly on the vascular 
bed and weakened the response of blood vessels to nor-
epinephrine [327]. Of note, a recent study showed that 
BAs supplementation significantly reduced blood pres-
sure in rats susceptible to spontaneous hypertensive 
stroke [328]. Therefore, there is a possible relationship 
between BAs and the formation of hypertension, but 

Fig. 4  The mechanism of gut microbiota increasing the risk of hypertension (created with BioRender.com). Hypertension is diagnosed in adults 
with systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. The dysbiosis and metabolites of gut microbiota can influence 
the course of hypertension. Abbreviations: SCFAs: short-chain fatty acids; TMAO: trimethylamine N-oxide; BAs: bile acids; LPS: lipopolysaccharide; 
TLRs: Toll like receptors; GPR41: G protein-coupled receptor 41; Olfr78: olfactory receptors 78; HR: heart rate; LDL: low density lipoprotein; ox-LDL: 
oxidized low-density lipoprotein; eNOS: endothelial nitric oxide synthase. *The regulatory effect of BAs on blood pressure is still controversial, and 
the figure shows only one possible mechanism
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whether they play a beneficial or harmful role needs fur-
ther exploration.

Besides, the gut microbiota can also produce H2S to par-
ticipate in oxidation regulation, inflammation and other 
processes [329]. It has been found that colon-derived H2S 
can lower blood pressure [177]. RAS, in particular, is an 
essential mechanism in the pathogenesis of hyperten-
sion [330]. H2S has been reported to inhibit the activity 
of renin by reducing the synthesis and release of renin, 
which has potential therapeutic value for renovascular 
hypertension [331]. Moreover, H2S may reduce blood 
pressure by dilating peripheral blood vessels and reduc-
ing heart rate [177, 178].

Taken together, the etiology of hypertension is com-
plex, the composition of gut microbiota is diverse, and 
the dysbiosis of gut microbiota will further affect their 
metabolites [332]. Although the specific molecular 
mechanism between the metabolites and blood pres-
sure is not completely clear, it is expected to enrich the 
existing treatment of hypertension by regulating gut 
microbiota [333].

The gut microbiota and atherosclerosis
Atherosclerosis is the pathological basis of various 
CVDs, and seriously harms human health [334]. The 
pathogenesis of atherosclerosis is based on the accu-
mulation of lipids in the intima of the most frequently 
involved arteries, leading to the proliferation of fibers 
and calcium deposition, gradually thickening and hard-
ening the walls of blood vessels [335]. This process is 
closely associated with the inflammatory response [336, 
337]. Of note, there is a serious dysbiosis between the 
composition of gut microbiota and interspecific rela-
tionships in individuals with atherosclerosis [338]. And 
the metabolites of gut microbiota can also further affect 
atherosclerosis [94, 339] (Fig. 5).

The dysbiosis of gut microbiota in atherosclerosis
As mentioned above, an intact intestinal epithelium 
can effectively prevent the translocation of bacteria to 
the intestine [340]. Normal gut microbiota can main-
tain the structural integrity of the intestinal mucosal 
barrier [341]. It has been reported that intestinal 
metagenomic changes in individuals with atheroscle-
rosis are associated with the inflammatory response 

Fig. 5  The relationship between gut microbiota and atherosclerosis (created with BioRender.com). Due to the accumulation of cholesterol in 
the vascular wall, macrophages engulf lipid particles and convert them into foam cells, further aggravating atherosclerosis. The dysbiosis and 
metabolites of gut microbiota can influence the course of atherosclerosis. In general, SCFAs are beneficial for improving atherosclerosis, while BAs 
and TMAO may aggravate the progression of atherosclerosis. Abbreviations: SCFAs: short-chain fatty acids; TMAO: trimethylamine N-oxide; BAs: bile 
acids; LPS: lipopolysaccharide; TLRs: Toll-like receptors; NLRs: Nod-like receptors
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[338, 342]. It has been found that bacteria of the Col-
linsella genus were enriched in atherosclerotic patients, 
while SCFA-producing bacteria, such as Roseburia and 
Eubacterium, were enriched in healthy individuals [342, 
343]. In fact, impaired intestinal barrier integrity due 
to dysbiosis in the gut microbiota is considered a risk 
factor for atherosclerosis [344]. When the gut micro-
biota is disordered and the intestinal epithelial barrier 
is damaged, immune cells recognize a variety of bacte-
rial components through pattern recognition receptors 
to recognize highly conservative pathogen-associated 
molecular patterns, leading to systemic and tissue-spe-
cific inflammation [345].

The metabolites of gut microbiota in atherosclerosis
SCFAs prevent the formation of atherosclerosis  It is 
known that SCFAs can reduce intestinal inflammation, 
prevent pathogens from invading, and maintain barrier 
integrity [41]. For example, acetic acid has been found to 
ameliorate chronic inflammation in atherosclerosis [346, 
347]. Besides, it has been reported that propionic acid 
can improve atherosclerosis by immune-dependent regu-
lation of intestinal cholesterol metabolism [348]. In addi-
tion, butyric acid can improve atherosclerosis by decreas-
ing NF-κB activation, reducing macrophage adhesion and 
migration, and alleviating inflammation [349]. Another 
study found that butyric acid can also improve the tran-
scription of apolipoprotein A-I in the liver, which helps 
improve the function of HDL and prevent atherosclerosis 
[350]. In brief, SCFAs can be a potential therapeutic tar-
get for atherosclerosis by regulating lipid metabolism and 
reducing inflammation [351].

TMAO promotes endothelial dysfunction and regulates 
lipid metabolism to increase atherosclerosis  TMAO 
actively participates in the development and progression 
of atherosclerosis, which can lead to endothelial dys-
function, affect platelet activation, as well as participate 
in thrombus formation [94]. The inflammatory response 
is one of the key factors in atherosclerosis caused by 
TMAO [94, 352]. It has been reported that TMAO can 
promote vascular inflammation and endothelial dysfunc-
tion by activating NLRP3 inflammatory bodies, and the 
specific molecular mechanism may be the inhibition 
of the Sirtuin 3-superoxide dismutase 2-mitochondrial 
ROS pathway and the activation of the ROS-thioredoxin-
interactive protein axis [353, 354]. Furthermore, TMAO 
can enhance the adhesion ability of monocytes and 
promote atherosclerosis by activating the protein kinase  
C/NF-κB/vascular cell adhesion molecule-1 pathway [352].

Additionally, TMAO can cause atherosclerosis by 
affecting lipid metabolism. For example, TMAO inhib-
its the synthesis of BAs and accelerates the formation of 
aortic lesions in ApoE−/− mice, and the specific molec-
ular mechanism is involved in the activation of FXR 
and small heterodimer partners [355]. TMAO can also 
upregulate CD36 expression, class A1 scavenger recep-
tor, and cholesterol migration related gene ATP-binding 
cassette transporter A1 in macrophages, resulting in 
cholesterol accumulation in macrophages [356–358]. 
Moreover, platelets, which play an important role in the 
occurrence and development of atherosclerosis, are also 
regulated by TMAO. Besides, TMAO promotes platelet 
hyperreactivity and thrombosis by increasing intracel-
lular Ca2+ release [359]. In a nutshell, TMAO can be a 
potential target for the prevention and treatment of ath-
erosclerosis [360].

The controversial role of BAs in atherosclerosis  As we 
known, BAs also play an important role in gut micro-
biota and cholesterol excretion [144]. Cholesterol is 
metabolized in the liver to produce primary BAs, which 
are absorbed at the end of the ileum and then trans-
ported to the liver [361]. BAs mainly bind to FXR and 
TGR5 to exert biological roles in the progression of ath-
erosclerosis [362, 363]. Notability, the regulation of FXR 
and TGR5 can also influence the progression of athero-
sclerosis [364]. It was reported that the loss of FXR was 
associated with increased atherosclerosis in ApoE−/− 
mice [365]. The clinical application of FXR agonists also 
showed a regulatory effect on blood lipids [366]. How-
ever, some studies have shown that the inhibition of FXR 
can promote BAs metabolism and improve atheroscle-
rosis [367]. We proposed that different types of BAs may 
have opposite effects on FXR, and the final regulation of 
atherosclerosis depends on their comprehensive effect. 
As for TGR5, it has been reported to the activation of 
TGR5 could reduce the area of atherosclerotic plaques, 
reduce inflammation in plaques, and inhibit phagocyto-
sis of oxLDL by macrophages [368, 369]. In addition, it 
has been found that an FXR/TGR5 double agonist (INT-
767) can significantly reduce atherosclerotic plaques in 
ApoE−/− and LDLR−/− mice by inhibiting the expres-
sion of NF-κB [370]. Given that the conclusions of FXR/
TGR5 regulating atherosclerosis are not completely con-
sistent, more high-quality studies are needed to further 
clarify the regulatory role of BAs targeting FXR/TGR5 in 
atherosclerosis.

At present, the main clinical treatments for atheroscle-
rosis are lipid-lowering drugs, antiplatelet drugs and 
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anti-inflammatory drugs, but these treatments may not 
have ideal effects on some patients [336, 371]. There-
fore, finding new drug targets and developing methods 
for the treatment of atherosclerosis are of great signifi-
cance to reduce the morbidity and mortality of CVDs, 
while targeted therapy for gut microbiota and regulation 
of gut microbiota and their metabolites, may be a 
good choice.

The gut microbiota and CAD
CAD, one of the major CVDs, has remained the lead-
ing cause of mortality worldwide in decades [372, 373]. 
The pathogenesis of CAD is known as atherosclerotic 
plaque that accumulates in blood vessels, leading to 
the stoppage of oxygen and nutrient supplements to 
the heart [372, 374]. Since atherosclerosis has been 
supported to be associated with gut microbiota as 
described above, the correlation between CAD and gut 
microbiota has also been researched over the past few 
years (Fig. 6) [102, 375].

The dysbiosis of gut microbiota in CAD
Given that a considerable change in gut microbiota com-
position has been identified in CAD, microbiota dysbiosis 
is proposed to play a crucial role in the course of the dis-
ease. Studies have shown that some of the gut microbiota 
are profiled as diagnostic markers in patients with CAD, 
especially Clostridium, Lactobacillales, and Bacteroides, 
which are considered diagnostic markers in patients with 
CAD [376]; Collinsella aerofaciens is a possible keystone 
of CAD triggering different clinical consequences [377]; 
and Roseburia, Blautia, and Ruminococcus are abundant 
in CAD patients with in-stent stenosis [378]. In a prospec-
tive cohort, both stable CAD and stable CAD combined 
with T2D patients presented with significantly different  
metabolite profiles compared to healthy controls [302]. 
Besides, there was a further shift in metabolite profiles 
between stable CAD combined with or without T2D, show-
ing that the specific bacteria Bifidobacterium catenulatum, 
Bifidobacterium longum, and Ruminococcus torques were 
tightly associated with atherosclerotic severity indicators 
and adverse cardiac outcomes [302].

Fig. 6  The gut leakage promotes the formation of coronary heart diseases and heart failure (created with BioRender.com). Dysbiosis of gut 
microbiota triggers gut leakage, which increases microbiota translocation, resulting in inflammation and abnormal metabolism. The gut microbiota, 
as a metabolic filter, also converts nutrients to (microbial-associated) metabolites, including BAs, TMAO, SCFAs, and so on, which affect the 
progression of coronary heart diseases and heart failure. For instance, SCFAs play a protective role by inhibiting the inflammatory response and 
improving angiogenesis. All these metabolites may promote venous congestion and decrease cardiac output, eventually leading to heart failure. 
Abbreviations: BAs: bile acids; SCFAs: short-chain fatty acids; TMAO: trimethylamine N-oxide; LPS: lipopolysaccharide
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The metabolites of gut microbiota in CAD
Gut microbial metabolic features have also been pro-
posed as highlights of the various stages of CAD and 
markers of major adverse cardiac events [102, 375, 379, 
380]. For instance, serum choline, carnitine, and TMAO 
were associated with cumulative events for cardiovascu-
lar death in functionally relevant CAD [379]; bacterial 
co-abundance groups containing operational taxonomic 
units from Lachnospiraceae and Ruminococcaceae that 
produce butyric acid were reduced with progression of 
CAD [102]. However, the mechanism of gut microbiota 
and metabolites during CAD development has not been 
fully elucidated. Hence, revealing and confirming the 
relationship between gut microbiota and CAD develop-
ment are essential for introducing novel microbiome-
based preventative and therapeutic strategies. Therefore, 
in this section, we aim to describe the links between 
microbial-derived metabolism and CAD.

TMAO induces inflammation to increase the risk of 
CAD  TMAO has been mechanistically linked to ath-
erosclerosis and is also proposed as a promotor and pre-
dictor of clinical vascular events in CAD [289]. Plasma 
TMAO levels are associated with long-term risks of 
cardiovascular events in patients with acute coronary 
syndrome [381], at least in particular related to its pro-
inflammatory capacity, promoting the adhesion ability of 
aortic endothelial cells. In mechanism, TMAO enhances 
platelet hyperreactivity by altering Ca2+ signaling and 
elicits a pro-thrombotic effect [359]. Especially, TMAO 
seems to induce systemic inflammation that contrib-
utes to CAD progression. This is particularly relevant 
given that TMAO directly activates inflammatory path-
ways, and elicits perturbations in membrane dynamics in 
human aortic ECs and smooth muscle cells [382, 383]. In 
particular, the exosomes secreted by TMAO-stimulated 
hepatocytes increase the secretion of TNF-α and IL-6, 
and further promote inflammation [383].

BAs concentrations change in CAD  Given that BAs, 
as the main metabolites of cholesterol, exert a powerful 
effect on maintaining cholesterol homeostasis and anti-
atherosclerotic activity, the impaired ability to excrete 
BAs becomes a risk factor for CAD [384, 385]. Previous 
studies have found that patients with CAD have lower 
BAs fecal excretion than CAD-free individuals, indicat-
ing the protective effect of BAs excretion against CAD 
[386, 387]. Notably, recent studies have mentioned that 
decreased circulating concentrations of BAs are also 
predictors of CAD [385, 388]. In a sizable cohort study 
of 7,438 patients with suspected CAD, researchers found 
that fasting serum total BA levels were highly related to 
the presence and severity of CAD [388].

Furthermore, it has been uncovered that BAs are associ-
ated with regulating channel conductance and calcium 
dynamics in cardiomyocytes and vascular tone leading to 
a reduced heart rate [389]. Besides, the molecular action 
of BAs through binding to TGR5 and FXR drives anti-
inflammatory effects in vitro [248, 389]. In this case, cho-
lesterol elimination is involved in the evacuation of intes-
tinal BAs and their sequestrants binding, which leads to 
lower LDL [248, 389].

SCFAs protect the development of CAD  It is notable 
that gut microbiota could serve as a protective regula-
tor against CAD development by synthesizing SCFAs 
[390, 391]. In a cohort study with 405 subjects, authors 
reported the abundance of Roseburia intestinalis and 
Faecalibacterium cf. prausnitzii, as the producers of 
butyrate, was relatively depleted in atherosclerotic CVD, 
with decreased synthesis of propionate, but no significant 
changes in acetate [338]. Mechanistically, SCFAs bind to 
and activate GPR and may exert anti-inflammatory and 
pro-angiogenic effects in CAD [390, 391].

The gut microbiota and heart failure
The dysbiosis of gut microbiota in heart failure
Indeed, studies mentioned above support that the gut 
microbiota is tightly associated with the prognosis of ath-
erosclerosis, hypertension, and coronary artery disease, 
all of which are risk factors for heart failure. Heart fail-
ure is one of the leading causes of cardiovascular mor-
tality worldwide and is characterized by higher levels of 
systemic inflammation [392, 393]. In patients with heart 
failure, intestinal mucosal edema caused by decreased 
cardiac output and severe venous blood congestion can 
bring on the increased bacterial translocation [392], 
which subsequently aggravates the progression and prog-
nosis of heart failure. Hence, it is no surprise that the 
increasing number of fecal bacteria corresponds with 
increased intestinal permeability and underlying system-
atic inflammation in heart failure [392].

The composition of the gut microbiota in heart failure 
subjects seems to be altered compared with normal sub-
jects [394]. Heart failure has been linked to specific gut 
microbial species including Candida, Campylobacter, 
Escherichia coli, Klebsiella pneumoniae, Shigella, Strep-
tococcus viridans, and Yersinia [392, 394]. Toxins of gut 
microbiota can directly trigger systemic inflammation 
and have been considered to be critical regulators in the 
pathological progression of heart failure [392]. As men-
tion above, the main component of the outer membrane 
of intestinal gram-negative bacteria is LPS, which is an 
important inflammatory stimulator. LPS can activate 
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TLR4, a membrane receptor that triggers NF-κB signal-
ing, produces pro-inflammatory cytokines, and stimu-
lates the inflammatory response [187, 395, 396]. Patients 
with heart failure have been shown to have elevated 
plasma concentrations of LPS during edematous epi-
sodes, which may be the key stimuli for cytokine pro-
duction and immune activation, showing that immune 
activation in chronic heart failure may be secondary to 
LPS activation [397].

The metabolites of gut microbiota in heart failure
Evidence has declared that the metabolites of gut 
microbiota exhibit remarkable alterations in heart fail-
ure. The gut microbiota, as a metabolic filter, converts 
nutrients to (microbial-associated) metabolites, includ-
ing TMAO, SCFAs, BAs, and so on, which affect heart 
failure progression and prognosis (Fig.  6). Although 
corroboration of underlying causality between gut 
microbiota and heart failure is much more complicated 
and challenging, a better understanding of the mecha-
nisms underpinning microbiota metabolites in devel-
opment of heart failure could offer new prospects for 
the primary and secondary prevention.

TMAO increases the risk of heart failure  Elevated cir-
culating TMAO levels are linked to myocardial fibro-
sis in animal models [398] and portend higher long-
term mortality risk in patients with heart failure [399–, 
400–402]. In a study with a follow-up time of 9.7 years, 
researchers measured TMAO in 2,490 patients with 
chronic heart failure, and found that elevated levels of 
TMAO were predictive of morbidity and mortality in 
heart failure with reduced ejection fraction (HFrEF) 
[403]. Besides, it is worth mentioning that the newly 
published meta-analysis systematically reviewed and 
provided relatively reliable evidence of the prognos-
tic value of TMAO in heart failure [110]. To date, it 
is clear that FMO3 could affect the concentration of 
plasma TMAO by affecting its enzyme activity and 
consequently improve the prognosis of HFrEF conse-
quently [401]. Besides, in a prospective heart failure 
cohort, elevated gut microbiota production of N,N,N-
trimethyl-5-aminovaleric acid (TMAVA) derived from 
the TMAO precursor trimethyllysine (TML) was linked 
with the gradual decrease in fatty acid oxidation and 
accelerated the risk of cardiac hypertrophy and mor-
tality, but independent of TMAO-mediated metabolic 
pathways and effects [404].

Decreasing the production of SCFAs in heart fail-
ure  Since SCFAs as controllers have proven key in 
maintaining intestinal barrier integrity by regulat-
ing ileal motility, mucus secretion, and tight junction 

protein expression, they may exert beneficial effects on 
the dysfunctions of intestinal structure and function 
observed in heart failure [405]. At present, there is little 
evidence to investigate the direct/indirect relationship 
between SCFAs and heart failure. In a mouse model 
of transverse aortic constriction (TAC), the reduction 
of SCFAs was also observed to be related to the pro-
gression and severity of heart failure [406]. In another 
preclinical study, a high-fiber diet modified the gut 
microbiota populations and increased the abundance of 
SCFAs acetate-producing bacteria, resulting in amelio-
rated cardiac function, by reducing blood pressure, car-
diac fibrosis, and hypertrophy [407]. Besides, a remark-
able decrease in the abundance of SCFAs-producing 
bacteria has been found in severe chronic heart failure, 
presumably leading to the alteration of SCFA pathway-
mediated cell function and metabolism of amino acids 
and carbohydrates [408].

The gut microbiota and atrial fibrillation
The dysbiosis of gut microbiota in atrial fibrillation
Recent studies have suggested that the gut microbiota 
is associated with another important CVD, atrial fibril-
lation (AF). AF is one of the most common symptoms 
of arrhythmias. The incidence of AF in people over 
65 years old is about 28‰, and the relatively poor con-
trol of AF leads to an increased risk of complications 
such as heart failure, stroke, and death [409].

Several studies have highlighted the alteration of gut 
microbiota in patients with AF [410, 411]. Studies have 
reported an increase in Rumenococcus, Streptococcus, 
and Enterococcus, and a decrease in Faecali bacterium, 
Altococcus, Oscillobacter, and Biliophilus in AF [410]. 
In patients with persistent AF, an increase in the bio-
diversity of the gut microbiota and differences in the 
composition of the microbiota were both observed 
[410]. The proportions of Streptococcus and Enterococ-
cus were significantly increased in the gut of patients 
with AF, while the proportions of bacteria such as Fae-
calibacterium and Biliophilus were decreased [410].

In-depth exploration of the mechanism is the key in 
the prevention and treatment of AF [409]. In recent 
years, a study has shown that the imbalance of gut 
microbiota can promote atrial electrical remodeling and 
structural remodeling by giving rise to intestinal barrier 
function damage and systemic inflammatory response, 
which in turn leads to the occurrence and development 
of AF [412]. Dysbiosis of the aged microbiota leads to 
impaired glucose tolerance [413]. Moreover, the glu-
cose dysregulation mediated by gut microbiota may be 
involved in the high incidence of aging-related AF by 
activating the atrial NLRP3 inflammasome [413].
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Studies have suggested that LPS can promote the 
occurrence of AF by increasing the activity of the NLRP3 
inflammasome, and reducing serum LPS may be a poten-
tial method for the prevention and treatment of AF [413]. 
In an animal study, it was found that LPS can increase 
the expression of pro-inflammatory factors and connexin 
43 in cardiomyocytes, increase the expression of L-type 
Ca2+ channel protein, and shorten the effective refractory 
period of the myocardium, thereby promoting the occur-
rence of AF [414]. Zhang et al. found that the increase in 
serum LPS concentration is accompanied by the activa-
tion of the atrial NLRP3 inflammasome, which leads to 
the occurrence of atrial fibrosis [413]. Besides, the selec-
tive inhibition of LPS generation and NLRP3 inflamma-
some activity can inhibit the occurrence of atrial fibrosis 
[413]. In addition to the structural remodeling, it has 
been found that upregulation of NLRP3 expression can 
lead to shortened atrial action potential duration and 
increased diastolic endoplasmic reticulum Ca2+ release 
frequency, which results in delayed myocardial depolari-
zation and ectopic electrical activity [415].

The metabolites of gut microbiota in atrial fibrillation
Several metabolites have been proposed to hint at the 
link between gut microbiota and AF. In patients with AF, 
the microbial species that harbored SCFAs synthesis-
related genes were decreased [416]. Indoxyl sulfate has 
an impact on myocardial fibrosis and ventricular remod-
eling [417]. However, only a few studies have focused on 
the relationship between metabolites in gut microbiota 
and AF. Herein, we summarized TMAO and BAs in the 
development of AF.

TMAO increases the risk of AF  It was reported that 
patients with AF had increased TMAO formation in the 
gut microbiota [418]. A large cohort study showed that 
TMAO was positively associated with the incidence 
of AF [419]. Besides, some studies reported a dose-
dependent relationship between circulating TMAO lev-
els in blood and increased AF risk [419, 420], and the 
risk of thrombus formation [421]. Although the reason 
why AF patients have higher serum TMAO levels is not 
completely clear, the mechanism that can explain how 
TMAO promotes AF has been extensively investigated. 
TMAO may directly contribute to the development of 
atrial electrophysiology instability and exacerbate auto-
nomic remodeling in order to induce AF [422]. What’s 
more, TMAO regulates autonomic nerve conduction 
through the ganglion plexus, and enhances the activation 
of the NF-κB-mediated inflammatory signaling pathway 
so as to induce AF [423]. Nevertheless, one study did not 
report a direct positive association between TMAO and 
AF [424], but the precursors of TMAO including choline, 

betaine, and dimethylglycine played important roles, 
which were associated with AF risk [424].

The different components of BAs modulate the risk of 
AF  Gut microbiota can affect AF by modulating the 
metabolic levels of total BAs, and the different compo-
nents of BAs including DCA and LCA, either by metabo-
lizing bile salts or by modulating downstream signaling 
pathways of BAs [153]. The dysbiosis of gut microbiota 
can lead to an increase in the concentration of primary 
BAs such as CDCA. Previous studies have shown that 
CDCA can induce cardiomyocyte apoptosis and myocar-
dial fibrosis through the FXR receptor and promote myo-
cardial fibrosis and the occurrence of myocardial damage 
[425]. Moreover, studies have found that taurocholic acid 
(TCA) can regulate membrane potential changes in neo-
natal rat cardiomyocytes, promote the occurrence of AF 
by stimulating the Na+-Ca2+ exchanger on the surface of 
cardiomyocytes, and activate the potassium current reg-
ulated by acetylcholine [426]. Abnormal BAs metabolism 
can lead to lipid metabolism disorders to increase the 
risk of AF [427]. Therefore, maintaining the metabolic 
hemostasis of BAs is of great significance for the preven-
tion and treatment of AF.

Promising therapy of targeting the gut microbiota 
in CVDs
Previously, we discussed the role of gut microbiota in the 
development of CVDs, the main mechanism related to 
the dysbiosis and the concentration change in metabo-
lites. Mounting evidence has emerged in gut microbiota 
as a novel therapeutic target for the treatment of CVDs. 
We summarized recent clinical trials (Table 1) and basic 
research (Table  2) on targeting microbes for the treat-
ment of CVDs. We provided information on several 
traditional therapeutic strategies including diet interven-
tions, drugs, exercise and surgery, as well as some novel 
methods such as probiotic and prebiotic therapy and 
fecal microbiota transplantation (FMT), to identify the 
efficacy of the above-mentioned therapeutic hotspots in 
regulating gut microbiota and treating CVDs.

Diet
Importantly, adding SCFAs or using diet enriched SCFAs 
could stimulate the expression of leptin and decrease 
food intake as well as energy storage in order to treat 
obesity [497]. Intervention with a traditional Mediterra-
nean diet could increase the abundance of Intestinimonas 
butyriciproducens and A. muciniphila, and increase 
postprandial plasma butyric levels [244]. Avocado treat-
ment could also increase Faecalibacterium, Lachnospira, 
and Alistipes, increase fecal SCFAs concentrations and 
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Table 1  Clinical trials targeting the gut microbiota in the treatment of cardiovascular diseases

Abbreviation: CAD Coronary artery disease, MI Myocardial infarction, T2D type 2 diabetes

First-author/Year Models Intervention Efficacy Registration number

Diet

  Marilena Vitale 2021 [244] Overweight/obese individuals Mediterranean diet Positive NCT03071718

  Xinyue Zhao 2021 [428] Patients with CAD Moderate Alcohol Consumption Positive No report

  Jalal Moludi 2021 [429] Patients with CAD Calorie restriction Positive IRCT20121028011288N15

  Demir Djekic 2020 [430] Patients with CAD Lacto-Ovo-Vegetarian Diet Positive NCT02942628

  Shyamchand Mayengbam 2019 
[431]

Overweight/obese individuals Dietary fibers Positive NCT01719900

  Binita Shah 2018 [432] Patients with CAD Vegan Diet or the American Heart 
Association-Recommended Diet

Positive NCT 02,135,939

  Liping Zhao 2018 [246] Patients with T2D Dietary fibers Positive No report

  Luay Rifai 2015 [433] Patients with heart failure DASH diet Positive No report

  Khaider K Sharafedtinov 2013 [434] Obese hypertensive patients hypocaloric diet supplemented with 
probiotic cheese

Positive ISRCTN76271778

Probiotics

  Annefleur Koopen 2022 [435] Subjects with metabolic syndrome A. soehngenii Positive NTR-NL6630

  Ayodeji Awoyemi 2021 [436] Patients with heart failure Saccharomyces boulardii Negative NCT02637167

  Jalal Moludi 2021 [429] Patients with CAD Lactobacillus rhamnosus GG (LGG) Positive IRCT20121028011288N15

  Jalal Moludi 2021 [437] Patients with MI Lactobacillus Rhamnosus G
Inulin

Positive IRCT20121028011288N15

  Jalal Moludi 2019 [438] Patients with MI Lactobacillus rhamnosus capsules Positive IRCT20121028011288N15

  Clara Depommier 2019 [439] Overweight/obese insulin-resistant 
volunteers

A. muciniphila Positive NCT02637115

  Mobin Malik 2018 [440] Patients with stable CAD Lactobacillus plantarum 299v Positive NCT01952834

  Annelise C Costanza 2015 [441] Patients with heart failure Saccharomyces boulardii Positive NCT01500343

  Kotaro Aihara 2005 [442] Subjects with high-normal blood pres-
sure and mild hypertension

Lactobacillus helveticus Positive No report

Probiotics and Prebiotics

  Jalal Moludi 2021 [443] Patients with CAD Lactobacillus Rhamnosus G and Inulin Positive IRCT20180712040438N4

  A Hibberd 2019 [444] Healthy overweight or obese individu-
als

Polydextrose and Bifidobacterium 
animalis subsp

Positive NCT01978691

Prebiotics

  Christina M van der Beek 2018 [445] Overweight to obese men Inulin Positive NCT02009670

  Alissa C Nicolucci 2017 [446] Children with overweight or obesity Oligofructose-enriched inulin Positive NCT02125955

  Yanan Wang 2016 [447] Mildly hypercholesterolemic individu-
als

β-glucan Positive NCT01408719

  Evelyne M Dewulf 2013 [448] Obese women Inulin-type fructans© Positive NCT00616057

Exercise

  Joanna Cwikiel 2017 [449] Patients with CAD Bicycle ergometer Negative NCT01495091

  Susanne Kristine Aune [450] Patients with CAD Exercise stress testing Negative NCT01495091

  Elizabeth A Rettedal 2020 [451] Overweight participants High-intensity interval training Positive ACTRN12617000472370

Drug

  Yifei Zhang 2020 [452] Patients with T2D Berberine and probiotics Positive NCT02861261

  W H Wilson Tang 2013 [453] Patients undergoing elective coronary 
angiography

broad-spectrum antibiotics Positive No report

  Adam F M Stone 2002 [454] Patients admitted with acute MI or 
unstable angina

Amoxicillin, metronidazole Positive No report

FMT

  Hao-Jie Zhong 2021 [455] Hypertensive patients Washed microbiota transplantation Positive No report

  Jessica R Allegretti 2020 [456] Obese patients FMT capsules Positive NCT02741518

  Loek P Smits 2018 [457] Patients with metabolic syndrome Vegan FMT Positive NTR 4338

  Anne Vrieze 2012 [458] Patients with metabolic syndrome FMT Positive NTR1776
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Table 2  Basic researches of targeting gut microbiota in the treatment of cardiovascular diseases

First-author/Year Diseases Intervention Efficacy

Diet
  Deyang Yu 2021 [459] Obese mice Isoleucine or Valine Negative

  Tulika Arora 2019 [460] High-fat-fed mice Dietary fibers Positive

  Nicole E Cummings 2018 [280] Diet-induced obese mice Specifically reducing dietary BCAAs Positive

Probiotics
  Ryan du Preez 2021 [461] Rats fed either corn starch or high-carbohy-

drate, high-fat diets
N. oceanica Positive

  Victoria L O’Morain 2021 [371] High-fat-fed LDLR -/- mice Lab4P Positive

  Naofumi Yoshida 2021 [223] Diet-induced obesity mice Bacteroides spp. Positive

  Iñaki Robles-Vera 2020 [462] Spontaneously hypertensive rats BFM and lactobacillus fermentum cect5716 
(lc40)

Positive

  Iñaki Robles-Vera 2020 [463] Hypertension in deoxycorticosterone acetate 
(DOCA)-salt rats

BFM Positive

  Mona Mischke 2018 [464] Mice with a high-fat Western-style diet Engineered probiotic bacteria and specific 
symbionts

Positive

  Eunjung Lee 2018 [465] White adipose tissues of mice Lactobacillus plantarum strain Ln4 Positive

  Lingling Jia 2017 [466] Diabetic mice induced by high fat diet plus 
streptozotocin

Clostridium butyricum Positive

  D R Michael 2017 [467] High-fat-fed mice Lab4P Positive

  Zhen-Lin Liao 2016 [468] High-fat-fed ApoE -/- mice Bifidobacteria Positive

  Xiaohong Tracey Gan 2014 [469] Post-MI rats Lactobacillus rhamnosus GR-1 Positive

  Qifang Wu 2021 [470] T2D mice Sargassum fusiforme fucoidan Positive

  Qichao Chen 2019 [471] High-fat diet-induced dyslipidemia in rats Fucoidan and galactooligosaccharides Positive

Prebiotics
  Emilie Catry 2018 [472] ApoE -/- mice fed an n-3 polyunsaturated fatty 

acid-depleted diet
Inulin-type fructans Positive

  Lisa R Hoving 2018 [473] Atherosclerosis in hypercholesterolemic 
APOE*3-Leiden.CETP mice

Inulin Negative

  Lourdes Fernández de Cossío 2017 [474] Mice with metabolic syndrome Oligofructose Positive

  P D Cani 2007 [475] High-fat-fed mice Oligofructose Positive

  Marie-Hélène Rault-Nania 2006 [476] ApoE -/- mice Inulin Positive

Drug (Antibiotics)
  Xuefang Yan 2020 [477] Rats with high-salt diet Quadruple antibiotic treatment Positive

  S Galla 2018 [478] Spontaneously hypertensive rats Minocycline and vancomycin Positive

  S Galla 2018 [478] Salt-sensitive rats Minocycline and vancomycin Negative

  Vy Lam 2016 [380] Post-MI rats Vancomycin Positive

Drug (TCM)
  Song Yang 2021 [479] High-fat-fed mice Akebia saponin D Positive

  Boran Zhu 2020 [480] High-fat-fed mice Alisma orientalis beverage Positive

  Jianbo Wu 2020 [481] WKY/Izm rats Baicalin and berberine in Sanoshashinto Positive

  Zhiyong Du 2020 [482] Cardiac hypertrophy rats Baoyuan decoction Positive

  Patricia Diez-Echave 2020 [483] High-fat-fed mice Lippia Citriodora Extract Positive

  Dandan Wu 2019 [484] Spontaneously hypertensive rats Baicalin Positive

  Xiaoying Yu 2019 [485] Spontaneously hypertensive rats Zhengganxifeng Decoction Positive

  Yuqing Meng 2018 [486] Post-MI rats Notoginseng Positive

  Ming-liang Chen 2016 [487] TMAO-induced atherosclerosis in ApoE(-/-) 
mice

Resveratrol Positive

  Jing-Hua Wang 2014 [488] High-fat-fed rats Flos Lonicera Positive

  Zhen-Li Wu 2014 [489] Post-MI rats Sclederma of Poria cocos (Hoelen) Positive

Drug (Microbial TMA-lyase inhibitors)
  Chelsea L Organ 2020 [490] Murine model of heart failure Diet containing choline plus a microbial cho-

line TMA-lyase inhibitor
Positive
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decrease BAs concentration [498]. Besides, supplement-
ing fiber content in obese mice can significantly increase 
energy expenditure and the number of beneficial bacte-
ria, and it also inhibits weight gain through the SCFAs-
GRP41 pathway [460].

Furthermore, modulation of BAs by diet may be a 
promising treatment for CVDs risk factors [499]. Poly-
phenol- or polyphenol-rich foods increase the metabolic 
output of BAs and beneficial bacteria such as Bifidobac-
terium, Lactobacillus, Akkermansia, Bacteroides, and 
Eubacterium [500]. In addition, dietary fiber supplemen-
tation could also increase fecal acetate and reduce fecal 
cholate, deoxycholate and total BAs contents to cause 
weight loss [431]. Additionally, regulating the protein in 
the diet shows great benefit and a protein-deprived diet 
can reverse obesity in mouse models [501]. Specifically, 
dietary intervention is the key method for the adjustment 
of BCAAs. Studies have shown that interventions based 
on reducing dietary levels of BCAAs are a new approach 
for the treatment and prevention of obesity and diabetes 
[226]. Reducing dietary BCAAs rapidly reverses diet-
induced obesity and improves glycemic control in obese 
mice, suggesting that reducing dietary BCAAs may be 
helpful in the treatment of obese and insulin-resistant 
patients. However, this finding needs to be further veri-
fied in the human population [280].

Of course, diet is very important in the treatment 
of diabetes. Increasing the intake of dietary fiber can 
upregulate the synthesis of SCFAs, which promotes the 
secretion of insulin and insulin sensitivity, and relieves 
the symptoms of T2D in turn [246]. A special diet with 
butyric acid may improve glucose metabolism and insu-
lin sensitivity [244]. Moreover, regulating meal tim-
ing and dietary macronutrients may also regulate gut 

microbiota and the metabolism of glucose [502, 503]. 
Targeting BCAAs is also a promising method to treat dia-
betes. By adding tryptophan or threonine to balance the 
ratio of amino acids in the diet, excess food intake can be 
suppressed [119]. On the other hand, the reduction of 
isoleucine and valine can significantly improve glucose 
tolerance, but the reduction of leucine does not improve 
glucose tolerance in mice, because of the regulation of 
the FOXA2-FGF21 signaling pathway [459, 504]. BCAAs 
restriction by using an amylopectin diet restricted weight 
loss and improved blood glucose levels in mice [280]. 
In humans, BCAAs restriction has also been found to 
reduce systemic BCAAs levels, enhance glucose sensitiv-
ity, and reduce postprandial insulin levels [280].

There are some studies explored the treatment of 
CVDs by diet [505, 506]. Dietary regulation can affect 
the changes in the composition of intestinal microor-
ganisms and significantly affect the various metabolites 
produced by gut microbiota [507]. For example, it has 
been reported that the metabolism of dietary L-carni-
tine by intestinal microorganisms also produces TMAO, 
which leads to atherosclerosis [160]. The Mediterra-
nean diet can effectively promote the proliferation of 
SCFAs-producing bacteria in the intestinal tract, reduce 
chronic inflammation, and thus stabilize blood pressure 
[508]. Additionally, a Mediterranean diet was reported 
to reduce AF risk, while low-carbohydrate diets may 
increase the risk of AF [509, 510]. It was found that a low-
calorie diet combined with probiotics helps to reduce 
BMI and blood pressure in obese patients with hyper-
tension [434]. In addition, other dietary patterns, such 
as dietary approaches to stop hypertension (DASH) diet, 
potassium-rich substitute, and intermittent fasting, can 
also regulate the structure of gut microbiota and SCFAs 

Abbreviation: CAD Coronary artery disease, MI Myocardial infarction, T2D Type 2 diabetes, LDLR Low-density lipoprotein receptor, Lab4P Lab4 probiotic consortium 
(bifidobacterium bifidum, bifidobacterium animalis subsp. Lactis and two strains of lactobacillus acidophilus plus lactobacillus plantarum cul66, BFM Bifidobacterium 
breve cect7263, BCAAs Branched-chain amino acids, DMB 3,3-Dimethyl-1-butanol, an inhibitor of trimethylamine formation, FMT Fecal microbiota transplantation

Table 2  (continued)

First-author/Year Diseases Intervention Efficacy

  Kui Chen 2017 [398] Mice with a Western diet DMB Positive

  Zeneng Wang 2015 [491] Mice fed a high-choline or L-carnitine diet DMB Positive

Exercise
  Wen-Jie Xia 2021 [492] Spontaneously hypertensive rat Moderate-intensity exercise Positive

  Zuheng Liu 2017[493] Post-MI mice Moderate-Intensity Exercise Positive

  Bernardo A Petriz 2014 [494] Obese, non-obese and spontaneously hyper-
tensive rats

Controlled exercise training Positive

FMT
  Yun Zhang 2022 [413] Aged rats FMT Positive

  Eun Sil Kim 2022 [495] Atherosclerosis-prone mouse model FMT Positive

  Xuefang Yan 2020 [477] High salt-induced hypertension rats FMT Positive

  Marta Toral 2019 [496] Spontaneously hypertensive rats FMT Positive
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production, which help to regulate blood pressure [316]. 
Dietary fiber is thought to effectively reduce the risk of 
CVDs by lowering LDL levels in blood plasma [511]. Low 
dietary fiber intake will not only lead to a decrease in 
microbial diversity and SCFAs production, but also affect 
nitrogen balance [512].

Since dietary interventions may play a role in secondary 
cardiovascular prevention, recent clinical studies have 
explored the effects of diet on attenuating cardiovascu-
lar events in CAD [429, 430, 432, 513]. Calorie restric-
tion [429], the Vegan diet [432, 513], the American Heart 
Association–recommended diet [432, 513], and the 
Lacto-Ovo-Vegetarian diet [430] showed the improve-
ments in cardiometabolic risk factors by regulating levels 
of serum high-sensitivity C-reactive protein and lipotoxic 
lipids, as well as plasma and urinary levels of TMAO. In 
addition, although it is not yet possible to draw conclu-
sions that moderate alcohol drinking is linked to a lower 
risk of adverse cardiovascular events [514], a study noted 
that moderate consumption tended to have more positive 
effects on metabolic profiles and commensal microbiota 
in 72 patients with CAD [428].

With strong associations in heart failure, we discussed 
and looked ahead dietary interventions for targeted 
regulation of gut microbiota metabolites. Choline and 
TMAO diets could exacerbate cardiac dilatation and 
left ventricular dysfunction, leading to aggravated heart 
failure [515]. Multiple observational studies suggest 
that the DASH diet, which is abundant with fruits, veg-
etables, whole grains, and low-fat dairy products could 
decrease heart failure incidence and severity [516–519]. 
For example, in a previous randomized controlled trial, 
subjects with heart failure assigned to the DASH group 
followed the DASH eating plan for 3 months and demon-
strated better exercise capacity and quality of life [433]. 
Furthermore, the fasting-mimicking diet (FMD), a caloric 
restriction dietary intervention has been applied in a 
clinical study, indicating the benefit of FMD in reducing 
plasma levels of TMAO and the risk of CVDs [520].

Probiotic and prebiotic therapy
Probiotics
Probiotics are a general term for microorganisms that 
can improve the microecological balance of the host and 
play a beneficial role in the intestinal tract [521]. Regu-
lating the gut microbiota using probiotics may be a good 
supplementary treatment for obesity and the regulation 
of lipid metabolism [522–524]. It was reported that Bac-
teroides could be used for treating obesity [223]. Never-
theless, whether adding probiotic strains has an effect on 
the adjustment of the composition of intestinal micro-
biota, insulin resistance and inflammation remains to be 
investigated [525]. Some studies have used bacteria to 

promote BCAAs metabolism to explore potential bac-
terial therapeutic effects. For instance, Bacteroides spp. 
was used to treat obesity by promoting the breakdown of 
BCAAs [223]. Moreover, engineered probiotic bacteria 
and specific symbionts have shown a beneficial effect on 
reducing obesity in mice, although the relative methods 
that affect obesity risk have yet to be determined [464].

Some specific kinds of probiotics can also regulate 
the occurrence, development and treatment of diabetes. 
One of the most intensively investigated probiotics is 
A. muciniphila supplementation. A. muciniphila abun-
dance, one of the main probiotics, is associated with 
ameliorating insulin sensitivity and inflammation [526]. 
A decreased amount of A. muciniphila is associated with 
the occurrence and development of T2D [200]. Adminis-
tration of A. muciniphila to mice fed with a high-fat diet 
reversed their increased fat mass, alleviated metabolic 
endotoxemia, improved adipose tissue inflammation and 
insulin resistance, and decreased inflammation-related 
markers [527]. Likewise, supplementation with A. mucin-
iphila could improve metabolic health in humans [528].

Other kinds of probiotics may also play a beneficial 
role. Studies have suggested that supplementation with 
Clostridium butyricum in diabetic mice could reduce 
systemic insulin resistance and inflammation, increase 
mitochondrial metabolism, and significantly reduce gut 
damage [466]. Besides, N. oceanica has applicability to 
produce biofuels and it was also reported to improve the 
abundance of Oxyphotobacteria in order to treat meta-
bolic syndrome [461]. Lactobacillus plantarum strain 
Ln4 administration changes the expression of several 
hepatic genes (increased mRNA levels of IRS2, Akt2, 
and AMPK and reduced CD36) that regulate glucose and 
lipid metabolism [465]. Treatment with A. soehngenii 
may cause the release of GLP-1 and induce the expres-
sion of Regenerating Family Member 1 Beta, thereby reg-
ulating blood glucose [435].

It is important that probiotics can regulate lipid metab-
olism, produce SCFAs, regulate TMAO levels, and play a 
regulatory role in lowering the blood pressure [333, 462]. 
It has been reported that the probiotics Bifidobacterium 
breve CECT7263 (BFM) and Lactobacillus fermentum 
CECT5716 (LC40) could prevent endothelial dysfunc-
tion and high blood pressure in inherited hypertension 
[462]. Another study found that BFM could reduce blood 
pressure in renin-independent hypertensive rats, and its 
mechanism might be related to the decrease in plasma 
trimethylamine [463]. A previous clinical study suggested 
that daily powdered fermented milk with Lactobacil-
lus helveticus can lower blood pressure in patients with 
hypertension without any adverse reactions [442]. In 
fact, a number of meta-analyses have shown a decrease 
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in systolic and diastolic blood pressure in hypertensive 
patients after taking probiotics [529–531].

Many studies have fully investigated the role of probi-
otics in the prevention and treatment of atherosclerosis 
[532–534]. For example, Lactobacillus can regulate gut 
microbiota structure and its metabolites, and improve 
lipid metabolism and serum TMAO levels [535]. It was 
found that dietary tea polyphenols could affect intesti-
nal Bifidobacteria and regulate atherosclerotic plaques 
[468]. P Hlivak et  al. studied the effects of long-term 
oral administration of Enterococcus faecium M-74 rich 
in selenium on human total cholesterol, LDH, HDL 
and triglycerides, and they found that the application 
of Enterococcus faecium M-74 probiotics for 1  year can 
reduce serum cholesterol levels [536]. In addition, the 
Lab4 probiotic consortium (Bifidobacterium bifidum, 
Bifidobacterium animalis subsp. lactis and two strains 
of Lactobacillus acidophilus) plus Lactobacillus plan-
tarum CUL66 (Lab4P) can reduce plasma cholesterol 
levels induced by a high-fat diet [467]. Researchers fur-
ther demonstrated that Lab4P reduced atherosclerosis 
in LDLR−/− mice and stabilized plaques by inhibiting 
inflammation [371].

Of note, there are increasing numbers of clinical trials 
goaled to evaluate the effects of probiotic administration 
in patients with CAD or myocardial infarction [429, 437, 
438, 440, 443]. Probiotics can restore gut barrier integ-
rity and lessen intestinal permeability, causing a drop in 
LPS levels [429, 537]. After 12 weeks of intervention with 
Lactobacillus rhamnosus GG, the serum levels of IL-1β 
and LPS decreased, showing promising effects on inflam-
mation and metabolic endotoxemia in CAD patients 
[429]. Furthermore, in a pilot study of 21 men with sta-
ble CAD, supplementation with Lactobacillus plantarum 
299v rescued dysfunctional vascular endothelial cells, 
and decreased systemic inflammation, independent of 
changes in traditional CVDs risk factors and TMAO [440].

As mentioned above, the nature of the bacterial flora 
in patients with heart failure differed from that in control 
subjects, which implies the potential therapeutic effect 
of targeting and shifting the composition of gut bacteria 
in heart failure. From this perspective, selective admin-
istration of probiotics, which have cardioprotective ben-
efits, might be deemed a potential strategy for primary 
and secondary prevention of heart failure [394, 538]. Gan 
et al. provided evidence that oral Lactobacillus rhamno-
sus GR-1 oral administration can attenuate the progres-
sion of heart failure, and maintain an anti-remodeling 
effect after withdrawal [469]. Additionally, daily oral 
administration with Saccharomyces boulardii showed 
benefits for chronic systolic heart failure, presenting as 
elevated left ventricular ejection fraction (LVEF), along 

with decreased circulating inflammatory mediators [441]. 
These observations pointed that the use of probiotics 
could provide additional benefits in heart failure treat-
ment, specifically reducing the severity and improving 
the prognosis of heart failure post-myocardial infarction. 
However, there was a multicenter study with inconsistent 
conclusions that treatment with Saccharomyces boulardii 
or rifaximin had no significant effect on LVEF and micro-
biota diversity in patients with heart failure [436].
Prebiotics
Prebiotics are typically molecules that are difficult to 
digest in foods, such as oligosaccharides or complex sug-
ars. As food additives, they can improve host health by 
selectively stimulating gut bacteria, including probiot-
ics [539, 540]. For example, prebiotics also have benefi-
cial effects on obesity by improving glycemic control and 
plasma lipid profiles [475, 511]. Supplementation with 
fructo-oligosaccharides and biotin limits weight gain and 
glycemic deterioration in high-fat diet fed mice [541]. 
However, some studies proposed that treating obesity 
patients with prebiotics did not show a strong effect on 
weight loss, and the reason may be due to the individual-
ized bacterial diversity [448, 542].

Additionally, inulin-type fructans promote the abun-
dance of NO-producing bacteria, and decrease second-
ary BAs-producing bacteria [472]. Fiber, polyphenols, 
and certain drugs can sequester BAs, reducing their 
entry into the colon and the metabolism of colon bacte-
ria [543]. Treatment of decreasing circulating BAs and 
increasing fecal BAs using prebiotics shows some ben-
efits. Ileo-colonic delivery of conjugated BAs improved 
glucose homeostasis and increased fecal BAs [544]. In 
children with obesity, primary BAs increased in the con-
trol group but not in the oligofructose-enriched inulin 
treated groups [446]. Several types of plasma BAs were 
reduced in synbiotic treatment combining a prebiotic 
(polydextrose) and probiotic (Bifidobacterium animalis 
subsp, B420) compared to placebo in overweight adults [444].

Administration of prebiotics may also play a role by 
reversing the specific signatures of gut microbiota associ-
ated with diabetes, thereby improving intestinal perme-
ability, controlling endotoxemia, reducing inflammation, 
and eventually improving glucose tolerance [474]. Some 
kinds of prebiotics, such as Sargassum fusiforme 
fucoidan, were reported to be an adjuvant agent to treat 
T2D well [470]. Fructose oligosaccharides can improve 
glucose metabolism and insulin sensitivity in patients 
with T2D [545]. Moreover, oral administration of prebi-
otics, such as galacto-oligosaccharides and resveratrol, 
can modulate the structure of gut microbiota and reduce 
the levels of TMAO and LPS in circulation in rats with 
high-fat diet-induced dyslipidemia [471].
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Moreover, it was found that beta-glucan alters the com-
position of gut microbes and lowers blood pressure [447, 
546]. Previous studies have shown that inulin can reduce 
atherosclerosis in ApoE deficient mice [476]. Besides, 
prebiotic inulin improves fat oxidation and promotes 
SCFAs production in overweight or obese men, which is 
beneficial for substrate metabolism and may have a posi-
tive effect on the improvement of atherosclerotic symp-
toms [445]. Emilie Catry et  al. investigated the effect of 
gut microbiota on vascular dysfunction in ApoE−/− mice. 
Supplementation with inulin-type fructans could activate 
the NOS pathway and completely reverse mesentery and 
carotid endothelial dysfunction in mice [472]. Oppositely, 
it has also been reported that inulin can regulate gut 
microbiota, but cannot improve atherosclerosis in hyper-
cholesterolemic ApoE*3-Leiden. CETP mice [473].

Interestingly, in a randomized, double-blind clinical 
trial, the co-supplementation of inulin as a prebiotic with 
probiotic Lactobacillus rhamnosus, was shown to have 
beneficial effects on depression, anxiety, and the level of 
microbial translocation in patients with CAD [443]. In 
summary, diet may be a promising therapy for the treat-
ment of CVDs by targeting gut microbiota.

Drug

Antibiotics
The use of antibiotics can reduce harmful microbiota, 
regulate the metabolites of gut microbiota, and improve 
the prognosis of CVDs [547]. Many antibiotics have been 
reported to affect gut microbiota and blood pressure. 
For instance, it has been reported that minocycline can 
change the composition of gut microbiota and regulate 
blood pressure in hypertensive rats [548]. And elevated 
systolic and diastolic blood pressure in salt-induced 
hypertensive rats decreased significantly after quadruple 
antibiotic treatment [477]. Although it seems that anti-
biotics can lower blood pressure by changing gut micro-
biota, some studies have come to different results [549]. 
For example, minocycline and vancomycin reduced the 
abundance of Firmicutes in the intestinal tract of rats, 
which decreased blood pressure in spontaneously hyper-
tensive rats, but led to an increase in blood pressure in 
salt-sensitive rats [478].

Excitedly, it has been found that antibiotics can effec-
tively reduce the levels of TMAO in plasma [338, 453]. 
Ciprofloxacin and metronidazole can reduce the micro-
biota that can convert choline into TMA, so as to inhibit 
the formation of macrophage foam cells and improve the 
progression of atherosclerosis [550]. However, antibiot-
ics affect the diversity of gut microbiota, and long-term 
use has been identified as an independent risk factor for 
atherosclerotic events [551]. It has been shown that the 

increase in atherosclerosis caused by antibiotics is related 
to the loss of intestinal diversity and the change in micro-
bial metabolic function, which limits the use of antibiot-
ics as a practical treatment of anti-atherosclerosis [551].

In addition, antibiotics are currently used for gut 
microbiome-based CAD treatment. Antibiotic treat-
ment has primarily focused on the elimination of disease-
causing microbiota to alter the progression of CAD. A 
previous study found that the broad-spectrum antibiotic 
vancomycin altered the abundance of gut microbiota and 
levels of circulating leptin, showing benefits of infarct 
area reduction and cardiac function recovery post-
ischemia [380]. However, the effect of antibiotic treat-
ment on reducing adverse cardiac events in patients with 
CAD is still conflicting [454, 552]. It has been claimed 
that antibiotics macrolides and quinolones show harmful 
effects on cardiac prognosis for the secondary prevention 
of CAD in the clinic [454, 552]. In general, more clinical 
studies with a longer follow-up duration that assess the 
safety of antibiotics on CAD are needed.

There is evidence that antibiotics may play a role in 
CVDs, but the possible drug resistance caused by long-
term use of antibiotics is also of concern, as long-term 
use of antibiotics may disrupt the dynamic balance of 
intestinal microorganisms [553]. Therefore, based on the 
current findings, we believe that more preclinical and 
clinical studies are needed to clarify the role of antibiot-
ics in the gut microbiota and CVDs, and individualized 
use of antibiotics in patients with CVDs should also be 
considered.

Traditional Chinese medicine
Traditional Chinese medicine (TCM) can protect intes-
tinal barrier function and regulate the biosynthesis of 
SCFAs, BAs, and tryptophan to treat metabolic dis-
eases [554]. Lippia citriodora lessens intestinal dysbio-
sis by reducing the Firmicutes to Bacteroidetes ratio and 
increasing the abundance of A. muciniphila to reduce fat 
accumulation and improve plasma glycemic control and 
lipid profiles [483]. Akebia saponin D was able to down-
regulate the PPAR-γ pathway in order to decrease plasma 
lipids and insulin resistance [479]. Other TCMs, such as 
berberine, have also been shown to lower blood glucose 
by regulating the effects of gut microbiota on BAs metab-
olism [452].

Additionally, TCM may be a promising treatment 
for CVDs. Recent studies have shown that TCM may 
improve the symptoms of hypertension by regulating 
gut microbiota [555]. Baicalin and berberine have been 
found to reduce left ventricular hypertrophy and change 
the intestinal microbiota to improve hypertension [481]. 
Besides, baicalin can regulate the permeability of the 
intestinal epithelial barrier, reduce inflammatory factors 
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and reduce the inflammatory response in spontaneously 
hypertensive rats [484]. In addition, TCM prescriptions 
Zhen Gan Xi Feng Decoction and Sanoshashinto (San 
Huang Xie Xin Tang in Chinese) have also been found to 
regulate the diversity of gut microbiota and their metabo-
lites to reduce blood pressure [481, 485].

An increasing number of studies have shown that the 
active components of TCM can regulate the structure 
of gut microbiota, reduce inflammatory reactions, and 
improve atherosclerosis [556–558]. Besides, Ganoderma 
lucidum, Honeysuckle and other TCMs have also been 
found to effectively delay the development of atheroscle-
rosis [487, 488]. The Alisma orientalis beverage is a TCM 
prepared by a variety of medicinal plants that can be used 
for atherosclerosis. Its mechanism may be the change in 
gut microbiota content and the decrease in gut microbi-
ota metabolite TMAO [480].

A growing body of evidence has mentioned that gut 
microbiota, which emerged as the frontier, may play 
an important role in the mechanism underlying TCM 
in heart failure [559–561]. Du et  al. demonstrated that 
Baoyuan Decoction formula could regulate gut metabo-
lism-related tryptophan and attenuate cardiac hypertro-
phy, which contributes to alleviating the development 
of heart failure [482]. Besides, other TCMs, such as 
Notoginseng total saponins, Safflower total flavonoids 
[486], and Poria cocos [489], can dilate blood vessels, and 
diuresis and inhibit adverse cardiac remodeling.

Microbial TMA‑lyase inhibitors
Of note, the association between TMAO levels and clini-
cal adverse consequences in CVDs has been shown in 
clinical studies [562]. Besides, the structural analog of 
choline, 3,3-dimethyl-1-butanol, could reduce the level of 
TMAO via restraining the activity of choline TMA-lyase 
and alleviate cardiac function and fibrosis [398]. In fact, 
microbial TMA-lyase inhibitors focused on the inhibi-
tion of TMAO production may alter the progression of 
heart failure. It has been claimed that dietary withdrawal 
of TMAO as well as administration of a gut microbe-
targeted inhibitor of TMAO production, exert promising 
effects on heart structure and function during heart fail-
ure in a murine model [490].

Furthermore, one study used 3, 3‐dimethyl‐1‐butanol 
to suppress microbial TMA and TMAO formation in the 
treatment of atherosclerosis [491]. They found that 3, 3‐
dimethyl‐1‐butanol inhibited the generation of TMAO, 
reduced the formation of macrophage foam cells, and 
decreased the development of atherosclerosis [491]. 
However, considering the crucial role of TMAO in the 
development of atherosclerotic plaques, whether inhibit-
ing the TMAO pathway can prevent the progression and 
improve the prognosis of other types of CVDs remains to 

be determined. In short, microbial TMA-lyase inhibitors 
have certain clinical transformation potential in the treat-
ment of CVDs.

Other drugs
Some drugs of cardiovascular systems such as statin, glu-
cose-lowering drugs, and blood pressure lowering drugs 
are reported to regulate gut microbiota [563–, 564–566]. 
Researchers found that some inhibitors, including sim-
vastatin and atorvastatin could regulate gut microbiota 
in the prevention and treatment of hyperlipidemia [563, 
564]. Statin treatment could also decrease the degree of 
obesity-associated microbiota dysbiosis, characterized by 
a relatively higher proportion of Bacteroides and a lower 
proportion of Faecalibacterium after inhibitor treat-
ment [567]. Anti-diabetes drug interventions may have 
a significant impact on the microbiota composition and 
function, independent of their effects on glycemic con-
trol [568, 569]. These drugs may regulate the abundance 
of SCFA-generating bacteria and the Firmicutes to Bac-
teroidetes ratio [570, 571]. For example, acarbose, and sit-
agliptin could increase the number of beneficial bacteria 
in the gut while lowering blood glucose [572]. In addi-
tion, metformin increased the levels of SCFAs including 
butyrate, acetate, and valerate, and altered three glucose 
metabolism pathways (glycolysis, aerobic oxidation, and 
pentose phosphate) compared with controls [573]. Met-
formin also increased A. muciniphila to regulate glu-
cose homeostasis [574, 575]. Furthermore, some studies 
have found that drugs such as vitamin D and metformin 
can also reduce TMAO levels by affecting the composi-
tion and function of gut microbiota [566, 576, 577], thus 
treating atherosclerosis. Moreover, drugs targeting the 
BAs receptor FXR also have promising effects on non-
alcoholic fatty liver disease [578, 579], which is known 
to be clinically associated with CVDs. However, to date, 
the ability of BAs sequestrants to decelerate CAD pro-
gression remains ambiguous, and BAs receptor-targeting 
drugs have been demonstrated in CAD treatment.

Exercise
Previous studies have suggested that exercise can change 
the composition and diversity of gut microbiota in hyper-
tensive rats [494]. Exercise can continuously decrease 
systolic blood pressure in spontaneously hypertensive 
rats through the remodeling of gut microbiota [492]. 
In addition to basic research, several clinical trials have 
explored the role of exercise in regulating gut microbiota 
in hypertensive patients. Previous clinical trials found 
that the imbalance of gut microbiota may be a potential 
cause of decreased exercise ability in elderly patients with 
hypertension [580], and exercise can effectively regulate 
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the richness of gut microbiota and its metabolites, which 
is beneficial to the control of hypertension [581].

Exercise training has been known as an evidence-based 
therapeutic intervention for CAD [582]. The decreased 
morbidity and mortality in CAD patients benefit from 
increasing coronary blood flow and myocardial oxygen 
demand [583]. Exercise might be a promising tool to 
alter the gut microbiota in CAD, given that regular exer-
cise could play a beneficial role in gut health, including 
preventing gut dysbiosis, increasing microbial diversity, 
and decreasing circulating levels of gut leakage markers 
both in murine models and humans [493, 584, 585]. In a 
mouse MI model, it was confirmed that moderate-inten-
sity exercise could alter the gut microbial composition 
and improve cardiac function [493]. However, notably, 
strenuous exercise triggers myocardial infarction through 
elevated pro-coagulant activity and levels of gut leakage 
markers [449, 450]. Furthermore, strenuous exercise is 
associated with a higher level of gut leakage, which signif-
icantly increases LPS, LPS-binding protein, and soluble 
CD14 levels in patients with symptoms of CAD [450]. All 
of the above results indicated the essentiality of exercise 
intensity in CAD treatment.

Oppositely, there is little evidence about the effect of 
exercise on regulating gut microbiota in the treatment of 
obesity. Although exercise could not regulate the diver-
sity or community structure of gut microbiota, it could 
improve the abundance of certain microbiome genera 
including Coprococcus, Blautia, Lachnospiraceae and 
Dorea to increase insulin sensitivity in patients with 
obesity [451]. In brief, the regulation of gut microbiota 
composition and its metabolites via exercise may be a 
promising therapy.

Surgery
Bariatric surgery has been reported to alter the micro-
biota and increase circulating levels of primary and sec-
ondary BAs [586–588]. Besides, it is currently known 
that bariatric surgery, such as gastric bypass surgery and 
sleeve gastrectomy, affects BAs metabolism to regulate 
fat metabolism, and then achieve weight loss [589]. Addi-
tionally, bariatric surgery has been reported to upregulate 
FXR signaling in order to exert its function [590, 591]. 
And one study has suggested that in patients receiving 
vertical sleeve gastrectomy, changes in gut microbiota 
are important factors in weight loss and blood glucose 
control [590]. After Roux-e-Y gastric bypass surgery or 
vertical sleeve gastrectomy, the effect of improving insu-
lin resistance and abnormal glucose tolerance is obvious, 
accompanied by a change in the diversity of the micro-
biota and an increase in the plasma total BAs levels [592, 
593]. Taken together, surgery may provide a new per-
spective for regulating intestinal flora in obese or diabetic 

patients and a new idea for reducing cardiovascular dis-
ease risk factors.

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) aims to treat 
CVDs by replacing intestinal pathogens by introducing 
fecal contents from healthy subjects into the patient’s 
gastrointestinal tract. FMT treatment for patients with 
obesity led to sustained changes in the intestinal micro-
biome, increased butyrate-producing bacteria, readjust-
ment of glucose homeostasis and BAs profiles [456, 458]. 
A study found that single transplantation of fecal micro-
biota from leptin donors in patients with metabolic syn-
drome could lead to changes in the composition of gut 
microbiota [457]. Another study found that FMT resulted 
in increased insulin sensitivity, weight loss, and increased 
microbial diversity [458].

Excitedly, previous studies have found that hyperten-
sion can be controlled by transplanting gut microbiota 
from normal rats into the intestinal tract of high-salt-
induced hypertensive rats [477]. In fact, FMT improves 
blood pressure symptoms by increasing the number of 
SCFAs-producing bacteria and improving intestinal per-
meability [291]. In addition, it has been reported that 
FMT can lower blood pressure by reducing the produc-
tion of pro-inflammatory cytokines [496]. A recent ret-
rospective study found that both systolic and diastolic 
blood pressure decreased in hypertensive patients after 
transplantation of detergent bacteria from normotensive 
donors to hypertensive patients [455].

Moreover, FMT can increase the abundance of butyric-
producing bacteria, suggesting that FMT might be a 
potential treatment strategy for atherosclerosis [458]. 
More importantly, new research has found that FMT can 
improve atherosclerosis in C1q/TNF-related protein 9 
gene deficient mice [495]. In addition, FMT can improve 
atrial fibrosis and reduce the expression level of NLRP3, 
thereby reducing susceptibility to AF [413].

However, the use of FMT is currently severely restricted 
due to the adverse effects associated with FMT, includ-
ing the potential transfer of LPS and infectious agents 
[594, 595]. It has also been suggested that transplantation 
of specific species of bacteria in the gut microbiota may 
be a reasonable alternative to FMT [596]. More studies 
are needed to explore whether FMT is an effective and 
safe therapeutic method for CVDs and their risk factors. 
Future research should focus on the mechanistic interac-
tion between these therapies and host metabolism.

Perspective
The gut microbiota interacts with the host to form a 
mutualistic environment for both microbiota and health, 
which regulates host intestinal barrier function, the 
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immune system as well as material metabolism. Con-
versely, dysbiosis of gut microbiota disrupts normal 
function, induces inflammation, and releases harmful 
metabolites to trigger diseases. Excitedly, the relation-
ship between gut microbiota and diseases suggests that 
the gut microbiota may be a potential novel therapeutic 
target. Therefore, identifying the underlying mechanistic 
relationship linking gut microbiota and diseases would 
do a great favor to prevent the progression of diseases.

The gut microbiota in the human body is affected by a 
variety of external factors, among which food and drugs 
play important roles. A healthy diet can not only main-
tain a normal energy balance, but also regulate the com-
position and diversity of the human gut microbiota, thus 
affecting the occurrence and development of diseases 
[597]. Take CVDs for example, the Mediterranean diet 
has many benefits, such as lowering blood cholesterol 
and the level of inflammatory factors [505]. In addition, 
increasing the dietary fiber content or a calorie-restricted 
diet, and exercise training can also modulate energy bal-
ance, thereby promoting health and reducing the inci-
dence of disease [429, 598]. In fact, CVDs are thought to 
be related to excess energy, disorder of substance metab-
olism, and insulin resistance [599]. Previous studies have 
shown that the gut microbiota is also associated with 
energy intake, material metabolism, and insulin sensitiv-
ity [526, 600]. Therefore, are there more “obese bacteria” 
that promote the development of CVDs by increasing 
energy intake from food in patients with CVDs than 
in healthy people [601]? Does excessive calorie intake 
and lack of physical exercise promote the development 
of CVDs by reshaping gut microbiota [492]? Future 
research that clarifies the role of gut microbiota in health 
and disease could be helpful for us to address the above-
mentioned questions. Additionally, exploring the role of 
gut microbiota in health and CVDs will help to develop 
novel therapeutic interventions, including increasing 
vegetarian and dietary fiber content, restricting caloric 
intake, using probiotics/prebiotics or FMT regulation, 
and increasing exercise training, to prevent gut micro-
biota dysbiosis and reduce the occurrence of CVDs.

Currently, established drugs can regulate the gut 
microbiota, which in turn blocks or reverses the progres-
sion of CVDs. Metabolites produced by gut microbiota 
may be pharmacological targets for treatment. Explor-
ing the causative effects of metabolites in disease sus-
ceptibility may provide a new basis for evaluating the 
severity of CVDs, and provide new ideas for stratified 
treatment. Although a considerable number of studies 
have been carried out on the relationship between the 
metabolites of gut microbiota and CVDs, most of the 
current research is still in the basic experimental stage, 
and the specific mechanism has not been fully elucidated. 

Therefore, more high-quality, large sample size, clinical 
randomized control trials are needed to determine the 
safety and efficacy of targeting gut microbiota for the 
treatment of CVDs. Furthermore, more studies utilizing 
next-generation high-throughput sequencing technology 
and bioinformatics methods are needed to understand 
how gut microbiota interacts with surrounding organs 
and tissues, and to clarify their underlying molecular 
mechanisms in disease susceptibility.

Many new studies continue to emerge, providing 
intriguing reference for exploring the association between 
gut microbiota and CVDs. Based on previous studies, we 
collected evidence that some pathobionts, such as Prevo-
tella copri, contributed to CVDs [269], while others, such 
as A. muciniphila, protected against CVDs [439]. The 
compositional pattern changes in gut microbiota, such as 
the Firmicutes to Bacteroidetes ratio, in different CVDs 
risks have been the hot points of gut microbiota research. 
Importantly, most clinical studies have suggested that 
the diversity, richness and evenness of gut microbiota 
are closely associated with CVDs [602, 603]. And some 
studies added bacteria to animals to observe the develop-
ment of CVDs to explore the direct effect of gut micro-
biota on CVDs risk. However, in humans, it is unknown 
whether CVDs disrupt the balance of gut microbiota or 
whether the imbalanced gut microbiota can drive or ini-
tiate the occurrence of CVDs. We propose that these two 
processes would promote each other. Dysbiosis might 
also increase CVDs risk [413]. In turn, decreased heart 
function in CVDs disrupts the microenvironment of 
gut microbiota [62]. Furthermore, there is still a lack of 
research on how gut microbiota metabolites directly or 
indirectly affect disease susceptibility, on whether target-
ing this pathway can reduce the risk of diseases, and on 
the value of using gut microbiota metabolites to measure 
the risk, progression, and prognosis of disease. Of note, 
most studies did not explore the functional alterations 
and downstream consequences of dysbiosis. Thus, the 
detailed mechanisms of the direct participatory role of 
gut microbiota in CVDs need further investigation.

Moreover, some gut microbiota metabolites play a 
harmful role in the occurrence and development of 
CVDs. For example, TMAO directly or indirectly partici-
pates in the pathogenesis of CVDs [64]. The mechanism 
involves inhibiting cholesterol metabolism, inducing 
platelet aggregation and thrombus formation, and pro-
moting atherosclerosis [64]. Besides, SCFAs play a key 
role in maintaining gut barrier function and have a posi-
tive effect on cardiovascular health. However, the impact 
of other metabolites, particularly BAs, on regulating the 
occurrence and development of CVDs is still contro-
versial. Although some studies have shown that fasting 
plasma BAs inhibit atherosclerosis [369], some studies 
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have also found that there is no statistically significant 
difference in fasting plasma BAs concentrations between 
normal-weight and obese people [604]. Notably, Chávez-
Talavera et  al. suggested that the proportion of differ-
ent types of BAs, clinical-biological differences between 
the studied patient populations, and the heterogeneity 
of statistical analyses applied may explain the difference 
between studies [605]. From this, we speculate that the 
gut microbiota may play a role by affecting the ratio and 
composition of different types of gut microbiota-pro-
duced metabolites, and the specific relationship between 
gut microbiota-produced metabolites and CVDs needs 
to be further investigated.

In addition, the role of downstream signaling pathways 
regulated by gut microbiota-produced metabolites in 
the development of CVDs is not completely clear. Dif-
ferent studies reported inconsistent results. Although 
it is widely accepted that FXR and TGR5 mediate BAs 
metabolism [153], the effect of FXR and the TGR5-
induced downstream signaling pathway on CVDs is still 
controversial in different studies [606, 607]. Some studies 
have suggested that the inhibition of FXR is beneficial for 
CVDs [219, 606]. For example, in vitro, upregulating the 
expression of FXR in cardiomyocytes induces cardiomyo-
cyte apoptosis and reduces cardiomyocyte viability [606]. 
Deletion of the FXR receptor can significantly reduce 
the necrotic myocardial area, increase the cardiac ejec-
tion fraction, and improve cardiac structure and remod-
eling after myocardial infarction in mice [606]. However, 
another animal experiment has shown that the activation 
of FXR is beneficial [607]. Through activation of FXR, 
BAs can attenuate the development of atherosclerosis, 
improve lipid structure, and affect vascular tone [607]. 
Thus, further studies should explore the downstream 
pathways regulated by metabolites to identify targeted 
therapies for CVDs.

Another controversial topic is whether regulating these 
gut microbiota-produced metabolites has therapeutic 
effects on CVDs. Studies have also placed a spotlight on 
the treatment of CVDs by targeting gut microbiota and 
related metabolites. Diet regulation is the main applica-
tion that impacts gut microbiota composition. Tradi-
tional dietary adjustments could benefit CVDs [120]. 
Although a high‐fiber diet or a diet supplemented with 
SCFAs had a protective effect on mice with hyperten-
sion and heart failure [407], the effect and mechanism 
of other diets such as BCAAs supplementation on CVDs 
still need more clinical and basic studies. Other prom-
ising treatments include probiotics and prebiotics and 
FMT treatment. Probiotics and prebiotics are supple-
mentary approaches to manipulate the gut microbiome 
[608]. However, the effect of probiotics and prebiotics is 
only transient [609, 610], and has not been recommended 

by most clinical guidelines [611]. More importantly, the 
application of FMT is limited by potential adverse com-
plications after bringing both beneficial and harmful bac-
teria [612, 613]. In summary, targeting gut microbiota 
and metabolites could be a promising therapy but more 
studies are needed before they can be used in clinical 
applications.

In the future, high-tech means involving bacterial gene 
sequencing should be used to detect the structure and 
function of gut microbiota metabolites, so as to formu-
late more effective targeted disease intervention pro-
grams, and provide new ideas for the improvement of 
health and the treatment of CVDs [614]. The emergence 
of a new generation of metagenomics and the develop-
ment of bioinformatics will help us to further study the 
production and mechanism of microbial metabolites. A 
large number of high-quality studies are still needed to 
further confirm how the gut microbiota converts dietary 
and endogenous molecules into metabolites that com-
municate with the host’s peripheral organs and tissues, 
which will also facilitate the development of therapies 
targeting gut microbiota and point out new methods for 
the prevention and treatment of CVDs.
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